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Abstract

We present a Monte Carlo technique for sampling from the canonical distribution in
molecular dynamics. The method is built upon the Nosé-Hoover constant temperature
formulation and the generalized hybrid Monte Carlo method. In contrast to standard
hybrid Monte Carlo methods only the thermostat degree of freedom is stochastically re-
sampled during a Monte Carlo step. We demonstrate that the method respects detailed
balance, and, consequently, rigorously samples the canonical ensemble provided the in-
duced Markov chain is irreducible.

1 Introduction

Classical molecular dynamics leads naturally to simulations under a constant number of par-
ticles, constant volume and constant energy (NVE) ensemble. More often one is however
interested in simulations under constant temperature (NVT) or constant pressure and temper-
ature (NPT) conditions. Extended variable formulations are among the most popular avenues
to turn an NVE formulation into one that either samples from the corresponding NPT or NVT
ensemble [3]. In this paper we focus on the Nosé-Hoover thermostat for constant temperature
molecular dynamics simulations [18, 8].

The Nosé-Hoover technique is popular because it has been observed in practice to introduce
a mild perturbation of dynamics. This means that autocorrelation functions, which measure
dynamical relaxation processes, can often be computed with the thermostat active, saving
computational effort and reducing complication. Although in widespread use, Nosé dynamics
suffers from several shortcomings. First, the method only provides canonical sampling in case
the extended system is ergodic; this assumption often fails, e.g. for low-dimensional systems or
systems with strong harmonic components. Second, numerical time-stepping errors may lead
to a drift in the extended energy, which impacts on the computed ensemble values. The latter
point has partially been addressed by the Nosé-Poincaré formulation [4]. However, even when
the energy is well controlled, as in the case of Nosé-Poincaré, the distribution will be distorted at
large timesteps (but potentially below the stepsize stability threshold) due to numerical errors.
Recently, the ergodicity issue has been addressed by the development of stochastic variants
of Nosé-Hoover [21, 14]. Nevertheless, errors in numerical time-stepping procedures may still
adversely affect computed ensemble values.

In this article, we develop a method based on the Nosé-Hoover formulation within the
context of Markov chain Monte Carlo (MCMC) techniques [16]. Our approach is based upon an
application of the generalized hybrid Monte Carlo method [9, 11, 2] to Nosé-Hoover dynamics.
We demonstrate that it is possible to correct for systematic timestepping errors by the use
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of a Metropolis condition. Although we do not directly prove the ergodicity (which would
require showing the irreducibility of the Markov Chain) we demonstrate the effectiveness of
the method in numerical experiments with butane molecules, confirming that the proposed
Metropolis-Adjusted Nosé-Hoover (MANH) method samples from the canonical momentum
distribution independent of time-step size. It is hoped that the relatively weak perturbation
used may reduce equilibration issues associated to hybrid Monte Carlo schemes [11] that use a
full momenta randomization, for example enhancing the computation of dynamical correlations.

2 Nosé-Hoover constant temperature dynamics

We consider an N -atom molecular system with atomistic positions ri ∈ R3, momenta pi ∈ R3,
and masses mi, i = 1, . . . , N , and microcanonical energy function

E =
1

2

N∑
i=1

‖pi‖2

mi

+ V (r1, r2, . . . , rN).

For ease of reference we introduce the notation: r = (rT1 , . . . , r
T
N)T , p = (pT1 , . . . ,p

T
N)T , and a

diagonal mass matrix M ∈ R3N×3N such that

pTM−1p =
N∑
i=1

m−1
i ‖pi‖2. (1)

We consider the Nosé-Hoover equations [18, 8]

M ṙ = p, (2)

ṗ = −∇rV (r)− ξp, (3)

µξ̇ = pTM−1p− dkBT, (4)

where T is the temperature, kB is the Boltzmann constant, µ > 0 is a constant (the “thermal
mass”), and d is the number of degrees of freedom in the system, which we assume for simplicity
to be 3N . The system (2)-(4) can be extended by a further variable ζ:

ζ̇ = dξζ, (5)

in which case the equations possess a first integral (“extended energy”)

EENH =
1

2
pTM−1p + V (r) + µ

ξ2

2
+ kBT ln ζ.

(We assume ζ(0) > 0 so that ζ(t) > 0 for all t > 0.) Assuming ergodicity on a surface
of constant extended energy, it can be shown [18, 12] that trajectories of the Nosé-Hoover
formulation (2)-(4) sample from an extended distribution of the form

ρext(r,p, ξ) ∝ e−β[E+µ ξ
2

2
],

where β = (kBT )−1. Integrating out with respect to the additional variable, this implies that
the phase variables are sampled from the canonical density defined by

ρcan(r,p) ∝ e−βE. (6)

Note that the use of (5) to define the extended system is slightly different than the original
proposal of Nosé [18]. The benefit is that the resulting system of differential equations (2)-(4)
together with (5) preserves volume in (q,p, ξ, ζ) space.
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Ergodicity is difficult to establish in practice for the Nosé-Hoover equations (2)-(4). This
problem has given rise to a number of modifications of the basic Nosé-Hoover formulation (see,
e.g., [17, 15, 5]). Most recently, the stochastic Hoover-Langevin method has been proposed
[21]:

Mdr = pdt, (7)

dp = −∇rV (r)dt− ξpdt, (8)

µdξ = pTM−1pdt− dkBTdt− µγξdt+

√
2µγ

β
dw, (9)

where w(t) is a Wiener process [19]. It has been proved rigorously in [14] that (7)-(9) samples
from an extended canonical measure (a measure whose marginal with respect to ξ is (6)), in
the case of a harmonic potential V .

Even when ergodicity can be established for any of the existing Nosé-Hoover formulations,
numerical implementations will lead to time series, which, in general, does not sample from
the probability density (6). The deviation is due to systematic time-stepping errors. These
systematic errors can be corrected for by a combination of time-stepping and a probabilistic
acceptance/rejection procedure, which rigorously enforces the canonical density (6). Such a
combination leads to Markov chain Monte Carlo (MCMC) methods [16].

In the remainder of the paper, we develop the MCMC method for the Nosé-Hoover formu-
lation (2)-(4), which generates a time series Γk, k = 0, . . . , K, in the extended state variable

Γk = (rTk ,p
T
k , ξk)

T ∈ R6N+1, (10)

which samples from the extended canonical density

ρNH(Γ) ∝ e−βENH , ENH =
1

2
pTM−1p + V (r) +

µξ2

2
. (11)

2.1 A Nosé-Hoover timestepping method

As has been mentioned, the vector field defined by (2)-(4) together with (5) is divergence free
and has a first integral EENH.1 For convenience, we abbreviate the system (2)-(4),(5) as

ż = fENH(z), (12)

in the phase space variable

z = (rT ,pT , ξ, ζ)T = (ΓT , ζ)T ∈ R6N+2. (13)

Observe also that that the equations (2)-(4),(5) are time-reversible under the involution F
defined by

F : (rT ,pT , ξ, ζ)T → (rT ,−pT ,−ξ, ζ)T . (14)

In other words, if Φt denotes the time-t-flow map of (12), then

FΦ−t(Fz) = Φt(z). (15)

As in [12], we split the equations (2)-(4), (5) into two sets of equations each of which is
exactly solvable and each of which is volume conserving and time-reversible. The two systems
are:

1The formulation (2)-(4),(5) is not Hamiltonian; a Hamiltonian formulation for Nosé dynamics with time
transformation has been given in [4].
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(A)

M ṙ = p, (16)

ṗ = 0, (17)

µξ̇ = pTM−1p− dkBT, (18)

ζ̇ = 0. (19)

(B)

M ṙ = 0, (20)

ṗ = −∇rV (r)− ξp, (21)

µξ̇ = 0, (22)

ζ̇ = dξζ. (23)

Let us denote the associated time-t-flow maps by ΦA
t and ΦB

t , respectively. A time-reversible,
volume conserving, and second-order numerical method Ψh is now provided by the composition
(Strang splitting)

Ψh := ΦB
h/2 ◦ ΦA

h ◦ ΦB
h/2, (24)

with h > 0 the step-size.
Let us now make a couple of important observations with regard to the method (24). Given

a state z = (ΓT , ζ)T and a subsequent approximation z̄ = (Γ̄T , ζ̄)T = Ψh(z), we find that the
difference in extended energy values satisfies

EENH(z̄)− EENH(z) = ENH(Γ̄)− ENH(Γ) +
kBTd∆t

2
(ξ̄ + ξ) (25)

We conclude that this energy difference is independent of the value of ζ. Furthermore, the
dynamics in the reduced state variable Γ = (rT ,pT , ξ)T is also entirely independent of ζ. Hence
we view (24) as a numerical method in Γ only with an energy difference defined by

∆EENH(Γ) = ENH(Γ̄)− ENH(Γ) +
kBTd∆t

2
(ξ̄ + ξ). (26)

We denote this reduced time-stepping method by Ψ̂∆t : Γ → Γ̄. The reduced method Ψ̂∆t

shares with Ψ∆t the time-reversibility under the involution (14). However, while Ψ∆t is volume
conserving, we obtain

det
[
DΨ̂∆t

]
(Γ) = exp

(
d∆t

2
[ξ̄ + ξ]

)
. (27)

for the reduced time-stepping method. Here DΨ̂∆t denotes the Jacobian of Ψ̂∆t.

3 Metropolis adjusted Nosé-Hoover (MANH) thermo-

stat

We now propose a Markov chain Monte Carlo (MCMC) method which rigorously samples from
the extended canonical density (11). We call this Monte Carlo method the Metropolis adjusted
Nosé-Hoover (MANH) thermostat; it is derived as an application of the generalized hybrid
Monte Carlo method to the Nosé-Hoover equations (2)-(4). The basic idea is to apply (24)
to the extended state Γ and to accept or reject the outcome based on a Metropolis criterion.
In case of rejection, we keep the current state. The Metropolis criterion is chosen such that
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the induced Markov chain has (11) as an invariant density. Another ingredient of the MANH
thermostat is the randomization of the momentum variable ξ. This part of the algorithm differs
from generalized hybrid Monte Carlo methods where all momenta p would be randomized. See
[9, 11, 2] for a detailed description of the generalized hybrid Monte Carlo method.

We next provide a detailed description of the MANH algorithm. Given an accepted state
Γn = (qTn ,p

T
n , ξn)T , a single MANH step consists of the following two substeps.

1. Partial thermostat refreshment step. We randomize the thermostat variable by

ξ∗n = sin(φ)u+ cos(φ) ξn. (28)

where u is normally distributed with mean zero and variance σ2 = kBT/µ and φ ∈ (0, π/2] is
a parameter.

2. Nosé-Hoover Monte Carlo

(i) Nosé-Hoover dynamics: Given the last accepted and partially refreshed state

Γ = (qTn ,p
T
n , ξ

∗
n)T , (29)

we augment the state to z = (ΓT , 1)T and apply the time-reversible and volume-conserving
method (24) over M time-steps with step-size h. We obtain the proposal state

z̄ = [Ψh]
M(z). (30)

(ii) Metropolis criterion: Apply the Metropolis acceptance/rejection criterion

Γ′ =

{
Γ̄ with probability min(1, exp(−β δE))
Γ otherwise

, (31)

with Γ̄ obtained from z̄ = (Γ̄T , ζ̄)T and

δE :=
M−1∑
m=0

∆EENH([Ψm
h ](Γ)) = EENH(z̄)− EENH(z),

with ∆EENH defined by (26).
This completes a single MANH step and we set Γk+1 = Γ′, where Γ′ is the accepted value

(31) from the Nosé-Hoover Monte Carlo step.

3.1 Special cases

We discuss special cases of the MANH thermostat and its relation to existing methods.

(i) If we set φ = 0 in (28), i.e., ξ∗k = ξk, and replace the numerical proposal step (30) by the
exact propagator in Γ, i.e., Γ̄ = Φt(Γn), t = hM , then Γk+1 = Γ̄ and MANH reduces to
standard Nosé-Hoover dynamics.

(ii) If we set M = 1 in (30) and φ =
√

2γh � 1, where γ > 0 is an appropriate constant,
then we can Taylor expand (28) to obtain

ξ∗k ≈ (1− γh)ξk + (2γh)1/2u.
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We also have that Γ̄ is an numerical approximation to standard Nosé-Hoover dynamics
over a single time-step with initial value Γ. Hence we may view (28) and (30) as a
composition/splitting method for the stochastic Nosé-Hoover model [14] (7)-(9). The
MANH algorithm combines this discretization with a Metropolis acceptance/rejection
criterion (31) to insure that we sample exactly from the extended canonical distribution
(11) even in the presence of numerical time-stepping errors.

(iii) The choice φ = π/2 in (28) leads to ξ∗k = u, i.e., a complete replacement of the thermostat
variable ξ after each complete MANH step. This is similar to the standard hybrid Monte
Carlo method [6], but note that we do not randomize the complete momentum vector p.
The potential benefit is a milder perturbation of the dynamics of the system, which can
be expected to reduce equilibration difficulties after randomization.

3.2 Proof of detailed balance

The partial thermostat refreshment step (28) leads to a normal distribution in ξ∗n since u and ξn
are normally distributed with the same variance σ2 = kBT/µ. Hence we only need to prove that
the Nosé-Hoover Monte Carlo step keeps the desired extended canonical density (11) invariant.

Recall that the Metropolis criterion (31) is equivalent to saying that Γ̄ is accepted if r(Γ̄,Γ) ≥
u, where u ∈ [0, 1] is a uniformly distributed random number and

r(Γ̄,Γ) = min

(
1,
ρENH(z̄)

ρENH(z)

)
, z̄ = [Ψ∆t]

M (z). (32)

We now set M = 1 for simplicity and apply (26) to obtain

r(Γ̄,Γ) = min

(
1,
ρNH(Γ̄)

ρNH(Γ)
e
d∆t

2
(ξ̄+ξ)

)
, Γ̄ = Ψ̂∆t(Γ), (33)

which, using (27), becomes equivalent to

r(Γ̄,Γ) = min

(
1,
ρNH(Γ̄)

ρNH(Γ)
det
[
DΨ̂∆t

]
(Γ)

)
. (34)

Let P (Γ̄|Γ) denote the probabiliy density of proposing Γ̄ in the Nosé-Hoover Monte Carlo
step given that the current state is Γ. The key result of [1] states that a Markov chain
Monte Carlo method satisfies a detailed balance relation with respect to the desired invariant
distribution ρNH(Γ) provided that

r(Γ̄,Γ) = min

(
1,
ρNH(Γ̄)

ρNH(Γ)

P (FΓ|F Γ̄)

P (Γ̄|Γ)

)
, (35)

where F denotes a linear involution of type (14). In case that P (Γ̄|Γ) is induced by a time-
reversible and volume conserving time-stepping method, the ratio of P (FΓ|F Γ̄) and P (Γ̄|Γ)
is equal to one and the familiar Metropolis criterion is obtained. In our case, however, the
time-stepping method Ψ̂∆t is reversible but not volume conserving and we instead obtain

P (FΓ|F Γ̄)

P (Γ̄|Γ)
= det

[
DΨ̂∆t

]
(Γ), (36)

which implies the desired invariance of ρNH(Γ) under the MANH thermostat.
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Eq. (36) can be deduced from the following formal manipulations of the Dirac delta function
δ:

P (FΓ|F Γ̄) = δ(FΓ− Ψ̂∆t(F Γ̄)) (37)

= δ(Γ−FΨ̂∆t(F Γ̄)), (38)

= δ(Γ− Ψ̂−1
∆t(Γ̄)) (39)

= δ(Ψ̂∆t(Γ)− Γ̄) det
[
DΨ̂∆t

]
(Γ), (40)

= P (Γ̄|Γ) det
[
DΨ̂∆t

]
(Γ). (41)

Here we have used that F is volume conserving and that Ψ̂∆t is time-reversible under F .
Note that detailed balance does not exclude the possibility of other invariant densities, i.e.

the Markov chain may not be irreducible. For a more detailed discussion of irreducibility, the
reader is referred to [16].

4 Numerical experiments

We implemented the MANH thermostat (with φ = π/2) in (28) and compared the method
with the Nosé-Hoover method [18, 8] and the new stochastic dynamics-based Hoover-Langevin
scheme [14]. To illustrate the performance of the method, we first simulated a single butane
molecule, based on a united atom model as in [20] which treats CH2 and CH3 groups as single
bodies. The Hamiltonian is

H =
|p1|2

2m1

+
|p2|2

2m2

+
|p3|2

2m3

+
|p4|2

2m4

+ U

where m1,4 = 15.03 atomic mass units, m2,3 = 14.03, and

U = ul.b.(r12) + ul.b.(r23) + ul.b.(r34) + ua.b.(γ1) + ua.b(γ2) + ud.b.(δ),

with rij the distance between atoms i and j, γ1,2 are the cosines of the angles ∠q1q2q3 and
∠q2q3q4, respectively, and δ is the cosine of the dihedral formed as the angle between the planes
determined by q1, q2, q3 and q4, q5, q6. The potential terms are

ul.b.(r) =
K1

2
(r − r0)2, ua.b.(γ) =

K2

2
(γ − γ0)2, ud.b.(δ) = K3(1− 4δ3 + 3δ) +K4(1− δ),

K1 = 317
kcal

molÅ2
, K2 = 118

kcal

mol
, K3 = 1.6

kcal

mol
, K4 = .6

kcal

mol

The interest of course is in more complicated molecules, but a single butane provides an in-
teresting challenge for thermostatting as the length bonds tend to trap energy. We ran our
simulation at a cold kBT = 0.1 kcal/mol which made a good challenge for the thermostat.
(We also ran the simulation at kBT = 0.4 kcal/mol with qualitatively similar results to those
reported below.)

We implemented a standard explicit Nosé-Hoover scheme [7] 2 The artificial parameter µ in
Nosé-Hoover must be selected to give the best performance of the scheme. We found a broad
range of µ gave similar performance and chose µ = 5 (measured relative to AKMA units) within
this range. We used stepsizes corresponding to a range of 2 − 6fs, fixing the time interval at
8ns, with runs therefore ranging from 1.33M (million) to 4M timesteps. In Figure 1 we show

2To verify correctness we checked the performance of the Nosé-Hoover method against the Nosé-Poincaré
method [4] and obtained nearly identical results in this simple example.
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Figure 1: Momentum distributions from Nosé-Hoover simulations for three stepsizes.
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Figure 2: Momentum distributions from Hoover-Langevin simulations.

computed histograms of the momenta of all variables, superimposed on a graph of the correct
(Gaussian) density for the indicated temperature,

ρmom. =
1√

2πmikBT
e
− p2i

2mikBT .

(This is the density for any of three components of pi.) The Nosé dynamics simulation fails to
capture the correct canonical sampling properties in this example. The most likely explanation
for this failure is that the butane model is close in some sense to a harmonic model; it is well
known and even rigorously demonstrated that Nosé dynamics is not ergodic for such systems
[13].

We next used the recently proposed Hoover-Langevin thermostat (7)-(9). Again the pa-
rameter µ must be selected to obtain a suitable coupling of bath to physical variables, and we
used the same value µ = 5 used for the previous experiments. The additional parameter γ in
the Hoover-Langevin method regulates the strength of the noise term which is introduced. We
chose γ = 5/ps. (Smaller values gave relatively poorer performance.)

The performance is much better. The Hoover-Langevin has been rigorously analysed in
[14] for a harmonic model, and it is likely that the strong harmonic bond is the dominant
challenge here, so this experiment agrees with theory. At larger stepsizes, the distribution
becomes distorted due to numerical error. The addition of noise has corrected the ergodicity
problem in the Nosé-Hoover thermostat but has not corrected the distribution for the effects
of discretization error.

Finally we tested the MANH thermostat against the same model problem. The relevant
parameters here are µ regulating the coupling of the artificial and physical variables, and M ,
the number of steps taken between resampling of the thermostat degree of freedom ξ. We chose
µ = 1 and M = 100. The results corresponding to the previous experiments are shown in
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Figure 3: Momentum distributions from MANH simulations.
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Figure 4: Discrepancy of average kinetic energy from temperature for the three methods.

Figure 3. Clearly the MANH simulations provide a more accurate momentum distribution in
this example. Note that the slightly rough appearance of the MANH histograms is due to the
fact that much less data is available from a MCMC type simulation involving a similar number
of steps to a standard method involving the same number of basic steps; these are further
improved in longer simulations.

Errors in temperature are shown in Figure 4. It is interesting to note that even when Nosé-
Hoover is completely inaccurate in terms of the distribution, as here, the accuracy of the average
kinetic energy compared to the target temperature may be quite high. This is attributable to
the explicit kinetic energy control law that forms part of Nosé-Hoover. Both the Nosé-Hoover
and Hoover-Langevin methods show a quadratic dependence on stepsize, as is to be expected
since the error in temperature is related to numerical discretization error. MANH on the other
hand, shows an erratic fluctuation of average kinetic energy error, since it is dominated by
sampling error in this case, i.e., the number of MC samples is smaller for the experiments with
larger step-sizes h.

To examine the asymptotic behavior of MANH, we show in Figure 5 below the convergence
of average kinetic energy to temperature in a simulation of roughly 140000 timesteps, with
here, h = 6fs.
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Figure 5: Convergence of average kinetic energy to temperature in a longer MANH simulation.
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Figure 6: Convergence of the dihedral angle distribution.

One might question whether the convergence of temperature or recovery of the kinetic
energy distribution is evidence proper canonical sampling. For this purpose we have computed
the distribution of the dihedral angle in Butane-1 via a histogram after various numbers of
steps of MANH. Parameters here were kBT = 0.594 kcal/mol corresponding to 300K, and we
set h = 1fs, µ = 1, and took 50 steps before Metropolis test. The exact density of the dihedral
angle is easily computed for Butane-1; it is just

ϕ(ψ) ∝ e−βud.b.

where ψ is the dihedral angle and ud.b. is the dihedral bending energy [10]. In Figure 6, the
convergence of the dihedral distribution to its nominal form is illustrated with simulations of
2M , 8M and 32M steps. Relatively large numbers of timesteps are needed here for accurate
statistics because, even at this temperature (corresponding to 300K), transitions between the
different butane conformations are relatively rare.

4.1 Simulation of Liquid Butane-8

Although we have not conducted exhaustive experiments with larger systems, we did examine
a system of 8 butane molecules in periodic boundary conditions. In this model a Lennard-Jones
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interaction is introduced between all pairs of atoms of different molecules, of the form

φLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
.

The coefficients used were ε = .14307 kcal/mol and σ = 3.923Å. A temperature of kBT = 0.4
kcal/mol was used in these simulations, corresponding to a liquid state simulation (at around
240K). We again compared the Nosé-Hoover, Hoover-Langevin and MANH algorithms. The
only difference in parameters from the butane-1 simulation is that we have here used µ = 3,
which gave good results in the limit of small stepsize using all three methods, and we took 50
instead of 100 steps between Metropolis randomizations in MANH, which improved the con-
vergence behavior. In this application, the first two methods performed very similarly, for all
choices of stepsize corresponding to a range of 2fs to 8fs, the latter being the stability threshold.
This indicates that the molecular problem is likely ergodic so the additional stochastic pertur-
bation of the Hoover-Langevin method is not strictly necessary for this purpose (although both
methods have a stepsize-related defect). Moreover, the temperature convergence provides a
diagnostic measure for the overall performance, so we report here only the temperature con-
vergence, and only for the Hoover-Langevin and MANH methods. The convergence results for
average kinetic energy to temperature are summarized in Figures 7 (Hoover-Langevin) and 8
(MANH), for various values of the stepsize. It is clear that the differences in performance are
qualitatively similar to what was reported for butane-1.

5 Summary

We have proposed a numerical thermostatting method which samples rigorously from the canon-
ical distribution (6) provided that the induced Markov chain is irreducible. The proposed ther-
mostat is related to the stochastic Nosé-Hoover formulation (7)-(9), but includes a Metropolis
condition which corrects for timestep-dependent errors in canonical averages.

Our motivation for using the Nosé-Hoover method is that noise can be introduced in a
secondary fashion into the dynamical equations, with potential benefits for the recovery of
averaged dynamics (autocorrelation functions and transport coefficients). In this article we
have not, however, directly addressed the question of the magnitude of this perturbation which
is likely to problem specific. The assessment of the influence of the stochastic resampling on
correlation functions is an open challenge.
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[18] S. Nosé. A unified formulation of the constant temperature molecular-dynamics methods.
J. Chem. Phys., 81:511–519, 1984.

[19] B. Oksendal. Stochastic Differential Equations. Springer-Verlag, Berlin-Heidelberg, 5th
edition, 2000.

[20] J.-P. Ryckaert and A. Bellemans. Molecular dynamics of liquid alkanes. Faraday Discus-
sions, 66:95–107, 1978.

[21] A. Samoletov, M. A. J. Chaplain, and C. P. Dettmann. Thermostats for ”slow” configu-
rational modes. J. Stat. Phys., 128:1321–1336, 2007.

14


