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Abstract

We consider the problem of propagating an ensemble of solutions and its characteri-
zation in terms of its mean and covariance matrix. We propose differential equations that
lead to a continuous matrix factorization of the ensemble into a generalized singular value
decomposition (SVD). The continuous factorization is applied to ensemble propagation
under periodic rescaling (ensemble breeding) and under periodic Kalman analysis steps
(ensemble Kalman filter). We also use the continuous matrix factorization to perform a
re-orthogonalization of the ensemble after each time-step and apply the resulting modified
ensemble propagation algorithm to the ensemble Kalman filter. Results from the Lorenz-
96 model indicate that the re-orthogonalization of the ensembles leads to improved filter
performance.

Keywords. Data assimilation, ensemble Kalman filter, ensemble breeding, singular value
decomposition, continuous matrix factorization.

1 Introduction

In many applications several independent realizations (an ensemble) xi(t) ∈ Rk, i = 1, . . . ,m,
of a dynamical system are available and can be analyzed in terms of their mean

x̄(t) =
1

m

∑
i

xi(t) (1)

and their deviations
x′i(t) = xi(t)− x̄(t), i = 1, . . . ,m. (2)

One particularly useful information about the deviations is provided by a singular value de-
composition (SVD) of the ensemble deviation matrix

X′(t) = [x′1(t), . . . ,x
′
m(t)] ∈ Rk×m. (3)

In principle, a standard SVD of X′(t) can be performed at any desired moment in time tn.
However, if tn = n ∆t and ∆t → 0, it seems advantageous to find a technique to “continuously”
update a SVD from tn to tn+1 instead of computing SVDs from scratch. Continuous SVD
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updates have been studied in the context of linear time-varying ordinary differential equations
(ODEs) of the type

ẋ = A(t)x (4)

and for k = m. A main application area is the computation of Lyapunov exponents of nonlinear
dynamical systems. See, for example, Greene and Kim (1987); Wright (1992); Geist et al.
(1990).

Here we instead consider ensembles generated by a nonlinear ODE

ẋ = f(x) (5)

and are mainly interested in applications for which m � k. Such ensemble formulations are
often used in meteorology (with typical values of k ≈ 109 and m ≈ 102 in operational weather
forecasts) and other application areas in the context of ensemble prediction and ensemble
Kalman filters (Kalnay, 2002; Evensen, 2006). Our approach consists of a continuous factor-
ization of the ensemble deviation matrix X′ into a matrix product QM, where Q ∈ Rk×m,
M ∈ Rm×m. For general matrix-valued solutions of a linear ODE (4) one typically requests
that such a factorization satisfies QTQ = Im (Dieci and van Vleck, 1995; Bridges and Reich,
2001). However, in our situation, the deviations x′i are linearly dependent because of

∑
i x

′
i = 0.

This requires a modified orthogonality constraint. Furthermore, given a SVD of M(t) at t = tn,
we also propose a simple iterative update to obtain the SVD of M(t) at t = tn+1. We apply
the proposed continuous SVD ensemble representation to the Lorenz-96 model (Lorenz, 1996;
Lorenz and Emanuel, 1998).

The paper is organized as follows. In Section 2, we summarize the basic concepts of en-
semble propagation. Continuous matrix factorizations in terms of differential equations for the
matrix factors are discussed in Section 3. We first summarize basic results for linear differential
equations and propose a new formulation for nonlinear ensemble propagation. Numerical im-
plementations are discussed in Section 4. A numerically robust and efficient implementation is
summarized in the Appendix. In Section 5, we apply the continuous factorization algorithm to
the Lorenz-96 model both in the context of ensemble breeding (Toth and Kalnay, 1993, 1997)
and ensemble Kalman filtering (Evensen, 2006). We also propose a modified ensemble update
for ensemble transform Kalman filters (Bishop et al., 2001; Tippett et al., 2003; Wang et al.,
2004), which is based on the continuous Kalman filter formulation (see, for example, Simon
(2006)). We finally discuss an application of the matrix factorization in terms of modified
ensemble propagation in Section 6. The basic idea is to ”re-orthogonalize” the ensemble after
each time-step. We demonstrate that such a modification of the ensemble propagation improves
the performance of the ensemble transform Kalman filter applied to the Lorenz-96 model.

2 Ensemble propagation

We summarize the basic idea of an ensemble forecast (Evensen, 2006). Given a differential
equation (5) in the state variable x ∈ Rk, we consider the simultaneous propagation of m
independent solutions

ẋi = f(xi), i = 1, . . . ,m, (6)

which we write in more compact form as

Ẋ = f(X) (7)

with
X = [x1, . . . ,xm] ∈ Rk×m, f(X) = [f(x1), . . . , f(xm)] ∈ Rk×m. (8)

The matrix X(t) is called the ensemble at time t and xi(t), i = 1, . . . ,m, are its members.
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The ensemble is typically analyzed in terms of its mean

x̄ =
1

m

m∑
i=1

xi = Xw, w =
1

m
[1, . . . , 1]T ∈ Rm (9)

and its ensemble deviation matrix

X′ = X− x̄eT = XT, (10)

where T ∈ Rm×m is a constant projector matrix defined by

T = Im −weT , e = [1, . . . , 1]T ∈ Rm. (11)

The ensemble deviation matrix X′(t) gives rise to the ensemble covariance matrix

P(t) =
1

m− 1
X′(t)[X′(t)]T . (12)

Note that the ensemble mean x̄ is generally not a solution of (5) since

f(X)w 6= f(x̄), (13)

in general.
Provided that X′ = XT is sufficiently small, we may apply Taylor expansion and approxi-

mate (7) by
Ẋ = f(x̄)eT + A(t)XT, (14)

where A(t) = Df(x̄(t)) denotes the Jacobian matrix of f at x̄(t). Note that the evolution
equation for the ensemble deviation matrix X′ is now given by

Ẋ′ = A(t)X′. (15)

Numerically, we are often given a one-step method

xn+1 = xn + ∆tφ(xn; ∆t) (16)

for the ODE (5), which can be generalized to the ensemble ODE formulation (7). We denote
the resulting ensemble approximation at time-levels tn = n ∆t, n ≥ 0, by

Xn = x̄ne
T + X′

n. (17)

3 Continuous matrix factorization formulations

In many instances it is useful to have a SVD of the ensemble deviation matrix X′ ∈ Rk×m

available. Since X′ = X′T, we propose the following modified SVD representation:

X′ = QM, M = UΣVT , (18)

where Q ∈ Rk×m satisfies QTQ = T, M ∈ Rm×m is a regular (invertible) matrix satisfying

Mw = w, (19)

and UΣVT denotes the standard SVD Golub and Loan (1996) of M. Note that

X′w = QMw = Qw = 0 (20)
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as desired. Furthermore, the columns of Q span the same linear subspace as the deviations x′i,
i = 1, . . . ,m, while the diagonal entries (singular values) of the diagonal matrix Σ characterize
the magnitude of the deviations. Note that, due to (19), one of the singular values is equal to
one.

Let us assume that the ensemble deviation matrix X′ and its SVD (18) are known at time-
level tn. Then we wish to find a simple update which yields the SVD of X′ at the subsequent
time-level tn+1. It is the aim of this paper to suggest such an algorithm.

Note that the standard SVD of X′ would lead to a representation of type (18) with QTQ =
Im and Σ would contain zero as a singular value. In terms of our continuous formulations it is,
however, advantageous to keep Σ invertible and Q rank deficient. We will come back to this
aspect in Section 3.2.

Our work is an extension of the Stiefel integrators proposed by Bridges and Reich (2001)
and we summarize the basic ideas for linear systems first.

3.1 General linear problems

Popular matrix factorization methods include the QR, SVD, and polar factorization (Golub and
Loan, 1996). In this paper, we rely on the polar factorization of non-square k ×m matrices,
k > m, and the SVD factorization of positive definite m×m matrices.

While the SVD factorization is standard, the polar factorization is less well-known and we
first recall a number of basic results. A polar factorization of a square matrix X is defined as
the product QM of an orthogonal matrix Q and a symmetric non-negative matrix M. If M is
regular (detM 6= 0), then the factorization is unique. Note that polar factorizations are linked
to optimal transportation theory (Brenier, 1991). In linear algebra terms, the orthogonal polar
factor Q is a nearest unitary matrix to X in the Frobenius norm. For general (non-singular)
m × m matrices X we may use the following polar factorization algorithm. Compute the
SVD of XTX, set M equal to the square root of XTX, and Q = XM−1. More generally,
given a non-square matrix X ∈ Rk×m, k > m, the polar factorization can be computed in
several ways (Higham and Schreiber, 1990). The most straightforward is to first compute a QR
decomposition of X and to then find the polar factorization of the resulting upper triangular
m×m matrix.

We now recall the continuous matrix factorization algorithms of Bridges and Reich (2001).
Consider a linear time-dependent differential equation (15). Following the presentation of
Bridges and Reich (2001), we do not distinguish between X and X′ in this section, i.e., we
formally set T = Im in (11) and, hence, do not assume that the mean of X′ vanishes. We wish
to continuously factorize a general solution X(t) = X′(t) into

X(t) = Q(t)M(t), (21)

where Q ∈ Rk×m and M ∈ Rm×m. Hence we obtain

Ẋ = Q̇M + QṀ = A(t)QM (22)

and

Q̇ = A(t)Q−QS(t), (23)

Ṁ = S(t)M, (24)

where S(t) ∈ Rm×m is still to be determined by appropriate additional assumptions. For
example, a continuous QR algorithm is obtained by choosing S(t) such that (i) QTQ = Im and
(ii) M is upper triangular (Dieci and van Vleck, 1995). A continuous polar factorization was
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instead suggested by Bridges and Reich (2001), i.e., (i) QTQ = Im and (ii) M is symmetric
non-negative.

All these factorizations require that Q ∈ Rk×m is an element of the Stiefel manifold Vm(Rk)
defined by

Vm(Rk) = {Q ∈ Rk×m : QTQ = Im}. (25)

Stiefel manifolds are a generalization of the (k− 1)-dimensional unit sphere, which is obtained
for m = 1. If k = m, the Stiefel manifold becomes O(k), the orthogonal group. A Stiefel
manifold is a regular submanifold of Rk×m of dimension km− 1

2
m(m− 1).

Let us now discuss the choice of S(t) in more detail. To do so we introduce the decomposition
of S into its symmetric part Ssym and its skew-symmetric part Sskew. We note QTQ = Im implies
that

d

dt

(
QTQ

)
= QTA(t)Q + QTA(t)TQ− S(t)− S(t)T = 0 (26)

provided

Ssym(t) =
1

2
QT

[
A(t) + A(t)T

]
Q. (27)

Since (26) holds only for Q ∈ Vm(Rk), we say that the Stiefel manifold Vm(Rk) is a weak
invariant of (23)-(24) (Bridges and Reich, 2001).

There is a remaining freedom in the choice of the skew-symmetric part of S(t). Different
choices of Sskew lead to different paths on the Stiefel manifold and to different factorizations.
For, example, one might define Sskew(t) such that S(t) becomes upper triangular, which then
leads to a continuous QR algorithm (Dieci and van Vleck, 1995). Bridges and Reich (2001)
instead set Sskew(t) = 0. The resulting equations (23)-(24) lead to a polar factorization of
solutions X(t) = Q(t)M(t) with initial conditions M(0) ∈ Rm×m and Q(0) ∈ Rk×m subject to
Q(0)TQ(0) = Im and M(0) symmetric, positive-definite.

For general initial conditions with M(0) symmetric and non-negative, we have to use the
remaining freedom in the skew-symmetric part of S to keep the time evolution of M symmetric,
i.e.,

Ṁ = ṀT . (28)

Using the ansatz S = Ssym+Sskew with Ssym given by (27), we obtain from (28) a linear equation
for Sskew of the form

SsymM−MSsym + SskewM + MSskew = 0, (29)

which can be solved for Sskew provided M is non-singular.
Under appropriate conditions (Dieci and Elia, 2006), symmetric solutions M(t) ∈ Rm×m of

(24) can be continuously factorized into a SVD, i.e.,

M(t) = V(t)Σ(t)V(t)T , (30)

where V(t) approaches a constant matrix as t → ∞. The diagonal entries σi(t), i = 1, . . . ,m
of Σ(t) are linked to the Lyapunov exponents of the system (15). Differential equations for the
evolution of the diagonal entries σi, i = 1, . . . ,m, of Σ ∈ Rm×m and the evolution of the unitary
matrix V ∈ O(m) can, for example, be found in Greene and Kim (1987); Wright (1992). An
alternative ODE formulation with build-in error correction has been proposed by Baumann
and Helmke (2003).

3.2 Nonlinear ensemble propagation

We now consider the nonlinear problem (7) and the continuous polar factorization of the en-
semble deviation matrix X′ = XT with the projector T given by (11). We set X′ = QM with
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Q ∈ Rk×m and M ∈ Rm×m as before. Since X′T = X′, we replace Q ∈ Vm(Rk) by

Q ∈ V̂m(Rk) = {Q ∈ Rk×m : QTQ = T, Q = QT} (31)

and request that M satisfies
Mw = w (32)

which makes one an eigenvalue of M, and M is invertible, in general. For M symmetric, (32)
implies that M commutes with T, i.e.,

MT = TM. (33)

Since we are now dealing with a nonlinear ensemble propagation, eq. (23) needs to be
replaced by

Q̇ = f(x̄eT + QM)TM−1 −QS(t), (34)

˙̄x = f(x̄eT + QM)w. (35)

The evolution equation for M(t) is still given by (24), the symmetric part of S(t) is now defined
by

Ssym(t) =
1

2

[
QT f(X)TM−1 + M−TT [f(X)]T Q

]
, X = x̄eT + QM, (36)

and, for symmetric M(t), the skew-symmetric part of S(t) is determined by (29).
Due to our specific choice of the generalized SVD decomposition (18), i.e., Mw = w and

Qw = 0, we have
x̄eT + QM =

(
x̄eT + Q

)
M. (37)

Hence we introduce the matrix Y = x̄eT + Q and rewrite (34)-(35) as a single equation

Ẏ = f(YM)M−1 −YTS(t) (38)

in Y ∈ Rk×m.

4 Numerical implementation

We now describe our basic numerical algorithms. We start again by looking at the linear
problem (15) and its continuous factorization formulation (23)-(24). We continue using the
notion “continuous factorization” even though time-stepping methods introduce discontinuous
changes in the matrix factors from time-step to time-step. However, these discontinuities vanish
as the step-size ∆t → 0.

4.1 General linear problems

We now describe a particular discretization method for (23)-(24) which is different from the
standard approaches proposed, for example, by Dieci and van Vleck (1995); Bridges and Re-
ich (2001). We will generalize the discretization to nonlinear ensemble formulations in the
subsequent section.

Let us assume that
Xn+1 = Xn + ∆tφ(Xn; ∆t) (39)

is a numerical method for (15). We wish to find a discretization of (23)-(24) such that

Xn = QnMn (40)

6



for all n ≥ 0 independent of the specific choice of S. We propose

Qn+1 = Qn + ∆tφ(QnMn; ∆t)M−1
n+1/2 −∆tQn+1/2Sn+1/2, (41)

Mn+1 = Mn + ∆tSn+1/2Mn+1/2. (42)

Here we have introduced the standard midpoint approximation Yn+1/2 = (Yn + Yn+1)/2.
Multiply (41) by Mn+1/2 from the right and (42) by Qn+1/2 from the left to obtain

Qn+1Mn+1 = QnMn + ∆tφ(QnMn; ∆t) = Xn+1 (43)

as a linear combination of the two resulting equations.
Following Bridges and Reich (2001), the symmetric part of Sn+1/2 is given by

Ssym
n+1/2 =

1

2

[
QT

n+1/2φ(QnMn; ∆t)M−1
n+1/2 + M−T

n+1/2 [φ(QnMn; ∆t)]T Qn+1/2

]
. (44)

To keep Mn+1 symmetric, Sn+1/2 needs to satisfy

Sn+1/2Mn+1/2 −Mn+1/2S
T
n+1/2 = 0, (45)

which defines the skew-symmetric part Sskew
n+1/2.

The numerical approximation Qn+1, as given by (41), does not exactly satisfy the constraint
QT

n+1Qn+1 = Im. As suggested by Higham (1997); Bridges and Reich (2001), we apply a
stabilization technique and iterate

Qi+1
n+1 = Qi

n+1 −
1

2
Qi

n+1

[(
Qi

n+1

)T
Qi

n+1 − Im

]
(46)

for i = 0, . . . , i∗ (or to convergence) with Q0
n+1 = Qn+1. The time-stepping algorithm is then

continued with Qn+1 := Qi∗
n+1.

4.2 Nonlinear ensemble propagation

Having considered the linear problem in detail, a numerical implementation of the nonlinear
problem (34)-(35) is now straightforward. We consider the numerical approximation

Xn = x̄ne
T + QnMn = YnMn (47)

and propose the update

Yn+1 = Yn + ∆tφ(Xn; ∆t)M−1
n+1/2 −∆tYn+1/2TSn+1/2. (48)

The discrete time-evolution of M is still given by (42) and it is easy to verify that

Yn+1Mn+1 = Xn + ∆tφ(Xn; ∆t) = Xn+1. (49)

The symmetric part of Sn+1/2 is defined by

Ssym
n+1/2 =

1

2

[
TYT

n+1/2φ(Xn; ∆t)TM−1
n+1/2 + M−T

n+1/2T [φ(Xn; ∆t)]T Yn+1/2T
]
. (50)

If one additionally wishes to keep Mn+1 symmetric, then Sn+1/2 needs to satisfy again (45),
which defines the skew-symmetric part Sskew

n+1/2.
As for the linear case, the numerical approximation Qn+1 = Yn+1T does not exactly satisfy

the constraint QT
n+1Qn+1 = T. Hence we apply a modified stabilization technique and iterate

Yi+1
n+1 = Yi

n+1 −
1

2
Yi

n+1T
[(

Yi
n+1T

)T
Yi

n+1T−T
]

(51)

for i = 0, . . . , i∗ (or to convergence) with Y0
n+1 = Yn+1. The time-stepping algorithm is then

continued with Yn+1 := Yi∗
n+1.

The time-stepping methods described in this section is implicit in Yn+1 and Mn+1. A
simplified implementation based on a single fixed point iteration is described in the Appendix.
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4.3 SVD post-processing

We have proposed algorithms that lead to matrix factorizations X′
n = QnMn and Xn = YnMn,

respectively, at each time level tn, which become continuous in t as ∆t → 0.
We now describe a simple post-processing procedure to find an approximative SVD for

Mn+1 given Mn ≈ UnΣnV
T
n and ∆t sufficiently small.1

We first consider the case that Mn+1 is symmetric and positive definite (polar factorization),
i.e., Un = Vn. Let us use the notation Rdiag to denote the diagonal part of a matrix R. We
start by defining R0 = VT

nMn+1Vn. Then we set D0 = Rdiag
0 and W0 = VT

n . Note that
‖R0−D0‖ = O(∆t). The following recursion is performed for i = 0, . . . , i∗ (or till convergence):

1. Determine the skew-symmetric matrix Ai from

AiDi + DiA
T
i = Ri −Di. (52)

2. Compute

Li =

(
Im −

1

2
Ai

)−1 (
Im +

1

2
Ai

)
. (53)

3. Set Wi+1 = LT
i Wi, Ri+1 = LT

i RiLi, and Di+1 = Rdiag
i+1 .

We finally set Vn+1 = WT
i∗ and Σn+1 = Di∗ .

We note that the algorithm is subject to the same division by zero problem that other
continuous SVD algorithms suffers from whenever two singular values become identical (in
which case (52) is not solvable for Ai).

2 However, our numerical results suggest (compare Figure
4) that the algorithm provides an approximative SVD for Mn+1 provided ∆t is sufficiently small.

The SVD post-processing alogrithm can be interpreted as a discretization of underlying
ODEs in W and R. These ODEs are related to equations proposed by Baumann and Helmke
(2003). However, in our case, the orthogonality of the transformation matrices Wi is explicitly
built in through the use of the Cayley transform in (53).

In case Mn+1 is not symmetric, we assume that an approximative SVD

MT
nMn ≈ VnΣ

2
nV

T
n (54)

is given to compute an approximative SVD

Vn+1Σ
2
n+1V

T
n+1 ≈ MT

n+1Mn+1 (55)

for MT
n+1Mn+1 using the algorithm described above. An approximative SVD of Mn+1 is then

provided by
Mn+1 ≈ Un+1Σn+1V

T
n+1 (56)

with
Un+1 = Mn+1Vn+1 [Σn+1]

−1 . (57)

Note that Un+1, as defined in (57), is only almost orthogonal, in general.

1One could also consider the SVD of Mn−weT . Both SVDs differ only in the singular value associated with
the common singular vector w, i.e., one has Mnw = w and (Mn −weT )w = 0.

2If two diagonal entries dp and dq, q 6= p, of Di become identical or nearly identical, then we set the
corresponding entries of Ai equal to zero, i.e., aqp = apq = 0, in our implementation of the algorithm.
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5 Applications

We now apply the continuous factorization algorithm to the Lorenz-96 model (Lorenz, 1996;
Lorenz and Emanuel, 1998). The particular implementation of the algorithm is described in
the Appendix.

The standard implementation of the Lorenz-96 model has state vector x = (x1, . . . , xk)
T ∈

Rk, k = 40, and its time evolution is given by the differential equations

ẋj = (xj+1 − xj−2)xj−1 − xj + 8 (58)

for j = 1, . . . , k. To close the equations, we define x−1 = x39, x0 = x40, and x41 = x1.
The Lorenz-96 equations are solved numerically using the implicit midpoint rule with

∆t = 0.005. All continuous factorizations are performed using the algorithm described in
the Appendix.

5.1 Ensemble breeding for Lorenz-96 model

10 15 20

100

102

time

SV

m = 5, ! = 0.0001

10 15 20

100

102

time

SV
m = 5, ! = 0.01

10 15 20

100

102

time

SV

m = 20, ! = 0.0001

10 15 20

100

102

time

SV

m = 20, ! = 0.01

Figure 1: Ensemble propagation over several “breeding” cycles of length ∆tbreed = 1.0 for two
different ensemble sizes (m = 5 and m = 20), and two different values of the scaling parameter
α (α = 0.01 and α = 0.0001). Displayed are the four largest singular values of Mn/α from a
(continuous) SVD of X′

n at tn = n ·∆t ∈ [10, 20] with ∆t = 0.005. Colors cyan, red, dark green,
and blue are used to denote the singular values in increasing magnitude at any given instance
in time.

We compute a continuous SVD factorization for periodically reset ensembles Xn = YnMn,
which amounts to a particular implementation of the ensemble breeding method (Toth and
Kalnay, 1993, 1997).

Assume an ensemble resetting is performed at tbreed. We introduce the notations M(tbreed−ε)
and M(tbreed+ε) to denote the value of M(t) before and after the resetting step, i.e., we consider
the limit ε → 0 and note that M(t) is discontinuous across tbreed. Resetting is performed in
our experiments by simply replacing M(tbreed − ε) by

M(tbreed + ε) = αT + weT , (59)
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Figure 2: We display the finite-time growth rates averaged over all breeding cycles using two
different ensemble sizes of m = 5 and m = 20. Finite-time growth rates are computed over a
single breeding cycle using (61). Note that the smaller ensemble leads to significantly smaller
local growth rates. We also plot the standard Lyapunov exponents for the Lorenz-96 model for
comparison.

where α > 0 is an appropriate scaling factor. The matrix Y(tbreed) is not changed during the
resetting step, which implies that the ensemble mean and the image of X′

n are preserved under
the resetting. Note that other ensemble resettings could be performed. See, for example, Toth
and Kalnay (1993, 1997); Wei et al. (2008). The ensemble resetting is performed every ∆tbreed

time units.
In Fig. 1 we display the time evolution of the four dominant singular values of Mn/α over

several breeding cycles for ∆tbreed = 1.0, two different ensemble sizes (m = 5, and m = 20)
and two different values of α (α = 0.0001, α = 0.01). We conclude that the larger ensemble
(m = 20) leads to a faster growth in the singular values. To confirm this observation, we also
compute the finite time-growth rates over each breeding cycle. The finite-time growth rates are
determined by the singular values of

M(tbreed − ε)[M(tbreed + ∆tbreed + ε)]−1 = M(tbreed − ε)[α−1T + weT ]. (60)

Hence, if σi, i = 1, . . . ,m, are the singular values of M(tbreed− ε) and if we assume that σ1 = 1
is the singular value corresponding to the singular vector w, then the singular values of (60)
are given by σ1 = 1 and σi/α, i = 2, . . . ,m. The finite-time growth rates are now defined by

λi(tbreed) =
1

∆tbreed

log
(σi+1

α

)
, i = 1, . . . ,m− 1. (61)

The averaged values

λ̄i =
1

J

J∑
j=1

λi(j ·∆tbreed), i = 1, . . . ,m− 1, (62)

over J = 100 breeding cycles are displayed in Fig. 2 for ∆tbreed = 1.0, α = 0.01, and ensembles
of size m = 20 and m = 5. The smaller ensemble leads to a reduced finite-time growth rate
confirming the results from Figure 1. We verified numerically that our results are in agreement
with standard finite-time Lyapunov exponents (Goldhirsch et al., 1987). For comparison, we
also computed the standard Lyapunov exponents for the Lorenz-96 model using a discrete QR
algorithm (Geist et al., 1990).
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5.2 Ensemble Kalman filter for Lorenz-96 model

We now combine ensemble prediction with a Kalman analysis step, which forms the core of the
ensemble Kalman filter (EnKF) approach (Evensen, 2006). Let us assume that observations
are available at time tobs. We first summarize the Kalman analysis step.

5.2.1 Kalman analysis step

Given a forecast covariance matrix

Pf =
1

m− 1
X′(tobs − ε)[X′(tobs − ε)]T =

1

m− 1
X(tobs − ε)T[X(tobs − ε)]T , (63)

a forecast mean
xf = X(tobs − ε)w, (64)

and observations
y(tobs) = Hxf + r(tobs) ∈ Rl, (65)

where r(tobs) ∈ Rl are i.i.d. Gaussian random numbers with mean zero and covariance matrix
R ∈ Rl×l, the Kalman analysis step first computes the Kalman gain matrix

K = PfH
T

(
HPfH

T + R
)−1

(66)

and then updates the forecast mean to

xa = xf −K(Hxf − y(tobs)) (67)

and the forecast covariance matrix to

Pa = Pf −KHPf . (68)

The ensemble mean is now changed to

x̄(tobs + ε) = X(tobs + ε)w = xa. (69)

The update of the ensemble deviation matrix X′ is more delicate and we use the following
approach.

Given the updated covariance matrix Pa, the updated ensemble deviation matrix X′
a needs

to satisfy

Pa =
1

m− 1
X′

a[X
′
a]

T . (70)

The desired update of the ensemble deviation matrix can be achieved in many different ways.
Ensemble transform Kalman filters (ETKFs) (a variant of ensemble square root filters) offer
a particularly elegant approach (Bishop et al., 2001; Tippett et al., 2003; Wang et al., 2004).
ETKFs are based on a transformation matrix F ∈ Rm×m such that

X′
a = X′(tobs − ε)F (71)

It is also desirable that Fw = 0, which implies X′
aw = 0, i.e., the covariance update is unbiased

(Wang et al., 2004; Livings et al., 2008).
Here we suggest determining X′

a as the solution of the continuous Kalman filter equation
(Simon, 2006)

d

ds
X̃′ = − 1

2m− 2
X̃′[X̃′]THTR−1HX̃′ (72)
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at s = 1, i.e., X′
a = X̃′(1), subject to the initial condition X̃(0) = X′(tobs − ε). It follows from

standard results (Simon, 2006) that X′
a = X̃′(1) satisfies (70) and that X′

aw = 0. We finally
set

X′(tobs + ε) = X′
a (73)

and a complete update of the ensemble is obtained.
In fact, the solution X̃′(1) of (72) can be stated in the form (71) and the transformation

matrix F is identical to the transformation proposed in eq. (C1) of Wang et al. (2004). However,
in our implementations, we replace the explicit update (71) by a numerical integration of (72)
with the continuous factorization algorithm. This approach allows us to obtain a (continuously
embedded) factorization X′

a = QaMa, i.e.

X′(tobs + ε) = Q(tobs + ε)M(tobs + ε) (74)

with
Q(tobs + ε) = Qa, M(tobs + ε) = Ma. (75)

We also note that, alternatively, one could pre-multiply the ensemble deviation matrix X′(tobs−
ε) by an appropriate matrix A ∈ Rk×k such that

X′
a = AX′(tobs − ε) (76)

as proposed by Anderson (2001). The associated ensemble adjustment Kalman filter obviously
satisfies X′

aw = 0. The matrix A can also be obtained from (72) but, since we are mainly
interested in the case k � m, the representation (71) is preferred.

Computational savings are possible by introducing the variable

Z(s) = QT (tobs − ε)X̃′(s) ∈ Rm×m (77)

which transforms (72) into the differential equation

d

ds
Z = − 1

2m− 2
ZZTCZ (78)

in Z with a constant and symmetric matrix

C = QT (tobs − ε)HTR−1HQ(tobs − ε). (79)

The initial conditions are given by

Z(0) = QT (tobs − ε)X̃′(0) = QT (tobs − ε)Q(tobs − ε)M(tobs − ε) = TM(tobs − ε). (80)

A factorization Z(s) = U(s)M̃(s) can now be computed using techniques from Section 4.
The initial conditions are U(0) = T and M̃(0) = M(tobs − ε).

The updated ensemble factorization is given by

Q(tobs + ε) = Q(tobs − ε)U(1), M(tobs + ε) = M̃(1). (81)

5.2.2 Continuous matrix factorization EnKF

A single step of the continuous matrix factorization EnKF consists of the following three sub-
steps:

1. Given an analyzed ensemble X(tobs−∆tobs + ε) at previous observation time tobs−∆tobs

and its polar decomposition, apply the continuous matrix factorization algorithms from
the Appendix to the ensemble dynamics (7) over a time-interval of length ∆tobs with
step-size ∆t. We obtain the forecast ensemble X(tobs− ε) and its polar decomposition at
observation time tobs.

12



2. If necessary, an ensemble inflation (Anderson and Anderson, 1999) is performed prior to
the Kalman analysis step by replacing M(tobs − ε) with

δ
[
M(tobs − ε)−weT

]
+ weT , (82)

where δ > 1 is appropriately chosen. Note that the “inflated” M still satisfies Mw = w.

3. Apply the continuous matrix factorization algorithms from the Appendix to the differ-
ential equation (78) with initial condition Z(0) = TM(tobs − ε) over a unit time-interval
with step-size ∆s. Denote the numerical result at s = 1 by Z(1) = U(1)M̃(1). The
analyzed ensemble deviation matrix at tobs and its polar factorization are given by

X′(tobs + ε) = Q(tobs + ε)M(tobs + ε) = Q(tobs − ε)U(1)M̃(1), (83)

i.e., Q(tobs + ε) = Q(tobs − ε)U(1) and M(tobs + ε) = M̃(1). The ensemble mean is
updated according to (69).

If desired, compute an approximative SVD of M and M̃, respectively, after each update in
Items 1-3 above.
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Figure 3: Five largest (left) and five smallest (right) singular values of Mn over a time-interval
tn ∈ [29, 30] and for m = 20 ensemble members. One can clearly see that the analysis step
strongly reduces the largest singular values, while it can exert a mildly increasing effect on
small singular values. In both panels, the symbols ·, ∗, +, ×, and ◦ are used to denote the
singular values in increasing magnitude at any given instance in time.

5.2.3 Numerical results

We have implemented the algorithm from Section 5.2.2 and the unbiased ensemble transform
Kalman filter (ETKF) of Wang et al. (2004) for the Lorenz-96 model. Our implementations
use ∆tobs = 0.05, ∆t = 0.005, ∆s = 0.5 (i.e., two integration steps for (78) per analysis
cycle), l = 20 (i.e., every second grid point is observed), and measurement error covariance
matrix R = Il. We found numerically that ∆s = 1.0 leads to filter divergence while ∆s < 0.5
does not significantly change the results. A total of 1000 analysis steps are performed in each
experiment. The ”true” trajectory xtruth(tn) is generated by integrating the Lorenz-96 model
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Figure 4: We compare the exact singular values of Mn (as computed with MATLAB) with
their approximation obtained from the SVD post-processing algorithm as described in Section
4.3. We performed two iterations of the SVD post-processing algorithm after each time-step,
i.e., we set i∗ = 2. Displayed is the l∞-norm of the relative difference in the singular values.
We conclude that SVD post-processing is a very cheap and robust method for ”continuously”
updating singular values.

with the implicit midpoint rule and step-size ∆t = 0.005, i.e., we assume that there is no model
error. The observations are obtained according to

y(tobs) = Hxtruth(tobs) + r(tobs), (84)

where r(tobs) are i.i.d. Gaussian random numbers with mean zero and covariance matrix R.

ETKF/factorized EnKF m = 17 m = 20 m = 25

δ =
√

1.05 NA 0.2990/0.3074 0.2916/0.2997

δ =
√

1.10 0.3681/0.3866 0.3260/0.3557 0.3158/0.3330

Table 1: We display the RMS errors from the continuous matrix factorization EnKF of Section
5.2.2 and an implementation of the ETKF of Wang et al. (2004) for different ensemble sizes
and inflation factors. We see that the ETKF performs slightly better. The difference is due
to finite step-size effects in ∆t and ∆s. Both Kalman filters are unable to track the reference
solution for m = 17 and δ =

√
1.05.

In Table 1, we display the RMS errors

rms =

√√√√ 1

J l

J∑
j=1

‖H[x̄(j ·∆tobs)− xtruth(j ·∆tobs)]‖2 (85)

between the truth xtruth and the ensemble mean x̄ for different values of the ensemble size m
and the ensemble inflation factor δ. It can be seen that both filter implementations behave
qualitatively the same with the ETKF performing slightly better. The difference in the nu-
merical results is due to finite step-size effects in ∆t and ∆s and would vanish in the limit
∆t, ∆s → 0.
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Figure 5: Numerical computed ensemble mean (solid line with circles), its reference value (solid
line with crosses), and difference (stars) after 1000 analysis steps for m = 20 ensemble members.
Both implementations display an essentially identical behavior in terms of mean square root
errors.

More specific results for m = 20 and δ =
√

1.05 can be found in Figures 3, 4, and 5, where
we show the time evolution of singular values over a few propagation/analysis cycles, the error
in the approximative SVD factorization, and the difference in the final ensemble mean x̄ and
reference solution xtruth for both filter implementations. In Fig. 6, we furthermore considered
the singular values of M(j ·∆tobs−ε) for j = 1, . . . , 1000 and computed their mean and variance
for m = 20 and δ =

√
1.05. It can be concluded that the singular values of Pf stay close to

their mean value and that the mean values form a rather regular curve. Further investigations
reveal that the singular vectors, on the other hand, undergo rapid transitions. This observation
is, of course, not generic for chaotic dynamical systems.

We finally comment on the computational cost added through the continuous matrix fac-
torization formulations. Using the commands tic/toc under MATLAB, we found that a single
time-step of the continuous factorization algorithm, as described in the Appendix, takes about
1.6 to 1.7 times as long as a single time-step without factorization for the Lorenz-96 model.
More specifically, the average CPU time for performing (95) for an ensemble size of m = 20
was found to be 0.0035 seconds while the subsequent factorization step required 0.0024 sec-
onds. The corresponding values for m = 25 and m = 17 are 0.0050/0.0031 and 0.0029/0.0021
respectively. For more complex models, the CPU time of performing (95) is likely to increase
much more rapidly than the CPU time required for the additional algebraic manipulations and
the performance ratio between ETKF and factorized EnKF should reduce closer to one. See
also the Appendix for a brief discussion on floating point operations.
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Figure 6: We display the mean and the variance of the singular values of M(j ·∆tobs − ε) for
m = 20 and δ =

√
1.05 when viewed as a time series in j = 1, . . . , 1000. We conclude that the

singular values stay relatively close to their mean values along the complete simulation cycle.

6 Ensemble re-orthogonalization

So far we have discussed algorithms that provide a matrix factorization QnMn for computed
ensemble deviation matrices X′

n and have used matrix factorizations to analyze ensemble breed-
ing and ensemble Kalman filters. In this section, we will instead use matrix factorizations to
actually modify the propagation of ensemble deviation matrices. The basic idea is to ”re-
orthogonalize” the ensemble deviation matrix after each ensemble update under an EnKF.

Let us first explain the basic idea for a linear ODE (15). We set X′ = X and do not require
that X′w = 0 for a moment, i.e., X ∈ Rk×m, k > m, has rank m. We also assume that we got a
polar factorization of X at time tn, i.e., Xn = QnMn and a SVD of Mn, i.e., Mn = VnΣnV

T
n .

Now we apply the time integration step (39), (41)- (42) not to Xn but to X̂n = Q̂nM̂n instead,
where

Q̂n = QnVn, M̂n = Σn. (86)

We note that the modification conserves the covariance matrix Pn, i.e.,

Pn =
1

m− 1
XnX

T
n =

1

m− 1
X̂nX̂

T
n . (87)

Since
X̂T

nP+
n X̂n = (m− 1)Im (88)

we call the proposed modification a re-orthogonalization with respect to the covariance matrix
Pn. Here P+

n denotes the pseudo-inverse of Pn (Golub and Loan, 1996).
We now generalize this approach to nonlinear ensemble propagation. Let Xn be the com-

puted ensemble at time-level tn. Let us assume that a polar factorization Xn = YnMn is
available as well as a SVD of Mn −weT , i.e.

Mn −weT = V̄nΣ̄nV̄
T
n . (89)

Such a SVD can be computed continuously using the algorithm of Section 4.3. Finally, let
VTΣTVT

T denote the SVD of T. Note that T has m − 1 singular values equal to one and a
single zero singular value corresponding to the singular vector w.
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We propose to continue the next time-step with a modified ensemble X̂n = ŶnM̂n defined
by

M̂n = VTΣ̄nV
T
T + weT . (90)

and
Ŷn = YnV̄nV

T
T. (91)

The matrix V̄nV
T
T is uniquely defined up to a multiplicative factor of ±1 and we always pick

this factor such that V̄nV
T
Tw = w and we obtain

Ŷnw = Ynw = x̄n. (92)

Since also M̂nw = w, it follows that X̂n and Xn have a common mean. One also easily verifies
that the induced covariance matrix satisfies

Pn =
1

m− 1
X′

n [X′
n]

T
=

1

m− 1
X̂′

n

[
X̂′

n

]T

. (93)

We note that X̂′
n is, unlike (86), not orthogonal with respect to Pn in the standard sense,

i.e., [
X̂′

n

]T

P+
n X̂′

n = (m− 1)T (94)

Since T is a projector onto the linear sub-space S = {x ∈ Rk : xTw = 0}, we conclude that

X̂′
n is orthogonal with respect to Pn over the linear sub-space S. See also Wei et al. (2008) for

a related discussion.
The modified ensemble propagation algorithm is applied to the EnKF filter described in

Section 5.2.2. More precisely, the re-orthogonalization is applied after each update of the
ensemble under the continuous matrix factorization EnKF. In all other details the algorithm
remains identical to the one described in Section 5.2.2.

Numerical experiments reveal that the re-orthogonalization is most important for small
ensemble sizes. We state results for m = 17 ensemble members, 2000 analysis steps, and
different values of the inflation factor δ in Table 2. Note that the Lorenz-96 model with k = 40
and F = 8 has 13 positive Lyapunov exponents, which enforces a lower limit on the achievable
ensemble size. In this context it is quite remarkable that the re-orthogonalized EnKF was able
to track the reference solution over 2000 analysis cycles even for m = 16 ensemble members
and inflation factor δ =

√
1.15 (rms 0.3513). None of our ETKF implementations was found

to be stable for m ≤ 16.
In Fig. 7 we display the mean and variance of the singular values of the forecast ensem-

bles. We applied the same parameter setting (m = 20, δ =
√

1.05) as used in Fig. 6 for the
EnKF without re-orthogonalization. There is only a small difference between the two results,
which indicates that the two algorithms differ mainly in their Qn matrices (whose orthogonal
columns span the m − 1 dimensional “ensemble deviations” sub-space of Rk). This difference
must be responsible for the improved performance of the re-orthogonalized EnKF. We also
measured the CPU time added to the continuous factorization algorithm through the ensemble
re-orthogonalization step and found a value of 0.0009 seconds for m = 20.

We conclude this section by mentioning two alternative modifications to ensemble propa-
gation. Localization of the forecast covariance matrix in the Kalman analysis step has been
proposed by Houtekamer and Michell (2001) and has become a very popular method to avoid
spurious correlations associated with remote observations. At present, we cannot see a direct
link between localization and re-orthogonalization as proposed here. However, it appears fea-
sible to build localization directly into the ODE (72) and to derive a “localized” continuous
matrix factorization EnKF. A much more radical modification to ensemble propagation has
been proposed by Harlim and Majda (2008), where nonlinear ensemble propagation is replaced
by appropriately fitted linear stochastic differential equations.
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δ =
√

1.08 δ =
√

1.09 δ =
√

1.10 δ =
√

1.11

ETKF NA NA 0.3700 0.6005
re-orthogonalized & factorized EnKF 0.3060 0.3154 0.3212 0.3295

Table 2: We display the RMS errors from the re-orthogonalized EnKF and an implementation
of the ensemble transform Kalman filter (ETKF) of Wang et al. (2004) for m = 17, 2000
analysis steps, and different values of the ensemble inflation factor δ. NA means that the filter
was unable to track the reference solution. We see that the re-orthogonalization improves the
filter performance in terms of stability and accuracy.
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Figure 7: Displayed are the same quantities as in Fig. 6 for the EnKF with re-orthogonalization.
It can be concluded that the re-orthogonalization has a rather small impact on the singular
values compared to ensemble inflation techniques. In particular, the mean values are slightly
smaller for the re-orthogonalized EnKF. More specifically, an increase of the inflation factor
from δ =

√
1.05 to δ =

√
1.10 leads to an increase in the mean of the largest singular value by

about 0.8 while re-orthogonalization reduces the mean of the largest singular value by about
0.1.

7 Conclusions

We have extended and applied continuous matrix factorization algorithms to nonlinear
ensemble propagation. Such factorization can be used to analyze the ensemble ”continuously”
for little additional computational cost. The key idea is that continuous matrix factorizations
lead to incremental updates which can be implemented efficiently on machines that execute
matrix-matrix multiplications at high efficiency (Golub and Loan, 1996). Continuous matrix
factorizations have been used before for computing Lyapunov exponents (Geist et al., 1990;
Dieci and van Vleck, 1995; Bridges and Reich, 2001). Here we have demonstrated by means of
the Lorenz-96 model that such factorizations can also be implemented for nonlinear ensemble
breeding and ensemble Kalman filtering. We have also shown how the matrix factorization can
be used to perform a re-orthogonalization of the ensemble after each time step of an ensemble
propagation algorithm. The re-orthogonalization introduces a small but non-trivial change to
nonlinear ensemble propagation. Numerical evidence from the Lorenz-96 model indicates that
this modification improves the behavior of an EnKF.
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Appendix

The algorithm of Section 4.2 requires the simultaneous propagation of Y and M. Here we
describe an alternative factorization algorithm, which is computationally less demanding while
maintaining numerical robustness. This algorithm has been used for all numerical experiments
conducted in this paper.

We assume that Xn, its polar factorization Xn = YnMn, and an approximative SVD of
Mn ≈ VnΣnV

T
n are given.

We first propagate the ensemble using the given numerical method, i.e.,

X̂n+1 = Xn + ∆tφ(Xn; ∆t). (95)

We next update Yn using
Yn+1 = X̂n+1M

−1
n −YnTSn, (96)

with Sn = Ssym
n + Sskew

n defined by

Ssym
n = sym

{
∆t[YnT]T φ(X)n; ∆t)M−1

n T
}
− 1

2

(
[YnT]TYnT−T

)
(97)

and
VT

nSskew
n VnΣn + ΣnV

T
nSskew

n Vn = VT
nMnS

sym
n Vn −VT

nSsym
n MnVn. (98)
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Here sym{A} denotes the symmetric part of A. We next update Mn using

Mn+1 = sym
{

[Yn+1T]T X̂n+1T + weT
}

. (99)

We update the SVD of Mn by applying two iterations of the (symmetric) SVD post-processing
algorithm to Mn+1 and finally set

Xn+1 = Yn+1Mn+1. (100)

Note that the updated ensemble mean satisfies

x̄n+1 = Xn+1w = X̂n+1w = Yn+1w. (101)

We also have TMn+1 = Mn+1T, Mn+1 = MT
n+1, and the stabilization term in (97) leads to

[Yn+1T]TYn+1T ≈ T (102)

for ∆t sufficiently small.
Under the assumption of k � m, the computational cost is dominated by 6 matrix-matrix

multiplications each of which requires O(km2) floating point operations. Such matrix-matrix
multiplications can be performed very efficiently on vector or parallel machines (Golub and
Loan, 1996).
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