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This note is to point out an error in the theory part of the publication [1]. We will follow
the notations and definitions of [1] unless stated otherwise.

Contrary to what is claimed in Section 2.2 of [1], the modified Metropolis-Hastings accep-
tance criterion (eqn. (6) in [1]) does not satisfy a modified detailed balance condition for the
choice of a linear involution F and for the choice of δ(Γ′, Γ) suggested in the paper. We will
produce the mathematical reasons below, which were kindly pointed out to us by Tony Lelievre
& Gabriel Stoltz. We will also produce numerical evidence that despite not being able to pre-
serve a (modified) detailed balance condition, the proposed GHMC method without momentum
flip produces better results in terms of sampling accuracy than corresponding results from a
method without any Metropolis-Hasting correction step, i.e., a standard discretization of the
underlying secondorder Langevin dynamics. We also find a good agreement between GHMC
with momentum flip (rigorous sampling from canonical distribution) and without momentum
flip in terms of sampling accuracy for acceptance rates above 75-80%.

As correctly stated in Section 2.2 of [1], the induced proposal distribution of making a
transition from Γ to Γ′ 6= Γ is given by

A(Γ′|Γ) = P (Γ′|Γ) r(Γ′, Γ) = ρstat(Γ)−1δ(Γ′, Γ)

which satisfies

A(FΓ|FΓ′) = P (FΓ|FΓ′) r(FΓ,FΓ′) = ρstat(Γ
′)−1δ(Γ′, Γ)

since
δ(Γ′, Γ) = δ(FΓ,FΓ′) (1)

and ρstat(Γ) = ρstat(FΓ). However, one has to also take into account the probability of staying
at a given state Γ, i.e., the probability of rejections under the Metropolis-Hastings criterion
(see, e.g., [5]). This probability distribution is given by

A(Γ|Γ) = δΓ(Γ)

∫
P (Γ′|Γ)(1− r(Γ′, Γ)) dΓ′ = δΓ(Γ)

[
1−

∫
ρstat(Γ)−1δ(Γ′, Γ) dΓ′

]
,

where δΓ denotes the Dirac delta function centered about Γ. Similarly, we also obtain

A(FΓ|FΓ) = δFΓ(FΓ)

∫
P (FΓ′|FΓ)(1− r(FΓ′,FΓ)) dΓ′

= δΓ(Γ)

[
1−

∫
ρstat(Γ)−1δ(Γ, Γ′) dΓ′

]
,

∗Fujitsu Laboratories of Europe Ltd (FLE), Hayes Park Central, Hayes End Road, Hayes UB4 8FE, United
Kingdom

†Universität Potsdam, Institut für Mathematik, Am Neuen Palais 10, D-14469 Potsdam, Germany

1



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0
2
4
6
8

10
12

<q
2 >

 

 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.4

0.6

0.8

1

step−size

 

 

GHMC with flip
GHMC without flip
no Metropolis test

AR for GHMC with flip
AR for GHMC without flip

Figure 1: Displayed are the computed expectation value 〈q2〉 for the three different implemen-
tation of GHMC. The analytic value is 〈q2〉 = 1. Acceptance rates (AR) are provided for
the GHMC methods with and without momentum flip. Here AR = 1 corresponds to a 100%
acceptance rate. Results are displayed for step-sizes h ∈ [0.1, 1.9]. While the GHMC method
without momentum flip leads to sampling errors for h ≥ 1.7, the errors are significantly smaller
than those for the unadjusted time-stepping method (no Metropolis test).

where δFΓ denotes now the Dirac delta function centered about FΓ. The modified detailed
balance condition (eqn. (4) in [1]) implies that A(Γ|Γ) and A(FΓ|FΓ) should be equal. However
that is obviously not the case unless∫

δ(Γ′, Γ) dΓ′ =

∫
δ(Γ, Γ′) dΓ′,

which does not hold for the choice of δ(Γ′, Γ) considered in [1] on page 2258 for which we have
(1) instead.

We now provide an initial study for the practical impact of the failure of exact conservation
of detailed balance under the GHMC method without momentum flip. A more detailed study
will be carried out in a separate publication. We investigate two simple model systems.

First we consider the harmonic oscillator

q̇ = p, ṗ = −q.

We implement the GHMC method of [1] with L = 1 steps in the molecular dynamics (MD)
part, step-size h ∈ [0.1, 1.9], angle

φ =
√

2γh, γ = 0.05,

in the momentum refreshment part, and inverse temperature β = 1. We compare computed
averages of q2 along samples generated from (i) GHMC without momentum flip, (ii) GHMC
with momentum flip, and (iii) GHMC without any Metropolis test in the MD part, i.e., a
standard numerical time-stepping method for the underlying Langevin equations. The results
can be found in Figures 1 and 2. One finds that GHMC without momentum flip leads to visible
sampling errors for h ≥ 1.7, which are comparable to those for the unadjusted time-stepping
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Figure 2: Displayed are the computed probability density functions for step-size h = 1.6 and
for the three different implementations of GHMC. The agreement between GHMC with and
without momentum flip is remarkable compared to the large distortion in the distribution for
the unadjusted scheme.

method (no Metropolis test) at step-sizes h ≈ 0.8−1.2. Also note that h = 2 is the stability limit
for the Störmer-Verlet method. As can be seen from Figure 1, the decrease in acceptance rate is
slightly faster for GHMC without flip resulting in an optimal step-size of about h = 1.5, where
AR ≈ 0.75. Here optimality is defined as the step-size for which the product of AR and h is
largest. The optimal step-size for GHMC with momentum flip is also found to be about h = 1.5
and, hence, GHMC with and without flip perform essentially equally well in terms of efficiency
and accuracy for this test problem and outperform the unadjusted scheme. This observation
is confirmed by numerically computed probability density functions for all three methods at
h = 1.6. See Figure 2. We finally assess the impact of momentum reversal upon rejection
on the dynamic properties such as velocity autocorrelation functions (ACF) [3]. Results are
displayed in Figure 3 for three different step-sizes h = 0.7, 1.0, 1.5. It can be seen that even
for the relatively small step-size of h = 0.7 and a low rejection rate the GHMC method with
momentum flip changes the velocity ACF significantly (faster decay; i.e. an effectively stronger
diffusion). The GHMC method without momentum flip, on the other hand, stays close to the
results from the unadjusted scheme for h = 0.7, h = 1.0 and produces qualitative agreement for
h = 1.5. Note that neither the unadjusted nor the Metropolis corrected schemes can reproduce
the phase of the oscillations correctly for such large step-sizes.

The second example is more challenging. We consider a one-dimensional period chain of
N = 10 particles with positions qi, i = 1, . . . , N , and mass m = 0.5. The nearest neighbor
particles interact through a pair-wise Lennard-Jones potential

V (r) =
(σ

r

)12

−
(σ

r

)6

, σ = (1/2)1/6,

with r = qj+1 − qj, j = 1, . . . , N and the convention qN+1 = q1. The length of the domain is
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Figure 3: Displayed are the computed velocity autocorrelation functions (ACF) for the harmonic
oscillator for all three methods and for three different step-sizes (h = 0.7, 1.0, 1.5). The results
demonstrate the large impact of the momentum flip on dynamic properties, while GHMC
without momentum flip qualitatively reproduces the results from the unadjusted method.

l = 10 and the system is simulated at inverse temperature β = 1. We compute the average of

S =
1

N

(
N∑

i=1

(qi+1 − qi − 1)2

)1/2

(2)

along samples generated from (i) GHMC without momentum flip, (ii) GHMC with momentum
flip, and (iii) GHMC without any Metropolis test in the MD part (unadjusted time-stepping
scheme). We again use L = 1 in the MD part of GHMC. The step-sizes satisfy h ∈ [0.002, 0.014]
and φ =

√
2γh with γ = 0.2.

Numerical simulations without any Metropolis correction lead to numerical blow-up for
h > 0.006 in simulations over a time interval t ∈ [0, 40000]. This is due to the fact, that
the Lennard-Jones force field is not globally Lipschitz continuous. In fact, numerical blow-
up is possible for all step-sizes h > 0 but with rapidly decaying probability as h → 0. See
[5, 4] for a theoretical study of such instability phenomena for numerical approximations to
Langevin dynamics. Simulations with and without momentum flip, on the other hand, lead to
stable simulations with a decreasing acceptance rate as the step-size increases. The decrease
in acceptance rate is faster for GHMC without flip resulting in an optimal step-size of about
h = 0.012/0.013, where AR ≈ 0.8. As before, optimality is defined as the step-size for which the
product of AR and h is largest. As can also be seen in Figure 4, GHMC without momentum
flip reproduces expectation values within 5% of their reference value for the kinetic energy
per particle and the observable S at h = 0.012/0.013. The optimal step-size for the GHMC
method with momentum flip is h = 0.014 and, hence, GHMC with momentum flip is slightly
more efficient and accurate in terms of computing expectation values than GHMC without
momentum flip for this test problem.

We summarize our findings. Provided that the acceptance rate in a GHMC implementation
without momentum flip does not drop below a certain threshold (between 75-80% in our two
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Figure 4: Displayed are the computed expectation value of the kinetic energy per degree of
freedom and the computed expectation value 〈S〉 of (2) for the three implementations of the
GHMC method. The exact reference value for the kinetic energy per degree of freedom is one.
Acceptance rates (AR) are provided for the GHMC methods with and without momentum
flip. The implementation without any Metropolis test resulted in unstable simulations for all
h > 0.006. A significant systematic drift in the computed expectation values can be observed
for the GHMC method without momentum flip for step-sizes h > 0.012.

experiments, which should provide a good benchmark value), GHMC without flip improves the
accuracy as well as the stability of a time-stepping method without Metropolis correction. In
particular, numerical stability is achieved for non-global Lipschitz force fields.

On the other hand, strict sampling from the canonical distribution requires the application
of a momentum flip upon rejection which also improves acceptance rates as already noted in
[1] and, hence, GHMC with momentum flip is more efficient and accurate than GHMC without
momentum flip in terms of pure sampling. However, momentum flips interfere strongly with the
dynamics of the underlying Langevin equations, as demonstrated in [1], and dynamic properties
need to be computed by other means (e.g., by computing finite time trajectories originating
from Monte Carlo samples). Alternatively, one can increase the acceptance rate in the molecular
dynamics part of GHMC by sampling with respect to a high-order shadow energy. See [2] for
a description of the generalized shadow hybrid Monte Carlo (GSHMC) method and [6] for
numerical results from a membrane protein simulation.
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