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1 Introduction

Classical molecular dynamics (MD) simulations of all-atoms or coarse grained systems are among
the most popular techniques for simulation of soft matter. Classical MD simulations are naturally
performed under the conditions of constant energy E, constant volume V , and constant number of
particles N . One refers to such simulations as microcanonical or NV E ensemble simulations (Allen
and Tildesley, 1987; Frenkel and Smit, 2001). In addition to energy, volume and number of particles,
microcanonical ensemble simulations also conserve linear and angular momentum, with the later not
being a constant under periodic boundary conditions. Unfortunately, the microcanonical (NV E)
ensemble does not correspond to the conditions under which most experiments are carried out. If
one is interested in the behavior of the system at a specific temperature T , a constant NV T ensemble
simulation using a thermostat is required. See, for example, Allen and Tildesley (1987); Frenkel and
Smit (2001) for a description of popular thermostats. These thermostats can be classified into the
following three categories:

1. scaling velocities (e.g., simple velocity scaling and the Berendsen thermostat),

2. stochastic thermostats (e.g., the Anderson thermostat, Langevin and Dissipative Particle dy-
namics (DPD))

3. extended system formulations (e.g., the Nosé-Hoover thermostat).

Each class of methods has advantages and disadvantages, depending on the application. In this paper,
we will focus on stochastic thermostats and their numerical implementation since these methods
appear to be robust and accurate in a wide range of applications. Furthermore, we restrict the
discussion to local stochastic thermostats such as Langevin and dissipative particle dynamics (Frenkel
and Smit, 2001). However, the techniques proposed in this paper essentially also apply to global
stochastic thermostats such as the recently proposed Hoover-Langevin thermostat (Samoletov et al.,
2007; Leimkuhler et al., 2009) and the global Langevin model of Bussi et al. (2007).

Note that local thermostats, such as Langevin dynamics, can be viewed as simplified reduced
systems in the sense of Mori-Zwanzig reduction (see, for example, Allen and Tildesley (1987)).
This aspect is particularly important for coarse grained models for which the fluctuation-dissipation
contributions should not only keep the system at a desired target temperature but should also mimic
the impact of non-resolved finer details of an all-atom model on the coarse grained length and time
scales. Under those circumstances, the appropriate numerical treatment of fluctuation-dissipation
terms also gains in importance.

The numerical methods proposed in this paper rely on the well-known splitting of stochastic
thermostat equations into a conservative and a fluctuation-dissipation part (Allen and Tildesley,
1987). We propose a methodology to derive numerical approximation to the fluctuation-dissipation
part that exactly samples from the underlying Boltzmann distribution. Our methodology applies to
Langevin as well as dissipative particle dynamics (DPD) and, more generally, to arbitrary position
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dependent fluctuation-dissipation terms. A composition method approach is used to derive a time-
stepping method for the complete thermostat, where the conservative dynamics part is discretized
by the standard Störmer-Verlet method (Allen and Tildesley, 1987; Leimkuhler and Reich, 2005). A
Metropolis criterion is introduced to correct for inconsistency in the Störmer-Verlet time-stepping
method with the underlying NV T ensemble and puts the resulting propagator into the context of
Markov chain Monte Carlo (MCMC) methods (Liu, 2001). Our approach relies essentially on an
appropriate adaptation of the generalized hybrid Monte Carlo method of Horowitz (1991); Kennedy
and Pendleton (2001). Acceptance rates under the Metropolis criterion can be increased using
shadow energies as demonstrated in the work of Akhmatskaya and Reich (2006, 2008). The proposed
methods are applicable to meso-scale and coarse grained molecular dynamics simulations which
require a highly accurate sampling from the given target NVT ensemble.

Following Akhmatskaya and Reich (2008), the techniques proposed in this paper can be combined
with constant temperature T , pressure P , and number of particles N (NPT ) ensemble simulation
techniques such as proposed by Andersen (1980); Feller et al. (1995).

An outline of the paper is as follows. The stochastic equations of second-order Langevin and
dissipative particle dynamics (DPD) are summarized in Section 2. In this section, we also state
a unifying framework for general local stochastic thermostats which lead to position-dependent
fluctuation-dissipation terms. We also provide a summary of state of the art numerical methods
for stochastic thermostats. Section 3 gives a short summary on essential theoretical background
concepts such as Markov chains, geometric ergodicity, Markov chain Monte Carlo (MCMC) meth-
ods and shadow energies for conservative time-stepping methods such as Störmer-Verlet. Numerical
methods which exactly sample from the velocity Boltzmann distribution for force-free motion are
proposed in Section 4, where we also discuss their composition with the Störmer-Verlet method for
conservative dynamics. Since the composed approximation does not exactly sample from the NV T
ensemble, Metropolis corrected implementations along the generalized hybrid Monte Carlo method
is proposed in Section 5. In Section 5, we also discuss samples with respect to shadow energies which
allows one to increase the acceptance rate under the Störmer-Verlet dynamics. Numerical results for
some standard DPD test sets as well as from a membrane protein simulation are provided in Section
6. Concluding remarks can be found in Section 7.

2 Summary of local stochastic thermostat formulations

We consider an N -atom molecular system with atomistic positions ri = (xi, yi, zi)
T ∈ R3, velocities

vi = (ui, vi, wi)
T ∈ R3, masses mi, momenta pi = mivi ∈ R3, potential energy function V , and total

energy function

E =
1

2

N∑
i=1

‖pi‖2

mi

+ V (r1, r2, . . . , rN). (1)

For easy of reference, we introduce the notations r = (rT
1 , . . . , rT

N)T ∈ R3N , v = (vT
1 , . . . ,vT

N)T ∈ R3N ,
p = (pT

1 , . . . ,pT
N)T ∈ R3N , and a diagonal mass matrix M ∈ R3N×3N such that

pT M−1p =
N∑

i=1

m−1
i ‖pi‖2. (2)

The microcanonical equations of motion are

dr

dt
= M−1p, (3)

dp

dt
= −∇rV (r), (4)
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which conserve total energy (1).
Recall now that the instantaneous value of the temperature T is related to the kinetic energy as

follows:
kBT

2
(3N −Nc) =

1

2

N∑
i=1

‖pi‖2

mi

, (5)

where kB denotes Boltzmann’s constant and Nc is the number of additionally conserved quantities.
Since total linear and angular momentum are preserved for open boundary MD simulations we
obtain Nc = 6, while only total linear momentum is preserved under periodic boundary conditions
and Nc = 3.

We now introduce a unifying framework for locally coupled stochastic thermostats, which allow
one to convert (3)-(4) to formulations suitable for constant temperature (NV T ensemble) simulations.

2.1 Langevin and dissipative particle dynamics (DPD)

Dissipative particle dynamics (DPD) has become a very popular method for meso-scale simulations
of materials. In this section, we provide a short summary of the method and discuss a slightly more
general framework that also includes traditional Langevin dynamics.

Following the notation of Español and Warren (1995), the standard DPD method of Hoogerbrugge
and Koelman (1992) can be formulated as a stochastic differential equation (SDE):

dri =
pi

mi

dt, (6)

dpi =

[
Fi − γ

∑
j 6=i

ω(rij)(eij · vij)eij

]
dt + σ

∑
j 6=i

ω1/2(rij)eij dWij, (7)

where rij = ri− rj, rij = |ri− rj|, eij = rij/rij, vij = vi−vj, and Fi = −∇ri
V (r) is the conservative

force acting on particle i. The dimensionless weight function ω(r) can be chosen in a rather arbitrary
manner. However, to reproduce a constant temperature ensemble, the friction coefficient γ and the
noise amplitude σ have to satisfy the fluctuation dissipation relation

σ =
√

2kBTγ. (8)

Finally, Wij(t) = Wji(t) are independent Wiener processes (Oksendal, 2000). Recall that the finite-
time increments ∆Wij(τ) = Wij(t + τ) −Wij(t) of a Wiener process are Gaussian distributed with
mean zero and variance

√
τ , i.e., ∆Wij(τ) ∼ N(0, τ). Here N(a, b) denotes the Gaussian distribution

with mean a and variance b.
Following Cotter and Reich (2003), let us write the equations (6)-(7) in a more compact and

general manner:

dr = M−1p dt, (9)

dp = −∇rV (r) dt−
K∑

k=1

∇rhk(r)
[
γḣk(r) dt− σ dWk

]
, (10)

where
ḣk(r) = ∇rhk(r) · v = ∇rhk(r) ·M−1p, (11)

and the functions hk(r), k = 1, . . . , K, can be chosen quite arbitrarily.
The choice

hk(r) = φ(rij), φ′(r) = ω1/2(r), k = 1, . . . , K, (12)
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with K = (N − 1)N/2 in (10) leads back to the standard DPD model. However, one can also set
K = 3N and

hi(r) = m
1/2
i xi, hi+N(r) = m

1/2
i yi, hi+2N(r) = m

1/2
i zi, (13)

i = 1, . . . , N , in (10), which leads to the standard Langevin model

dr = M−1p dt, (14)

dp = −∇rV (r) dt− γp dt + σM1/2 dW, (15)

where W(t) = (W1(t), . . . ,WN(t))T is now a N -dimensional Wiener process.
An intriguing aspect of the DPD equations (6)-(7) is that they satisfy Newton’s third law which

implies conservation total linear momentum

P =
N∑

i=1

pi (16)

as well as total angular momentum

L =
N∑

i=1

ri × pi. (17)

The same is not true for the Langevin equations (14)-(15). Conservation of total linear and angular
momentum has made DPD a popular method for meso-scale simulations (see, e.g., Español (2003))
as well as a stochastic thermostat for NV T simulations (Koopman and Lowe, 2006).

2.2 State of the art numerical treatment

Appropriate time-stepping methods for the conservative part (3)-(4) form the basis of any time-
stepping methods for stochastic thermostats. It seems that there is widespread agreement that the
conservative part should be solved numerically by the Störmer-Verlet method, which is written here
in the velocity/momentum formulation:

pn+1/2 = pn − ∆t

2
∇rV (rn), (18)

rn+1 = rn + ∆tM−1pn+1/2, (19)

pn+1 = pn+1/2 − ∆t

2
∇rV (rn+1), (20)

where ∆t is the step size. The method was first used in the context of MD by Verlet (Verlet,
1967) and has been very popular with the MD community since (Allen and Tildesley, 1987). It is
worthwhile noting that the method was essentially known to Newton already and was used in his
Principia from 1687 to prove Kepler’s second law (see Hairer et al. (2003)).

Why is the Störmer-Verlet method so successful for constant energy MD simulations? Several
reasons can be given. The method is easy to implement, it exactly conserves total linear and angular
momentum, it is time-reversible, it conserves volume of phase space Ω = R3N ,1 and the total energy
(1) is very well conserved over long simulation times even for large and complex systems. See Hairer
et al. (2002); Leimkuhler and Reich (2005) for a detailed theoretical exploration of the Störmer-Verlet
and related methods. We will explore energy conservation under the Störmer-Verlet method further

1Conservation of volume in phase space is different from conservation of volume V in physical space. Conservation
of volume in phase space means that the time-stepping map Ψ∆t : Ω → Ω, induced by the Störmer-Verlet method,
has Jacobian with determinant equal to one.
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in Section 3.4. In particular, we will summarize an explicit algorithm (Skeel and Hardy, 2001) for
computing shadow (also called modified) energies along numerically computed trajectories. It can
be shown that the Störmer-Verlet method allows for shadow energies of arbitrary high accuracy with
respect to the step-size ∆t (Hairer et al., 2002; Leimkuhler and Reich, 2005). Shadow energies can
be used, for example, to assess the quality of NV T ensemble simulations (Engle et al., 2005) and
to increase the acceptance rate in Markov chain Monte Carlo methods based on molecular dynamics
proposal steps (Izaguirre and Hampton, 2004; Akhmatskaya and Reich, 2006, 2008).

2.2.1 Langevin dynamics

While there is common agreement that Störmer-Verlet provides the gold standard for constant energy
MD simulations, the situation is less clear for Langevin dynamics. A popular method is the BBK
method of Brünger et al. (1984). The BBK discretization for (14)-(15) is provided by

pn+1/2 = pn − ∆t

2
∇rV (rn)− γ∆t

2
pn +

√
γ∆t

2
M1/2Rn, (21)

rn+1 = rn + ∆tM−1pn+1/2, (22)

pn+1 = pn+1/2 − ∆t

2
∇rV (rn)− γ∆t

2
pn+1 +

√
γ∆t

2
M1/2Rn+1 (23)

where Rn is a 3N -dimensional vector of independent Gaussian random variables with mean zero and
variance equal to kBT ; i.e., Rn ∼ [N(0, kBT )]3N . The BBK scheme reduces to the Störmer-Verlet
method for γ = 0 and is second-order accurate in the deterministic part (i.e., for σ = 0 in (15)).
The stochastic scheme is however only weakly first-order convergent. For a further discussion of the
BBK scheme see Pastor et al. (1988).

The limited accuracy of the BBK can be overcome by more advanced integration techniques
such as the schemes suggested by Gunsteren and Berendsen (1982) and Allen (1982). A further
improved variant of these methods has been suggested by Skeel (1999); Skeel and Izaguirre (2002)
and implemented by Izaguirre et al. (2001). The method suggested by Skeel (1999) relies on a splitting
of the Langevin equations into exactly solvable sub-problems and an appropriate combination of the
exact solution operators. More recently, related splitting techniques have been proposed by Fabritis
et al. (2006); Bussi and Parrinello (2007).

A detailed comparison of various algorithms for Langevin dynamics has been provided by Wang
and Skeel (2003). An elementary introduction to general numerical methods for SDEs can be found
in Higham (2001).

We finally mention the generalized hybrid Monte Carlo (GHMC) method of Horowitz (1991);
Kennedy and Pendleton (2001) as a Metropolis adjusted time-stepping method. The Metropolis
criterion guarantees that the numerically computed temperature T ∗ is independent of the step-size
∆t and converges to the target temperature T over sufficiently long simulation intervals. We will
describe the GHMC method in more detail in Section 5.1. A somewhat related Monte Carlo method
has been proposed by Scemama et al. (2006). The efficiency of the GHMC method has been improved
through the use of shadow Hamiltonians by Akhmatskaya and Reich (2006, 2008); Akhmatskaya et al.
(2009).

2.2.2 Dissipative particle dynamics

The optimal numerical treatment of the DPD equations (6)-(7) is still a subject of debate. See, for
example, Pagonabarraga et al. (1998); Lowe (1999); Besold et al. (2000); Shardlow (2003); Vattulainen
et al. (2002); Nikunen et al. (2003); Peters (2004); Hafskjold et al. (2004); Koopman and Lowe (2006);
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Serrano et al. (2006). For further reference we state a method introduced by Besold et al. (2000) for
the DPD equations (6)-(7) and which we extend to the generalized DPD equations (9)-(10):

pn+1/2 = pn − ∆t

2

{
∇rV (rn) +

K∑
k=1

∇rhk(r
n) ×[

γ∇rhk(r
n) ·M−1pn −

√
2γ

∆t
Rn

k

]}
, (24)

rn+1 = rn + ∆tM−1pn+1/2, (25)

pn+1 = pn+1/2 − ∆t

2

{
∇rV (rn+1) +

K∑
k=1

∇rhk(r
n+1) ×[

γ∇rhk(r
n+1) ·M−1pn+1 −

√
2γ

∆t
Rn+1

k

]}
, (26)

where Rn
k are independent standard Gaussian random variables with mean zero and variance equal

to kBT ; i.e., Rn
k ∼ N(0, kBT ).

This scheme is essentially a generalization of the BBK scheme (21)-(23) for Langevin dynamics
and we will refer to (24)-(26) as the DPD-BBK scheme. Note that DPD-BBK is significantly more
expensive to implement than the original BBK scheme since the linear system of equations in pn+1

arising from (26) is not diagonal.
For a comparison of several numerical algorithms for DPD see Vattulainen et al. (2002); Nikunen

et al. (2003). In particular, it is found that the numerically observed temperature T ∗ depends on
the step-size ∆t and differs from the target temperature T . Methods are now available that lead to
T ∗ = T in the absence of conservative forces (Lowe, 1999; Peters, 2004; Koopman and Lowe, 2006;
Serrano et al., 2006). However, none of the existing methods leads to T ∗ = T under the full DPD
dynamics.

3 Theoretical background

3.1 Mathematical aspects of stochastic thermostats

From a mathematical point of view, all presented stochastic thermostats generate stochastic processes
and, in fact, Markov processes (Meyn and Tweedie, 1993). Discrete time Markov processes are
characterized by states Γ ∈ Ω and a transition probability density kernel P (Γ′|Γ), which gives the
probability density of going from a state Γ to a state Γ′.

In case of Langevin and dissipative particle dynamics, as considered in this paper, the possible
states Γ are given by Γ = (rT ,pT )T ∈ R3N = Ω. A discrete time Markov process is obtained
by fixing an incremental time interval ∆t and considering solutions Γ(t) of any of the considered
stochastic thermostats. We denote by P∆t(Γ

′|Γ) the probability density of solutions Γ(t), which start
at Γ = Γ(0) and terminate at Γ′ = Γ(∆t) at t = ∆t.

A probability density π is called invariant under a general transition probability density kernel
P if

π(Γ′) =

∫
P (Γ′|Γ) π(Γ) dΓ. (27)

It is relatively straightforward to show that the the canonical distribution

πcan(r,p) ∝ e−βE (28)
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is invariant under the stochastic thermostats, where β = 1/kBT denotes the inverse temperature and
the total energy E is given by (1).

A useful sufficient criterion for the invariance of a probability density function π under a Markov
chain P is given by detailed balance

P (Γ′|Γ) π(Γ) = P (Γ|Γ′) π(Γ′), (29)

which implies (27) since∫
P (Γ′|Γ) π(Γ) dΓ =

∫
P (Γ|Γ′) π(Γ′) dΓ = π(Γ′)

∫
P (Γ|Γ′) dΓ = π(Γ′). (30)

A more difficult question is that of uniqueness of the invariant distribution and a geometric rate
of convergence towards the invariant distribution, which then implies ergodicity of the associated
Markov process, i.e.,

lim
T→∞

1

T

∫ T

0

f(Γ(t)) dt =

∫
f(Γ) π(Γ) dΓ (31)

for integrable functions f : Ω → R (Meyn and Tweedie, 1993). A useful concept is geometric
ergodicity2 (Roberts and Tweedie, 1995) which states that

‖P n(·|Γ)− π(·)‖W ≤ W (Γ)R δn (32)

for all states Γ ∈ Ω, all n ≥ 1, and for some positive constants R < ∞ and δ < 1. Here W (Γ) ≥ 1 is
a given (Lyapunov) function, the norm ‖ · ‖W is defined by

‖ρ‖W := sup
|f |≤W

∫
f(Γ) ρ(Γ) dΓ (33)

for all integrable ρ : Ω → R, and P n(Γ′|Γ) is recursively defined by

P n(Γ′|Γ) =

∫
P (Γ′|Γ̄) P n−1(Γ̄|Γ) dΓ̄. (34)

Geometric ergodicity has been discussed for the Langevin equations, for example, in Mattingly et al.
(2002) and for dissipative particle dynamics in Shardlow and Yan (2006).

3.2 Numerical time-stepping aspects

All computer implementations of stochastic thermostats rely on a discretization of the underlying
stochastic differential equations. On a more abstract level, this corresponds to replacing the exact
time-∆t Markov process P∆t(Γ

′|Γ) of the underlying stochastic thermostat by a numerically induced
Markov process P∆t(Γ

′|Γ). It is desirable that P∆t possesses the same qualitative properties as
P∆t; i.e., we expect a unique invariant measure π∆t and (geometric) ergodicity with respect to that
measure. Ideally we would also like to obtain

πcan = π∆t (35)

for all ∆t > 0, πcan the canonical distribution (28). However, (35) does not necessarily hold for general
time-stepping methods as we demonstrate next for a simple Brownian dynamics model system.

2There exists different definitions of geometric ergodicity in the literature. Here we use V -uniform ergodicity as
defined by Meyn and Tweedie (1993); Roberts and Tweedie (1995).
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Consider one-dimensional Brownian dynamics

dx = −∇V (x) dt +
√

2 dW (36)

and its (standard) Euler-Maruyama approximation

xn+1 = xn −∆t∇V (xn) +
√

2∆tRn, Rn ∼ N(0, 1). (37)

We find that P∆t(x
n+1|xn) can be stated explicitly in this case; i.e.

P∆t(·|xn) = N(xn+1 − xn + ∆t∇V (xn), 2∆t). (38)

It is also known (Allen and Tildesley, 1987) that (36) and, hence, the exact time-∆t transition
probability kernel P∆t(x

′|x) possess the invariant distribution

πbd(x) ∼ e−V (x). (39)

A fairly complete discussion of this problem can be found in Roberts and Tweedie (1995). Here we
restrict the discussion even further by considering the two potentials V (x) = x2/2 and V (x) = x4/4.
In both cases, it can be shown that Brownian dynamics is geometrically ergodic and that πbd is
the unique invariant measure (Roberts and Tweedie, 1995). The situation is more complex for the
numerical approximation (37) (Roberts and Tweedie, 1995; Mattingly et al., 2002).

The harmonic potential V (x) = x2/2 leads to

P∆t(·|xn) = N(xn+1 − xn + ∆txn, 2∆t) (40)

and one finds that ∫
P(x′|x) πbd(x) dx ∼ N

(
0,

1 + 2∆t

(1−∆t)2

)
(41)

which is not equal to πbd(x) ∼ N(0, 1). However, there is an invariant density π∆t and P∆t is
geometrically ergodic provided ∆t ≤ 2. It also holds that π∆t → πbd for ∆t → 0. See Section 3.5 for
a numerical demonstration.

On the other hand, the numerically induced Markov chain P∆t is not geometrically ergodic for
V (x) = x4/4 and, even worse, for any ∆t there is a non-vanishing probability that the numerical
results will increase without bounds (numerical instability) (Mattingly et al., 2002). Numerically
one finds that there is a critical step-size ∆tc such that numerically instabilities are practically not
observed for all ∆t ≤ ∆tc (even though, theoretically, the probability of blow-up remains non-zero).
In the following section, we discuss a Monte Carlo approach which can control such instabilities by re-
enforcing the invariant distribution of the analytic problem during the simulation via an appropriate
Metropolis-Hastings acceptance criterion.

3.3 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods (Liu, 2001) are an extremely flexible tool to generate
Markov chains with a P (Γ′|Γ) transition probability density kernel which satisfy detailed balance with
respect to a given distribution π. The principle idea is to take an available transition probability
density kernel A(Γ′|Γ) and to combine it with a Metropolis-Hastings acceptance criterion. More
specifically, given a current state Γ a proposal state Γ′ is generated according to A(Γ′|Γ). The
proposal state Γ′ is then accepted according to the Metropolis-Hastings criterion r(Γ′, Γ) ≥ ξ, where
ξ ∈ [0, 1] is a uniformly distributed random number, i.e., ξ ∼ U([0, 1]),

r(Γ′, Γ) =
δ(Γ′, Γ)

π(Γ) A(Γ′|Γ)
, (42)
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and δ(Γ′, Γ) is any function with δ(Γ′, Γ) = δ(Γ, Γ′) that makes r(Γ′, Γ) ≤ 1. A common choice for
δ(Γ′, Γ) is

δ(Γ′, Γ) = min{π(Γ) A(Γ′, Γ), π(Γ′) A(Γ, Γ′)} (43)

which leads to

r(Γ′, Γ) = min

(
1,

π(Γ′) A(Γ, Γ′)

π(Γ) A(Γ′, Γ)

)
. (44)

In case the proposal step is rejected, one continues with Γ. One can show, that the complete Markov
chain (proposal step plus Metropolis-Hastings acceptance criterion) satisfies detailed balance (29)
(Liu, 2001).

If A(Γ′, Γ) comes from a numerical time-stepping method, then one can think of the Metropolis-
Hastings criterion as a correction step that re-enforces the invariant distribution π of the analytic
problem. In this case, the rejection rate should be low for sufficiently small time-step sizes ∆t.

To make this point more transparent, let us return to the numerical time-stepping method (37)
and its induced Markov chain (40) for V (x) = x2/2. We already found that

P∆t(x
′|x) = N(x′ − x + ∆tx, 2∆t). (45)

We also find that
P∆t(x|x′) = N(x− x′ + ∆tx′, 2∆t) (46)

and, hence,

r(x′, x) = min

(
1,

e−(x)′2/2P∆t(x|x′)
e−x2/2P∆t(x′|x)

)
, (47)

which can be explicitly evaluated. This is essentially the Metropolis adjusted Langevin algorithm
(MALA) of Roberts and Tweedie (1995).

An equivalent but more elegant approach is the following. We write down the Newtonian equa-
tions of motion for a particle with position x, mass m = 1, and potential energy V (x), i.e.,

dx

dt
= p,

dp

dt
= −∇V (x). (48)

The equations are approximated numerically by a single time-step with the Störmer-Verlet method
(18)-(20) with time-step size h =

√
2∆t and initial momentum p = R ∼ N(0, 1), which we write as

p̄ = p− h

2
∇V (x), (49)

x′ = x + hp̄, (50)

p′ = p̄− h

2
∇V (x′). (51)

We find that the propagation in x is given by

x′ = x + hp− h2

2
∇V (x) = x−∆t∇V (x) +

√
2∆tR, (52)

which, as desired, coincides with the Euler-Maruyama approximation (37). However, since the pro-
posal step (49)-(51) is volume conserving and time-reversible (Liu, 2001), the Metropolis-Hastings
acceptance criterion simplifies to

r = min (1, exp(E − E ′)) ≥ ξ, ξ ∼ U([0, 1]), (53)
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with new and old energy values

E = p2/2 + V (x), E ′ = (p′)2/2 + V (x′), (54)

respectively. What we have just described is a special instance of the hybrid Monte Carlo (HMC)
method of Duane et al. (1987); Mehlig et al. (1992); Forrest and Suter (1994).

As shown in Roberts and Tweedie (1995), MALA/HMC is geometrically ergodic for V (x) = x2/2
but loose this property for V (x) = x4/4. Numerical experiments reveal that MALA/HMC never
produce unstable sample trajectories but might have long periods of rejections if ∆t is chosen too
large. Furthermore, the performance remains satisfactory for much larger values of ∆t compared
to the unadjusted algorithm (37). See Section 3.5 for a numerical demonstration. In the following
section, we introduce the concept of shadow energies for symplectic time-stepping methods such as
Störmer-Verlet. Shadow energies can be used to increase the acceptance rate in hybrid Monte Carlo
methods (Izaguirre and Hampton, 2004; Akhmatskaya and Reich, 2006, 2008). We will come back
to this issue in Section 5.2.

3.4 Shadow energies

It is well-known that the Störmer-Verlet method (18)-(20) conserves the total energy (1) over very
long simulation intervals. This observation is a consequence of the symplectic nature of the scheme
(Hairer et al., 2002; Leimkuhler and Reich, 2005). Furthermore, it can be shown that the Störmer-
Verlet method conserves, so called, shadow or modified energies to even higher accuracy in ∆t. For
example, a fourth-order shadow energy is given by the expression

E
[4]
∆t(r,p) = E(r,p) +

∆t2

24

[
2(∇rV (r))TM−1∇rV (r)− pT M−1Vrr(r)M

−1p
]
, (55)

where E is given by (1) and Vrr(r) denotes the Hessian matrix of the potential energy V at r (Hairer
et al., 2002; Leimkuhler and Reich, 2005).

We now summarize the elegant construction of Skeel and Hardy (2001)) for monitoring shadow
energies along numerically computed trajectories which does not require the computation of the
Hessian or higher-order derivatives of V . An alternative construction can be found in Akhmatskaya
and Reich (2006, 2008).

Following Skeel and Hardy (2001), we introduce an additional degree of freedom (a, b) ∈ R2 and
the extended formulation

dr

dt
= M−1p,

dp

dt
= −∇rV (r),

db

dt
= rT∇rV (r)− 2V (r),

da

dt
= 0. (56)

Let Y(t) = (r(t)T , 1,p(t)T , b(t)) ∈ R3N+2 denote a solution of (56). A key result of Skeel and Hardy
(2001) states that the energy (1) satisfies

E =
1

2

{
ṙ(t)Tp(t)− ṗ(t)T r(t)− ḃ(t)

}
=

1

2
Ẏ(t)T JY(t), (57)

which, using (56), is easy to verify. Here ż denotes the time derivative of a variable z, J is the
skew-symmetric matrix

J =

[
03N+1 I3N+1

−I3N+1 03N+1

]
∈ R(6N+2)×(6N+2) (58)

and I3N+1 denotes the identity matrix of dimension 3N + 1, N the number of atoms, and 03N+1

denotes the zero matrix of the same dimension.
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We now introduce an appropriate extension of the Störmer-Verlet method (18)-(20) to the ex-
tended formulation (56); i.e.

pn+1/2 = pn − ∆t

2
∇rV (rn), (59)

bn+1/2 = bn +
∆t

2

[
(rn)T∇rV (rn)− 2V (rn)

]
, (60)

rn+1 = rn + ∆tM−1pn+1/2, (61)

bn+1 = bn+1/2 +
∆t

2

[
(rn+1)T∇rV (rn+1)− 2V (rn+1)

]
, (62)

pn+1 = pn+1/2 − ∆t

2
∇rV (rn+1). (63)

For further reference, we denote the induced time-stepping method in the extended state variable Y
by

Yn+1 = Ψ̂∆t(Y
n). (64)

Once an appropriate extension of a symplectic time-stepping method has been formulated, Skeel
and Hardy (2001) provide a straightforward approach for evaluating higher-order shadow Hamilto-
nians. Here we only summarize the final formulas for fourth and eighth order shadow Hamiltonians.

Assume that we wish to determine the value of the shadow Hamiltonian about Yn =
((rn)T , 1, (pn)T , bn)T . Then k = 1 (fourth-order) or k = 2 (eighth-order) time-steps forward and
backward in time are performed with (64) (unless those steps have already been performed as part
of the simulation). Hence we have 2k + 1 discrete approximations Yi, i = n − k, . . . , n, . . . , n + k,
centered about Yn available and, for k = 2, we define

A0 = Yi, (65)

A1 =
1

2

(
Yi+1 −Yi−1

)
, (66)

A2 = Yi+1 − 2Yi + Yi−1, (67)

A3 =
1

2

[
Yi+2 − 2Yi+1 + 2Yi−1 −Yi−2

]
, (68)

A4 = Yi+2 − 4Yi+1 + 6Yi − 4Yi−1 + Yi−2. (69)

as well as

Alm =
1

2∆t
AT

l JAm, l, m = 0, . . . , 4, (70)

with the skew-symmetric matrix J defined by (58). In case of k = 1, we only need to compute
A0,A1,A2 and Alm for m, l = 0, . . . , 2.

A fourth-order shadow Hamiltonian at Yn is now defined by

E [4]
∆t(r

n,pn) = A10 −
1

6
A12 (71)

and a eighth-order shadow Hamiltonian by

E [8]
∆t(r

n,pn) = A10 −
2

7
A12 +

5

42
A30 +

13

105
A32 −

19

210
A14 −

1

140
A34, (72)

respectively. Note that (55) and (71) agree up to terms of O(∆t4). However, (71) is easier to imple-
ment than (55) which requires the explicit evaluation of the Hessian matrix Vrr(r) of the potential
energy V .

We will use shadow energies in Section 5.2 to improve the acceptance rate of a generalized hybrid
Monte Carlo method. See also Akhmatskaya and Reich (2006, 2008).
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Figure 1: Displayed are the computed expectation value 〈x2〉 for the Euler-Maruyama scheme and
the MALA/HMC method. The exact value is 〈x2〉 = 1. The acceptance rates (AR) is provided
for the MALA/HMC method. Here AR = 1 corresponds to a 100% acceptance rate. Results are
displayed for step-sizes ∆t ∈ [0.05, 1.8]. While the Euler-Maruyama scheme leads to large sampling
errors, the MALA/HMC method leads to correct sampling results independent of the step-size ∆t.

3.5 Numerical demonstration

We compare the behavior of the Euler-Maruyama approximation (37) for Brownian dynamics (36)
with quadratic potential V (x) = x2/2 with the behavior of the Metropolis adjusted (MALA)/hybrid
Monte Carlo (HMC) scheme as described in Section 3.3. We monitor the computed expectation
values of x2 for values of the step-size in the range ∆t ∈ [0.05, . . . , 1.8]. Note that the stability
limit of the Euler-Maruyama scheme is given by ∆t < 2. It can be seen that the Euler-Maruyama
scheme leads to large sampling errors while the MALA/HMC method leads to correct sampling
results independent of the step-size ∆t. In Figure 1, we also provide the acceptance rate (AR) for
the MALA/HMC method. Numerically computed distribution functions in the position variable
x are displayed in Figure 2 for ∆t = 1.8. While the Euler-Maruyama scheme leads to a severely
distorted distribution, the MALA/HMC scheme leads to perfect agreement (up to finite sample size
effects) with the exact distribution.

In a second experiment we study conservation of energy under the Störmer-Verlet method applied
to the microcanonical equations (3)-(4). As already discussed in Section 3.3, conservation of energy
plays a crucial role in the acceptance rate of hybrid Monte Carlo methods. For simplicity, we consider
a one-dimensional period chain of N = 10 particles with positions qi and mass m = 0.5 interacting
through a pair-wise Lennard-Jones potential

V (r) =
(σ

r

)12

−
(σ

r

)6

, σ = (1/2)1/6, r = qi − qi−1.

The length of the domain is l = 10. Relative changes in the numerical values of the energy (1) as
well as fourth and eighth-order shadow energies (71) and (72), respectively, can be found in Figure
3. The excellent conservation of shadow energies has motivated the development of hybrid Monte
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Figure 2: Displayed are the computed probability density functions for step-size ∆t = 1.8 and for
the Euler-Maruyama scheme and the MALA/HMC scheme. The agreement between the exact and
the numerical distribution from the MALA/HMC scheme is almost perfect, while the distribution
from the Euler-Maruyama scheme is severely distorted.

Carlo methods which sample with respect to the canonical distribution associated with a shadow
energy. See Izaguirre and Hampton (2004) for the shadow hybrid Monte Carlo (SHMC) method,
Akhmatskaya and Reich (2006, 2008) for generalized shadow hybrid Monte Carlo (GSHMC) methods,
and Section 5.2 for a generalization of the GSHMC methods to DPD-type momentum dynamics.

4 A splitting approach for stochastic thermostats

In this section, we develop a general framework for numerical implementations of stochastic ther-
mostats. The approach is based on a splitting of the stochastic differential equation into an energy
conserving part and fluctuation-dissipation part. This splitting is used since each part separately
conserves the canonical distribution (28) under its analytically generated Markov processes. None of
the two parts is, however, ergodic with respect to (28).

While splitting methods have been discussed in the context of stochastic differential equations
before (see, for example, Skeel (1999); Izaguirre et al. (2001); Skeel and Izaguirre (2002); Shardlow
(2003); Fabritis et al. (2006); Serrano et al. (2006); Bussi and Parrinello (2007)), we propose to use
simplified numerical methods for the fluctuation-dissipation contributions which, however, exactly
conserve the momentum Boltzmann distribution (Allen and Tildesley, 1987). We next describe
these methods in the context of Langevin and dissipative particle dynamics before we formulate the
complete time-stepping approach at the end of this section.
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Figure 3: Displayed are relative changes in the total energy and fourth and eighth-order shadow
energies as a function of the step-size ∆t. Simulations are performed with the Störmer-Verlet method
for a one-dimensional chain of Lennard-Jones particles. The slope of the graphs correctly reflects the
order of the method and its shadow energies for sufficiently small step-sizes.

4.1 Time-stepping methods for fluctuation-dissipation terms

We wish to investigate numerical time-stepping methods for stochastic thermostats and their ability
to reproduce the canonical distribution as well as geometric ergodicity properties. To begin with,
we consider the Langevin and dissipative particle dynamics for zero potential energy; i.e., V (r) = 0
(force free motion), and r = const.

4.1.1 Langevin dynamics

We consider the equation
dp = −γpdt + σM1/2 dW (73)

where, as before, W(t) is a N -dimensional Wiener process and σ =
√

2γkBT . We assume that the
mass matrix M is diagonal. Obviously, the equation (73) is linear and can be solved exactly using
stochastic quadrature. See, for example, Skeel (1999); Skeel and Izaguirre (2002), for a numerical
implementation of such an approach. However, exact solutions require multiple sets of random
numbers and cannot easily be generalized to more complex fluctuation-dissipation terms.

On the other hand, a straightforward and easy to implement numerical discretization is

pn+1 = pn − γ∆tpn +
√

2γ∆tM1/2Rn, Rn ∼ [N(0, kBT )]3N . (74)

As already discussed for the related method (37) with V (x) = x2/2, the discretization (74) is ge-
ometrically ergodic but it converges to a stationary distribution which is a step-size dependent
perturbation of the desired momentum Boltzmann distribution

πb(p) ∝ e−β‖p‖2/2, (75)
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β = 1/kBT . Following Kennedy and Pendleton (2001), an alternative time-stepping method is

pn+1 = cos(φ)pn + sin(φ) M1/2Rn (76)

with Rn ∼ [N(0, kBT )]3N as before. The angle φ is given by

φ =
√

2γ∆t. (77)

Standard Taylor expansion of (76) in the angle φ reveals that (76) and (74) agree in the expansion
up to terms of O(∆t3/2). More importantly, (76) is geometrically ergodic with the Boltzmann
distribution (75) as the stationary distribution independent of ∆t. To see this, we formally augment
(76) by an equation for R, i.e.

R∗ = cos(φ)Rn − sin(φ) M−1/2pn, (78)

and consider the energy values En
c = Ec(p

n,Rn), E ′
c = Ec(p

n+1,R∗) with

Ec(p,R) =
1

2
pT M−1p +

1

2
RTR. (79)

It is easy to verify that E ′
c = En

c under the equations (76)-(78). Since the linear transformation
(76)-(78) is also volume conserving (i.e., the determinant of the transformation is equal to one), we
may conclude that the distribution

πc(p,R) ∝ e−βEc (80)

is invariant, which implies the invariance of (75) in the variable p alone since (79) is separable.
We propose to view the momentum update (76)-(78) as a numerical approximation to the linear

differential equation
dp

ds
= M1/2R,

dR

ds
= −M−1/2p. (81)

at s = φ =
√

2γ∆t with initial conditions p(0) = pn and R(0) = Rn ∼ [N(0, kBT )]3N . We
call (81) the generating differential equation for the momentum update. We note that (81) is a
Hamiltonian differential equation with conserved energy/Hamiltonian (79). The reader is referred
to Arnold (1989); Hairer et al. (2002); Leimkuhler and Reich (2005) for the definition and theory of
Hamiltonian differential equations, which essentially is a generalization of the Newtonian equations
of motion (3)-(4) of classical mechanics.

Alternative numerical approximations to (73) can now be found by applying different numerical
approximations to (81). These numerical approximations should be volume and energy conserving
to guarantee the invariance of the momentum Boltzmann distribution (75). As an example, such an
approximation is provided by the implicit midpoint rule

pn+1 = pn +
∆s

2
M1/2(R∗ + Rn), (82)

R∗ = Rn − ∆s

2
M−1/2(pn+1 + pn), (83)

with ∆s = φ =
√

2γ∆t. Other volume-conserving time-stepping and time-reversible methods, such
as Störmer-Verlet, could also be used but need to be combined with a Metropolis-Hasting criterion
to achieve exact sampling from the Boltzmann distribution (75) since the energy (79) is not exactly
conserved. See Section 3.3 and the following section.
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We now compare (82)-(83) to the BBK scheme (21)-(23) with zero potential energy V in terms
of momentum propagation. We reformulate (82)-(83) as

pn+1 − pn

∆t
= −γ

pn+1 + pn

2
+
√

2γ/∆tM1/2Rn (84)

and find that (84) agrees with the corresponding BBK scheme except for differences in the treatment
of the stochastic contribution. However, these differences are essential to make the scheme (82)-(83)
conserve the momentum Boltzmann distribution (75). We also point to Cances et al. (2007) for an
alternative modification of the BBK scheme which results in an exact sampling from the Boltzmann
distribution under force-free motion.

4.1.2 Dissipative particle dynamics

We now consider the DPD-type force free momentum dynamics

dp = −
K∑

k=1

∇rhk(r)
[
γḣk(r) dt− σ dWk

]
(85)

for fixed position vector r. Note that (85) constitutes a linear SDE. Again the goal is to devise
numerical approximations {pn} at tn = n ∆t, n = 0, . . ., that are geometrically ergodic and possess
the Boltzmann distribution as the stationary distribution. Existing approaches, which achieve this
goal, rely on a splitting approach in which each contribution

dp = −∇rhk(r)
[
γḣk(r) dt− σ dWk

]
, (86)

k = 1, . . . , K, is treated sequentially in a conservative manner (Lowe, 1999; Peters, 2004; Shardlow,
2003). However, such a technique cannot be implemented efficiently on parallel computers.

Here we instead wish to derive simultaneous momentum update steps with invariant distribution
(75). To achieve this goal, we propose to consider the generating differential equation

dp

ds
= BR,

dR

ds
= −BT M−1p, (87)

with R(0) = R = (R1, . . . , RK)T , Ri ∼ N(0, kBT ) for i = 1, . . . , K, and B ∈ R3N×K an arbitrary
matrix. The linear system (87) is Hamiltonian with Hamiltonian function

Ec =
1

2

(
pT M−1p + RTR

)
(88)

and skew-symmetric structure matrix

J =

[
03N B
−BT 0K

]
(89)

(Leimkuhler and Reich, 2005).
We define the matrix B for fixed position vector r through

BR =
K∑

k=1

∇rhk(r) Rk (90)
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and obtain

dp

ds
=

K∑
k=1

∇rhk(r) Rk, (91)

dRk

ds
= −∇rhk(r) ·M−1p, k = 1, . . . , K, (92)

as a generating differential equation for the fluctuation-dissipation part of the general DPD formu-
lation (9)-(10).

To obtain a numerical momentum update step, we seek the solution at s =
√

2γ∆t for given
initial conditions

p(0) = pn, Rk(0) = Rn
k = N(0, kBT ), k = 1, . . . , K. (93)

Let us denote the linear solution operator, generated by the solutions of (91)-(92), by R(s) ∈
R(3N+K)×(3N+K). The solution operator R(s) has the following properties:

(a) The solutions of (91)-(92) are volume conserving, i.e., detR(s) = 1.

(b) Given a fixed position vector r, the solutions of (91)-(92) are time reversible, i.e., F R(s)F =
R(−s). Here F denotes the linear involution operator that changes the sign of all Rk’s, k =
1, . . . , K.

(c) The solutions of (91)-(92) conserve the extended Hamiltonian/energy (88).

(d) Properties (a) and (c) immediately imply that the solutions of (91)-(92) conserve the extended
canonical distribution

πc(p,R) ∝ e−βEc . (94)

We now consider the numerical implementation of (91)-(92). To do so we follow the hybrid Monte
Carlo (HMC) methodology (Duane et al., 1987; Mehlig et al., 1992) and consider time-reversible and
volume conserving propagators for the dynamics in p and R with fixed position vector r. Two such
methods will be considered: (i) an explicit one, which does not conserve (88), and (ii) an implicit
one, which does conserve (88).

Störmer-Verlet method. A first choice is provided by the application of the Störmer-Verlet method
to (91)-(92) over J internal steps with internal step-size ∆s =

√
2γ∆t/J and we obtain

pj+1/2 = pj +
∆s

2

K∑
k=1

∇rhk(r)R
j
k, (95)

Rj+1
k = Rj

k −∆s∇rhk(r) ·M−1pj+1/2, k = 1, . . . , K, (96)

pj+1 = pj+1/2 +
∆s

2

K∑
k=1

∇rhk(r)R
j+1
k . (97)

The initial conditions at j = 0 are given by (93). The final result, denoted by p′ = pJ and R′
k = RJ

k ,
k = 1, . . . , K, is accepted with probability

r = min

(
1,

π(p′,R′)

π(p,R)

)
. (98)
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In case of rejection, we continue with the initial p; i.e., in case of rejection we have pn+1 = pn. In line
with the standard HMC method, the vector R′ is entirely discarded after each completed momentum
update step.

Note that the acceptance probability r → 1 as ∆s → 0. This follows from the convergence of the
numerical propagator to the exact R(s) as ∆s → 0. Hence, as a rule of thumb, we suggest to pick
J large enough such that the rejection rate in (98) becomes negligible (e.g., less than 1%) for given
s =

√
2γ∆t.

Implicit midpoint rule. An alternative propagator is obtained by applying the implicit midpoint
rule (see, e.g., Leimkuhler and Reich (2005)) to (91)-(92) over a single step with step-size ∆s =√

2γ∆t and we obtain

p′ = p +
∆s

2

K∑
k=1

∇rhk(r)(R
′
k + Rk), (99)

R′
k = Rk −

∆s

2
∇rhk(r) ·M−1(p′ + p), k = 1, . . . , K. (100)

The resulting linear equations in (p′,R′) can be solved by a simple fixed point iteration or some other
iterative solver. Since only matrix vector multiplications are involved and the matrices involved are
typically very sparse, such iterative methods can be implemented efficiently especially on parallel
computers.

An appealing aspect of the implementation (99)-(100) is that it conserves the extended energy (88)
exactly and, hence, also the corresponding canonical distribution function (94). Since the method
also conserves volume and is time-reversible, the proposed momenta p′ are always accepted; i.e.,
pn+1 = p′, while the vector R′ is entirely discarded after each momentum update step.

Because of the necessary fixed point iteration, the implicit midpoint method (99)-(100) is more
expensive than the Störmer-Verlet method ((95)-(97). However, we nevertheless recommend the
implicit midpoint method because of the ideal acceptance probability r = 1.

Similar to what has been discussed in Section 4.1.1 for the BBK scheme (21)-(23), we find that
(99)-(100) is closely related to the self-consistent DPD scheme (24)-(26) for potential energy V ≡ 0.
Differences can again be found in the treatment of the stochastic contributions and render (24)-(26)
non-conservative in terms of the Boltzmann distribution (75) even for V ≡ 0.

4.2 A stochastic composition method

We now describe the complete time-stepping methodology. It consists of a composition of two time-
stepping methods; one for the conservative part and one for the fluctuation-dissipation part. Note
that none of these methods is necessarily the exact propagator to the corresponding stochastic or
deterministic equations of motion.

Using an abstract framework, recall that the state variable is Γ = (rT ,pT )T and denote the exact
time-∆t transition probability kernel of the stochastic thermostat by P∆t(Γ

′|Γ). We now construct
a numerical approximation to P∆t(Γ

′|Γ) using a composition method approach.
In a first step we apply the Störmer-Verlet method (18)-(20) to the deterministic and conservative

part of the stochastic thermostat. The resulting time-step map is denoted by Γn+1 = Ψ∆t(Γ
n) and

gives rise to the (singular) transition probability density kernel

PCD(Γ′|Γ) = δ0(Γ
′ −Ψ∆t(Γ)), (101)
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where δ0 denotes the Dirac delta function, i.e.,∫
f(x) δ0(x) dx = f(0). (102)

Next a canonical distribution preserving method of Section 4.1 is being used for the fluctuation-
dissipation part, which gives rise to a transition probability kernel PFD(Γ′|Γ).3 The proposed complete
time-stepping method is characterized by a simple composition of PFD and PCD, i.e., we obtain the
transition probability density

P∆t(Γ
n+1|Γn) =

∫
PFD(Γn+1|Γ) PCD(Γ|Γn) dΓ. (103)

Note that, even though PFD conserves the canonical distribution (75), the complete time-stepping
method P∆t generally fails to conserve (28), since the conservative time-stepping method Ψ∆t does not
simultaneously conserve energy and volume. We will next describe a Metropolis correction approach,
which takes P∆t as a proposal step and re-enforces the invariance of (28) through a Metropolis
acceptance criterion. We essentially obtain an extension of the GHMC method of Horowitz (1991);
Kennedy and Pendleton (2001) to the generalized DPD equations (9)-(10).

5 Metropolis corrected time-stepping methods

We have already discussed Metropolis corrected time-stepping methods in Section 3 in the context of
Brownian dynamics (36) and its standard Euler-Maruyama approximation (37). These corrections
lead to the popular MALA (Roberts and Tweedie, 1995)) and HMC (Duane et al., 1987) schemes.
In the context of our composition method (103), we need to correct PCD such that the canonical
distribution (28) is preserved. This is essentially the approach taken by the generalized hybrid
Monte Carlo (GHMC) method of Horowitz (1991); Kennedy and Pendleton (2001). In this section,
we demonstrate how to extend the GHMC methodology to DPD-type momentum updates such
that the resulting Markov chain Monte Carlo (MCMC) method samples exactly from the canonical
distribution (28).

5.1 Generalized hybrid Monte Carlo (GHMC) method for DPD-type
thermostats

We begin by recalling that a Markov process will converge to some distribution of configurations
if it is constructed out of updates each of which has the desired distribution as a fixed point, and
which taken together are ergodic. The GHMC algorithm for the generation of the canonical density
function (28) is constructed of two such steps (Kennedy and Pendleton, 2001). The first part consists
of numerical propagation of the system under the conservative dynamics. A Metropolis-Hastings
acceptance criterion is applied to correct for numerically induced errors in the conservation of total
energy. The second step consists in a update of the momenta. This step needs to be modified to
become compatible to DPD and we apply the algorithms developed in Section 4.1.2. We now give
an algorithmic summary.

3Recall that the positions r are left constant during the application PFD(Γ′|Γ) and that the momentum update
preserves the Boltzmann distribution (75). Hence PFD(Γ′|Γ) also leaves the canonical distribution (28) invariant. But
it is clearly not ergodic with respect to (28).
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5.1.1 Meso-GHMC: Algorithmic summary

The meso-GHMC method is defined through an energy/Hamiltonian (1), inverse temperature β =
1/kBT , a set of position-dependent functions {hk(r)}K

k=1, friction constant γ, time-step ∆t, and
number of time-steps L. The method generates a sequence of states Γj, j = 1, . . . , J . We now
summarize a single step of the meso-GHMC method.

(i) Conservative dynamics step. Given the last accepted state Γj with position and momentum
vectors r and p, respectively, we numerically integrate the Hamiltonian equations of motion
(3)-(4) over L time-steps with the Störmer-Verlet method, (18)-(20), step-size ∆t, and initial
conditions r0 = r, p0 = p. This results in the approximation (rL,pL). The accepted pair of
position and momentum vectors (r̄, p̄) is obtained via a Metropolis accept/reject test of the
form

(r̄, p̄) =

{
(rL,pL) with probability min(1, exp(−β δE))

(r0,−p0) otherwise
, (104)

where
δE := E(rL,pL)− E(r0,p0). (105)

(ii) Momentum refreshment step. A sequence of i.i.d. random numbers Rk ∼ N(0, kBT ), k =
1, . . . , K, is generated. Using the implicit midpoint rule implementation of the momentum
refreshment step, the system (99)-(100) is solved for (p′, {R′

k}) by fixed point iteration with
initial momentum p = p̄ and fixed position vector r = r̄.

(iii) The newly accepted state Γj+1 is provided by the position vector r̄ (from the conservative
dynamics part) and the momentum p′ (from the momentum refreshment step), respectively.

5.1.2 Remark

It should be noted that the Metropolis criterion (104) leads to a trajectory reversal upon rejection
of the conservative dynamics proposal step; i.e., the method continues with the previous position
vector r0 and negated momentum vector p0 upon rejection of the proposal step. While this trajectory
reversal is required for detailed balance with respect to the canonical distribution (28) it also implies
that rejections interfere strongly with the dynamics. It has been proposed by Akhmatskaya et al.
(2009) to replace (104) by

(r̄, p̄) =

{
(rL,pL) with probability min(1, exp(−β δE))
(r0,p0) otherwise

. (106)

Unfortunately, detailed balance does no longer holds under (106) (Akhmatskaya and Reich, 2009).
However, it has been demonstrated for simple test problems that (106) increases the sampling accu-
racy compared to (103) and interferes less with the dynamics of the stochastic thermostats than (104)
(Akhmatskaya et al., 2009; Akhmatskaya and Reich, 2009). See also Leimkuhler and Reich (2009) for
related results on Metropolis corrected stochastic Nosé-Hoover dynamics (Leimkuhler et al., 2009).
In this paper, we implement meso-GHMC with the Metropolis criterion (104) to demonstrate exact
sampling from the canonical distribution (28).

5.2 Generalized shadow hybrid Monte Carlo (GSHMC) method for
DPD-type thermostats

The key idea of the generalized shadow hybrid Monte Carlo (GSHMC) method of Akhmatskaya and
Reich (2008) is to assess the Monte Carlo steps of GHMC with regard to a shadow Hamiltonian E∆t,
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which increases the acceptance rate in the conservative dynamics part of GHMC. A shadow energy
can either be found using the methods of Akhmatskaya and Reich (2006, 2008) or Skeel and Hardy
(2001). See Sections 3.4 for specific formulations of fourth and eighth-order shadow energies and
Section 3.5 for a numerical demonstration of the reduced relative errors in the shadow energies along
numerical trajectories from a Störmer-Verlet simulation.

We now outline the generalization of meso-GHMC to GSHMC. We will call the resulting method
meso-GSHMC.

5.2.1 Momentum refreshment step

To put the meso-GHMC method in the context of the GSHMC method of Akhmatskaya and Reich
(2008), we need to modify the partial momentum update step, as defined by (99)-(100) (in case of
the implicit midpoint implementation). Given a shadow energy E∆t, the key idea is to replace the
extended canonical density (94) by

π̂(r,p,R) ∝ exp

(
−βE∆t(r,p)− β/2

K∑
k=1

(Rk)
2

)
, (107)

and the acceptance probability (98) by

r = min

(
1,

π̂(r,p′,R′)

π̂(r,p,R)

)
. (108)

Recall that r = 1 for the implicit midpoint implementation (99)-(100) and E∆t = E. However, this
is no longer the case for E∆t 6= E. This is a drawback of GSHMC, which can be partially overcome
by GS2HMC (see Akhmatskaya and Reich (2008) for details).

Since the meso-GSHMC method samples with respect to a modified canonical ensemble, it is
necessary to re-weight the computed samples {Ωj} of an observable Ω = Ω(r,p). See Akhmatskaya
and Reich (2006, 2008) and the algorithmic summary below for details.

5.2.2 Meso-GSHMC: Algorithmic summary

The meso-GSHMC method is defined through an energy/Hamiltonian (1), a shadow energy E∆t,
inverse temperature β = 1/kBT , a set of position-dependent functions {hk(r)}K

k=1, friction constant
γ, time-step ∆t, and number of time-steps L. The method generates a sequence of states Γj, j =
1, . . . , J . We now summarize a single step of the meso-GSHMC method.

(i) Conservative dynamics step. Given the last accepted state Γj with a pair of position and
momentum vectors (r,p), we numerically integrate the Hamiltonian equations of motion (3)-
(4) over L time-steps with the Störmer-Verlet method, (18)-(20), step-size ∆t, and initial
conditions r0 = r, p0 = p. This results in the approximation (rL,pL). The accepted pair of
position and momentum vectors (r̄, p̄) is obtained via the Metropolis accept/reject test

(r̄, p̄) =

{
(rL,pL) with probability min(1, exp(−β δE∆t))

(r0,−p0) otherwise
, (109)

where
δE∆t := E∆t(r

L,pL)− E∆t(r
0,p0). (110)
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(ii) Momentum refreshment step. A sequence of i.i.d. random numbers Rk ∼ N(0, β−1), k =
1, . . . , K, is generated. Using the implicit midpoint rule implementation of the momentum
refreshment step, the system (99)-(100) is solved for (p′,R′) by fixed point iteration and initial
momentum p = p̄ and fixed position r = r̄. The accepted momentum vector p′′ is obtained
via the Metropolis criterion

p′′ =

{
p′ with probability min(1, exp(−β δE∆t,ext))
p̄ otherwise

, (111)

where

δE∆t,ext :=

[
E∆t(r̄,p

′) +
1

2

K∑
k=1

(R′
k)

2

]
−

[
E∆t(r̄, p̄) +

1

2

K∑
k=1

(Rk)
2

]
. (112)

(iii) The newly accepted pair of position and momentum vectors is provided by r̄ (from the conser-
vative dynamics part) and p′′ (from the momentum refreshment step), respectively, and give
rise to Γj+1.

Under the assumption of ergodicity of the induced Markov chain, the ensemble average of an
observable Ω(Γ) = Ω(r,p) with respect to the canonical ensemble (28) is approximated as

〈Ω〉 =

∑J
j=1 wjΩ(Γj)∑J

j=1 wj

(113)

where
wj = exp

(
β
[
E∆t(Γ

j)− E(Γj)
])

. (114)

6 Numerical results

6.1 DPD test systems

Numerical results from the meso-GHMC/GSHMC methods are compared to the MD-VV implemen-
tation (Vattulainen et al., 2002) of DPD (for simplicity of presentation, we start with half a time-step
in the positions):

qn+1/2 = qn +
∆t

2
M−1pn, (115)

pn+1 = pn −∆t∇rV (rn+1/2)

−
K∑

k=1

∇rhk(r
n+1/2)

[
γ∆t∇rhk(r

n+1/2) ·M−1pn + (2γ∆t)1/2Rk

]
, (116)

qn+1 = qn+1/2 +
∆t

2
M−1pn+1, (117)

where Rk ∼ N(0, kBT ), k = 1, . . . , K are i.i.d. random numbers.
Numerical experiments are conducted for Model A and Model C of Vattulainen et al. (2002). For

the chosen units, we have kBT = 1 in dimensionless variables.
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6.1.1 Model A

We consider a total of N = 4000 particles with mass m = 1 in a cubic domain of size 10×10×10 with
periodic boundary conditions. The conservative forces are set equal to zero, i.e., the Hamiltonian (1)
reduces to

H =
1

2
pTp (118)

and the resulting equations of motion can be solved exactly. Hence we formally use Ĥ∆t = H as a
modified energy for meso-GSHMC and it is sufficient to only implement meso-GHMC for Model A.
We always set L = 1 in the conservative dynamics part of meso-GHMC, i.e., τ = ∆t and perform
experiments for different values of the step-size ∆t.

The functions {hk(r)} for the momentum refreshment step are defined via

φ′(r) =

{
1− r/rc, for r ≤ rc,
0, for r > rc

(119)

in (12). The cutoff distance is set equal to rc = 1. We also use α = (2γ∆t)1/2 for all Monte Carlo
simulations with γ = 4.5.

The reference experiments with the DPD method (115)-(117) use the same parameter settings.

Figure 4: Radial distribution function g(r/rc) for different values of the step-size ∆t in model A.
The analytic value is g(r/rc) = 1 and is indicated by a solid reference line. Numerical results are
obtained from a standard DPD integration scheme and the newly proposed meso-GHMC/GSHMC
method for different values of the step-size ∆t.

The numerical results from the meso-GHMC and traditional DPD simulations can be found in
Figs. 4-6. Following the argument of Peters (2004), Fig. 5 demonstrates that the deviations of the
numerically computed radial distribution function g(r/rc) from its exact value g = 1 is of purely
statistical origin (finite sample size) for the meso-GHMC method. The same does not hold for the
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Figure 5: To distinguish statistically from numerically induced deviations of g(r/rc) we also provide
(r/rc)(g(r/rc)− 1) for the different step-sizes and methods. The exact value is indicated by a solid
reference line. It can be concluded that the deviations in the radial distribution function are entirely
of statistical nature for the meso-GHMC/GSHMC method.
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Figure 6: Numerically observed temperature 〈kBT 〉 vs the step-size ∆t in Model A. Results are
obtained from a standard DPD integration scheme and the newly proposed meso-GHMC/GSHMC
method. The correct result is 〈kBT 〉 = 1.

DPD method unless ∆t ≤ 0.05. We also note that the meso-GHMC method exactly reproduces the
target inverse temperature β = 1 for all values of ∆t, while the DPD method (115)-(117) leads to a
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nearly linear increase in the numerically observed temperature with respect to the step-size ∆t (see
Fig. 6).

6.1.2 Model C

Model C is a simple interacting Lennard-Jones fluid with truncated pairwise interaction potential

U(rij) =

 4

[(
l

rij

)12

−
(

l
rij

)6
]

, rij ≤ rc,

0, rij > rc,
(120)

with rc = 1 and l = 2−1/6. The simulation box is of size 16×16×16 with a total of N = 2867 particles.
This corresponds to a density of ρ = 0.7.

The conservative dynamics part is implemented with τ = 0.05 and varying values for ∆t and,
hence, L = τ/∆t, while the momentum refreshment step is implemented as for Model A with the
only difference being that α = (2γτ)1/2 ≈ 4.4721 for all Monte Carlo simulations with γ = 200
(σ = 20, respectively).

The meso-GSHMC method is implemented with a fourth-order accurate shadow energy as E∆t.
The numerical experiments are conducted with the fourth-order shadow energy of Akhmatskaya and
Reich (2008). An implementation of (71) would not alter the results significantly. Note that the
truncated interaction potential (120) leads to a continuous only force field. Higher regularity of the
force fields is required to achieve a fourth-order accuracy in the shadow energy. The fourth-order
behavior is indeed not observed in our numerical experiments. See Hafskjold et al. (2004) for the use
of smoother truncation schemes in the context of DPD. The reference experiments with the DPD
method (115)-(117) use the same parameter settings.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

g(
r/r

c)

! t = 0.0025

DPD
GHMC
GSHMC

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

g(
r/r

c)

! t = 0.0100

Figure 7: Radial distribution function g(r/rc) for different values of the step-size ∆t in model
C. Results are obtained from a standard DPD integration scheme and the newly proposed meso-
GHMC/GSHMC methods.
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Figure 8: Numerically observed temperature 〈kBT 〉 vs the step-size ∆t in Model C. Results are
obtained from a standard DPD integration scheme and the newly proposed meso-GHMC/GSHMC
methods. The correct result is 〈kBT 〉 = 1.

method step-size rejection rate in CD step rejection rate in MR step
meso-GHMC 0.0025 1.65% 0%
meso-GSHMC 0.0025 1.28% 0.11%
meso-GHMC 0.0100 26.51% 0%
meso-GSHMC 0.0100 20.64% 1.64%

Table 1: Rejection rates in the conservative dynamics (CD) and momentum refreshment (MR) steps
of meso-GHMC and meso-GSHMC, respectively, for different values of the step-size ∆t and constant
τ = L∆t = 0.05.

We conclude from Fig. 7 that the computed radial distribution functions are in nearly perfect
agreement for all simulation methods and step-sizes ∆t. Note, however, that Vattulainen et al.
(2002) do not specify the number of particles for Model C and, hence, our numerical results differ
slightly from the findings in Vattulainen et al. (2002). We also confirm in Fig. 8 that the Monte
Carlo methods reproduce the target value kBT = 1.

We finally state the rejection rates for meso-GHMC and meso-GSHMC in Table 1. The meso-
GSHMC slightly reduces the rejection rate in the conservative dynamics part. This is at the expense
of a non-zero rejection rate in the momentum refreshment step. It appears that the meso-GHMC
method is optimal for force fields with a non-smooth cut-off and that improvements through the use
of shadow energies are limited due to the non-smooth nature of the cut-off. A smooth truncation of
the force field has been discussed by Hafskjold et al. (2004) in the context of DPD and it has been
demonstrated that smooth cut-offs leads to better energy conservation.

6.2 Membrane protein

Meso-scale simulations techniques are increasingly applied to problems from biophysical chemistry
such as the interaction of macromolecules with the interface between an aqueous solution and bio-
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logical membranes; i.e., phospholipid bilayer. These simulations are based on coarse-grained (CG)
approaches which replace the all atom classical mechanics force-fields of traditional molecular dy-
namics. As an example we mention the studies of Bond and Sansom (2006); Bond et al. (2007);
Shih et al. (2006) on CG simulations of simple peptides and integral membranes interacting with
a lipid bilayer. In addition to finding more accurate CG force fields, there also remains the need
to improve accuracy and efficiency of sampling to guarantee convergence of CG simulations. Since
CG simulations are typically performed in a NV T ensemble setting, stochastic thermostats such as
those considered in this paper can be applied. A comparison between standard constant tempera-
ture CG-MD simulations using a Berendsen thermostat with the GSHMC method, as described in
this paper, has been conducted in Wee et al. (2008). The position-dependent functions {hk(r)}K

k=1

are defined by (13) and the test application is a gating-modifier peptide toxin in a membrane with
environment. See Wee et al. (2008) for a detailed description of the model system, simulation set-up,
and numerical results. In Figure 9, the evolution of the toxin is shown from an initial position within
the membrane to its preferred position at the surface of the bilayer. The GSHMC method leads
to a much more rapid repositioning of the toxin compared to a CG-MD simulation with Berendsen
thermostat.

Figure 9: Displayed is the evolution of peptide toxin from an initial position within the membrane
to its preferred position at the surface of the membrane. More specifically, the distance of the toxin
to an energy minimized reference position at the surface of the membrane is shown for a CG-MD
and a GSHMC simulation. While both simulation methods correctly identify the preferred location
of the toxin, the toxin equilibrates much faster under the GSHMC simulation.

7 Concluding remarks

In this paper, we have investigated local stochastic thermostats such as Langevin and dissipative
particle dynamics. We have proposed simple modifications to existing methods which sample exactly
from the Boltzmann distribution (75) for position-dependent fluctuation-dissipation terms and force
free motion. Alternative methods with the same property have been proposed in the past but
rely on a splitting into pairwise interactions (Lowe, 1999; Shardlow, 2003; Peters, 2004; Koopman
and Lowe, 2006) and can therefore not easily be applied to very large systems. As a completely
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novel contribution, we have also shown how to put stochastic thermostats with position-dependent
fluctuation-dissipation terms, for example DPD, within the framework of Markov chain Monte Carlo
methods which implies rigorous sampling from the canonical distribution (28) regardless of the chosen
step-size ∆t. We have verified this property numerically for Model A and C from Vattulainen et al.
(2002). We have also demonstrated for a membrane protein system that Metropolis corrected time-
stepping methods are efficient for applications which require a careful and rapid equilibration with
respect to a given target temperature.

The proposed methods can be viewed as Metropolis corrected time-stepping methods similar
to the MALA/HMC scheme for first-order Brownian dynamics. However, it should be noted that
the Metropolis test induces non-trivial changes to the dynamics in case of rejection of the proposal
step. A possible compromise between sampling accuracy and reduced interference with dynamics is
to remove the momentum reversal upon rejection in (104) and (109), respectively, from the meso-
GHMC/GSHMC methods and to use a Metropolis test of type (106). See Akhmatskaya et al. (2009);
Akhmatskaya and Reich (2009) for some initial results, which indicate that GHMC/GSHMC without
momentum flip improves the accuracy of standard time-stepping methods while interfering little with
dynamic properties such as autocorrelation functions provided the acceptance rate is kept sufficiently
high. This aspect requires further investigations.
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