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Abstract

The generalized hybrid Monte Carlo (GHMC) method combines Metropolis corrected
constant energy simulations with a partial random refreshment step in the particle mo-
menta. The standard detailed balance condition requires that momenta are negated upon
rejection of a molecular dynamics proposal step. The implication is a trajectory reversal
upon rejection, which is undesirable when interpreting GHMC as thermostated molecular
dynamics. We show that a modified detailed balance condition can be used to implement
GHMC without momentum flips. The same modification can be applied to the gener-
alized shadow hybrid Monte Carlo (GSHMC) method. Numerical results indicate that
GHMC/GSHMC implementations with momentum flip display a favorable behavior in
terms of sampling efficiency, i.e., the traditional GHMC/GSHMC implementations with
momentum flip got the advantage of a higher acceptance rate and faster decorrelation of
Monte Carlo samples. The difference is more pronounced for GHMC. We also numeri-
cally investigate the behavior of the GHMC method as a Langevin-type thermostat. We
find that the GHMC method without momentum flip interferes less with the underlying
stochastic molecular dynamics in terms of autocorrelation functions and it to be preferred
over the GHMC method with momentum flip. The same finding applies to GSHMC.

1 Introduction

The hybrid Monte Carlo (HMC) method [5] is a popular method to conduct sampling from
the constant temperature ensemble for molecular systems [7, 17]. The HMC method com-
bines Metropolis corrected constant energy molecular dynamics with a complete replacement
of momenta by a random sample from the appropriate Boltzmann distribution at the end of
each HMC step. HMC can be combined with other techniques such as parallel tempering [9]
and dynamical spatial warping [19] to increase sampling rates in case of high energy barriers
between molecular conformations.

HMC has been generalized to allow for partial momentum updates to keep more dynamic
information between Monte Carlo steps [11, 13]. However, to satisfy a detailed balance condition
[17], the generalized hybrid Monte Carlo (GHMC) method requires a momentum flip in case
of rejection of the molecular dynamics proposal. This momentum flip implies that the GHMC
method essentially reverses its direction upon rejection. In this note, we demonstrate that
such a momentum reversal and the implied trajectory reversal upon rejection are, in fact, not

∗Fujitsu Laboratories of Europe Ltd (FLE), Hayes Park Central, Hayes End Road, Hayes UB4 8FE, United
Kingdom

†Department of Mathematics, Freie Universität Berlin, Arnimallee 2-6, 14195 Berlin, Germany
‡Universität Potsdam, Institut für Mathematik, Am Neuen Palais 10, D-14469 Potsdam, Germany

1



necessary in order to satisfy a modified detailed balance condition [8]. Both the standard
as well as the modified detailed balance condition guarantee the stationarity of the canonical
distribution function [3, 17]. We wish to emphasize that the issue of momentum reversal does
not arise for the standard HMC method since the complete momentum vector is replaced by a
new random sample after each constant energy molecular dynamics Monte Carlo step.

The acceptance rate of the HMC method can be increased by using importance sampling
with respect to a shadow Hamiltonian as first proposed in [12]. The generalized shadow hy-
brid Monte Carlo (GSHMC) method [1, 2] provides an efficient implementation of shadow
Hamiltonians in the context of the GHMC method. As for the standard GHMC method, a
momentum flip is required upon rejection of the molecular dynamics proposal. The modified
detailed balance condition allows for the elimination of this momentum flip from the GSHMC
method.

Our numerical evidence indicates that it is advantageous to run GHMC/GSHMC methods
with momentum flips in order to get optimal sampling results. On the other hand, we also
demonstrate that elimination of the momentum flip allows for a dynamic interpretation of
sampling results in terms of approximations to a second-order stochastic Langevin equation,
i.e., in terms of thermostated molecular dynamics, provided the rejection rate is kept sufficiently
small.

Another application of the modified detailed balance condition to constant temperature
molecular dynamics has recently been provided in [15], where the Nosé-Hoover model [20, 10, 6]
has been put into the framework of Markov chain Monte Carlo (MCMC) methods [17].

The rest of the paper is organized as follows. In §2, we derive the modified detailed balance
condition for general MCMC methods. The standard GHMC method is described in §3, while
its generalization to a GHMC method without momentum flip can be found in §4. §5 outlines
the implementation of the GHMCS method without momentum flip. Numerical results for
butane and a membrane protein can be found in §6.

2 Markov chain Monte Carlo (MCMC) methods

Consider a system of N interacting particles with positions qi ∈ R3, momenta pi ∈ R3, and
masses mi, i = 1, . . . , N . The phase space is Ω = R6N and the state variable is given by

Γ = (qt
1, . . . ,q

t
N ,pt

1, . . . ,p
t
N)t ∈ Ω.

Here we used the notation that at denotes the transpose of a column vector a. Let us assign a
potential energy function V : Ω → R and a total energy

E(Γ) =
1

2

∑
i

m−1
i ‖pi‖2 + V (q1, . . . ,qN)

to this system. The canonical distribution at temperature T is then given by

ρcan(Γ) ∝ exp(−βE(Γ)), (1)

where β = 1/kBT is the inverse temperature.
The energy E is invariant under the involution (momentum flip) F : Ω → Ω defined by

FΓ := (qt
i, . . . ,q

t
N ,−pt

1, . . . ,−pt
N)t.

We obviously also have ρcan(Γ) = ρcan(FΓ).
We next discuss two detailed balance principles that can be used to derive Markov chain

Monte Carlo (MCMC) methods, which sample from the canonical distribution (1). We refer to
[17] for an in detail introduction to MCMC methods.
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2.1 Markov chains and detailed balance

Let us denote the state space of a Markov chain by Ω ⊂ Rn, its states by Γ ∈ Ω, and its
transition probability kernel by A(Γ′|Γ). In other words, A(Γ′|Γ) gives the probability density
of going from a state Γ to a state Γ′. A probability density function (PDF) ρstat(Γ) is stationary
under the Markov chain provided

ρstat(Γ
′) =

∫
Ω

A(Γ′|Γ) ρstat(Γ) dΓ. (2)

The detailed balance condition

A(Γ′|Γ) ρstat(Γ) = A(Γ|Γ′) ρstat(Γ
′) (3)

provides an easy criterion for the invariance of ρstat. Of course, condition (3) is not the only
criterion to guarantee (2).

Let us consider systems that allow for a linear map (involution) F : Ω → Ω, which satisfies
(i) F = F−1 and (ii) ρstat(Γ) = ρstat(FΓ) for all Γ ∈ Ω. We note that molecular dynamics with
the PDF (1), i.e., ρstat = ρcan provides an example.

For such systems, the modified detailed balance condition

A(Γ′|Γ) ρstat(Γ) = A(FΓ|FΓ′) ρstat(FΓ′) = A(FΓ|FΓ′) ρstat(Γ
′) (4)

can be found in [8] in the context of the Fokker-Planck equation. The modified detailed balance
condition (4) also implies (2) since∫

Ω

A(Γ′|Γ) ρstat(Γ) dΓ = ρstat(Γ
′)

∫
Ω

A(FΓ|FΓ′) dΓ = ρstat(Γ
′).

2.2 Metropolis-Hastings acceptance criteria

In this section we generalize the modified detailed balance relation (4) to Markov chain Monte
Carlo (MCMC) methods. The MCMC method is to sample from a given PDF ρstat.

Let P (Γ′|Γ) denote the proposal distribution of the MCMC method and let us assume that
the state space Ω permits a linear involution F . A proposal state Γ′ is accepted according
to the Metropolis-Hastings criterion r(Γ′, Γ) ≥ ξ, where ξ ∈ [0, 1] is a uniformly distributed
random number and

r(Γ′, Γ) =
δ(Γ′, Γ)

ρstat(Γ) P (Γ′|Γ)
. (5)

Here δ(Γ′, Γ) is any function with

δ(Γ′, Γ) = δ(FΓ,FΓ′)

that makes r(Γ′, Γ) ≤ 1.
The probability for the induced Markov chain to make a transition from Γ to Γ′ is now given

by
A(Γ′|Γ) := P (Γ′|Γ) r(Γ′, Γ) = ρstat(Γ)−1 δ(Γ′, Γ).

Similarly,

A(FΓ|FΓ′) = P (FΓ|FΓ′) r(FΓ,FΓ′)

= ρstat(FΓ′)−1 δ(FΓ,FΓ′)

= ρstat(Γ
′)−1 δ(Γ′, Γ)
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and the modified detailed balance relation (4) follows.
One can choose, for example,

δ(Γ′, Γ) := min {ρstat(Γ) P (Γ′|Γ), ρstat(Γ
′) P (FΓ|FΓ′)}

and then it follows that

r(Γ′, Γ) = min

(
1,

P (FΓ|FΓ′) ρstat(Γ
′)

P (Γ′|Γ) ρstat(Γ)

)
. (6)

If the proposal distribution satisfies

P (Γ′|Γ) = P (FΓ|FΓ′), (7)

then (6) reduces to the familiar Metropolis criterion

r(Γ′, Γ) = min

(
1,

ρstat(Γ
′)

ρstat(Γ)

)
. (8)

On the other hand, the standard detailed balance condition (3) is satisfied by a Markov
chain with transition probability kernel A(Γ′|Γ) = P (Γ′|Γ) r(Γ′, Γ) if r(Γ′, Γ) is also given by
(8) and if the proposal step satisfies

P (Γ′|Γ) = P (Γ|Γ′). (9)

Of course, these conditions are not the only criteria to guarantee the standard detailed balance
condition (3). See [17] for details.

3 Generalized hybrid Monte Carlo (GHMC) method

We now consider a particular MCMC method for systems of interacting particles as introduced
in §2.

First note that a Markov chain will converge to some distribution of configurations if it is
constructed out of Markov chain Monte Carlo (MCMC) updates each of which has the desired
distribution as a fixed point, and which taken together are ergodic. The generalized hybrid
Monte Carlo (GHMC) algorithm of Horowitz [11] and Kennedy & Pendleton [13] for sampling
from the canonical ensemble with PDF (1) is defined as the concatenation of two MCMC steps:
a molecular dynamics Monte Carlo (MDMC) and a partial momentum refreshment Monte Carlo
(PMMC) step. We describe both steps in detail.

3.1 Partial momentum refreshment Monte Carlo (PMMC)

Let us denote the last accepted state vector by Γn, n ≥ 1. Its momenta pn
i , i = 1, . . . , N ,

are now mixed with an independent and identically distributed normal (Gaussian) noise vector
ui ∈ R3 and the partial momentum refreshment step is given by(

ui

pi

)
=

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

) (
un

i

pn
i

)
(10)

where
un

i = β−1/2m
1/2
i ξi, ξi = (ξi,1, ξi,2, ξi,3)

T , ξi ∼ N(0, 1),

and 0 < φ ≤ π/2. Here N(0, 1) denotes the normal distribution with zero mean and unit
variance. Denote the new state vector by Γ.

Note that if pn
i and un

i are both distributed according to the same normal (Gaussian)
distribution, then so are pi and ui. This special property of Gaussian random variables under an
orthogonal transformation (10) makes it possible to conduct the partial momentum refreshment
step without a Metropolis accept/reject test.
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3.2 Molecular dynamics Monte Carlo (MDMC)

This step consists of the following two sub-steps.

(i) Molecular dynamics (MD). Hamilton’s equations of motion

miq̇i = pi,

ṗi = −∇qi
V (q1, . . . ,qN),

i = 1, . . . , N , are integrated numerically with a time-reversible and symplectic method Ψh

over L steps and step-size h. We use the Störmer-Verlet method [3, 14] for all experiments
in this paper.

The resulting time-reversible and sympletic (and hence volume conserving) map from the
initial state to the final state is denoted by Uτ : Ω → Ω, τ = L h.

Given the current state Γ, the proposal state is now defined by Uτ (Γ) followed by a
momentum flip F .

(ii) Monte Carlo (MC): A Metropolis accept/reject test

Γ′ =

{
FUτ (Γ) with probability min(1, exp(−β δE))

Γ otherwise
,

with
δE := E(Uτ (Γ))− E(Γ) = E(FUτ (Γ))− E(Γ)

is applied.

Note that the time-reversibility of Uτ is equivalent to (FUτ ) = (FUτ )
−1. Hence the proposal

distribution P (Γ′|Γ), characterized by Γ′ = FUτ (Γ), satisfies (9) and MDMC satisfies the
standard detailed balance relation (3).

We finally apply a momentum flip and define the next accepted state vector by Γn+1 = FΓ′.
Hence the momenta are negated upon rejection of a proposal Γ′ = Uτ (Γ).

This completes a single step of the GHMC algorithm.

4 A GHMC method without momentum flip

The momentum flip in the MDMC step upon rejection may lead to a Zitterbewegung (going
forward and backward) in the molecular trajectories for high rejection rates. It has been argued
in [11] that this Zitterbewegung is the main obstacle to achieve better sampling efficiency under
the GHMC method.

However, using the modified detailed balance relation (4) in the MCMC part of GHMC,
one can now eliminate the need for the additional momentum flip in the MDMC step and,
hence, the source for the Zitterbewegung upon high rejection rates. The key observation is that
a proposal Γ′ = Uτ (Γ) leads to a proposal distribution P (Γ′|Γ) satisfying (7). Hence, following
§2.2, we can implement the MDMC part of GHMC without a momentum flip while still using
the same Metropolis acceptance criterion.

4.1 Algorithmic summary

Since the momentum refreshment PMMC step remains unchanged, we only state the modified
MDMC step.
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(i) Molecular dynamics (MD): The updated momentum vectors and the current particle
positions give rise to a new state Γ, which is now propagated under the map Uτ = [Ψh]

L

as discussed in §3.

(ii) Monte Carlo (MC): A standard Metropolis accept/reject test

Γ′ =

{
Uτ (Γ) with probability min(1, exp(−β δE))

Γ otherwise
, (11)

with
δE := E(Uτ (Γ))− E(Γ)

is applied and we set Γn+1 = Γ′.

4.2 Special cases of GHMC

We now discuss two special cases which arise from different choices for φ, h, and L in the
GHMC algorithm.

• The standard hybrid Monte Carlo (HMC) algorithm [5] is obtained by setting φ = π/2.
In this case pi = un

i in (10) and the previous value of pn
i is entirely discarded.

Let us now also set L = 1 (single molecular dynamics time-step) and let us assume that
Ψh corresponds to the Störmer-Verlet method. Then we can interpret the hybrid Monte
Carlo method as a single Brownian dynamics [3] time step

qi = qn
i −

∆t

mi

∇qi
V (qn

1 , . . . ,q
n
N) +

√
2∆t

m2
i

un
i , i = 1, . . . , N, (12)

with time-step ∆t = h2/2 followed by the Metropolis acceptance criterion (11). Hence
we also need to define a momentum proposal to evaluate δE in (11). This momentum
proposal is given by

pi = un
i −

√
∆t

2

(
∇qi

V (qn
1 , . . . ,q

n
N) +∇qi

V (qn+1
1 , . . . ,qn+1

N )
)
, i = 1, . . . , N,

in case of the Störmer-Verlet method.

Recall that un
i =

√
mikBTξi, ξi ∼ [N(0, 1)]3 and, hence, (12) can be rephrased in the

more familiar formulation

qi = qn
i −

∆t

mi

∇qi
V (qn

1 , . . . ,q
n
N) +

√
2kBT∆t

mi

ξi, i = 1, . . . , N,

Note that this Metropolis corrected single time-step Brownian dynamics scheme is equiv-
alent to the Metropolis adjusted Langevin algorithm (MALA) [21].

• The Langevin Monte Carlo algorithm of Horowitz [11] corresponds to a generalized hybrid
Monte Carlo method as described in §3 with L = 1, i.e., a MCMC method with momentum
flip. Because of the momentum flips in case of rejection, a dynamic interpretation of the
Langevin Monte Carlo algorithm is difficult to make.

On the other hand, a single GHMC step with L = 1 and with all MD proposals being
accepted can be interpreted as a particular time discretization of stochastic Langevin
dynamics

miq̇i = pi, ṗi = −∇qi
V (q1, . . . ,qN)− γpi + σiẆi, i = 1, . . . , N, (13)
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with time-step ∆t = h provided that φ =
√

2γh � 1. Here γ > 0 is a constant, Wi(t) are
i.i.d. 3-dimensional Wiener processes, and σi =

√
2γmikBT . Indeed, we find that Taylor

expansion of (10) in φ =
√

2γh � 1 reduces to

pi ≈ (1− γ∆t)pn
i + (2γmikBT∆t)1/2ξi, i = 1, . . . , N,

for ∆t = h and ξi ∼ [N(0, 1)]3.

An interesting question is how the introduction of a Metropolis acceptance criterion (either
with or without momentum flip) will modify the underlying Langevin dynamics. We
expect convergence of all three approaches (no rejections, Metropolis with and without
momentum flip) as h = ∆t → 0. We will investigate finite time-step effects in §6.

5 Generalized shadow hybrid Monte Carlo (GSHMC)

method

The generalized shadow hybrid Monte Carlo (GSHMC) method [1, 2] makes use of the fact
that a symplectic method Ψh can be viewed as a highly accurate approximation to a modified
Hamiltonian system with energy Êh [14]. Since the method Ψh is also assumed to be time-
reversible, it follows that the modified Hamiltonian satisfies

Êh(Γ) = Êh(FΓ).

and the modified detailed balance relation (4) also holds with ρstat being replaced by the
modified canonical density

ρ̂can(Γ) ∝ exp(−β Êh(Γ)).

In exactly the same manner as the modified detailed balance condition (4) allows us to eliminate
the momentum flip F from the GHMC method, we can now also modify the GSHMC method.
Again the only significant change is a modified acceptance criterion in the MDMC part of
GSHMC which becomes

Γ′ =

{
Uτ (Γ) with probability min(1, exp(−β δÊ))

Γ otherwise
, (14)

with
δÊ := Êh(Uτ (Γ))− Êh(Γ)

in terms of the notations introduced in §4.1.
The partial momentum update step of GSHMC, as described in [2], remains unaffected

except for the removal of the initial momentum flip.
We remind the reader that the modified energy Êh leads to a significantly increased ac-

ceptance rate in the MDMC part of the GSHMC method. At the same time, the momentum
refreshment step itself becomes subject to a Metropolis acceptance criterion. The acceptance
rate can be adjusted by selecting the angle φ in (10) appropriately.

Finally, since we sample with respect to a modified canonical density ρ̂can, a reweighting of
simulation data for computing averages is necessary.

6 Numerical results

We present numerical results from two model systems. We first simulate a single butane
molecule using GHMC/GSHMC methods with and without momentum flip. This system con-
tains N = 4 particles. We also provide results from simulations of a membrane protein system.
This system has been investigated in [23] using GSHMC with momentum flips and results were
compared to a molecular dynamics simulation with a standard Berendsen thermostat [3].
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Method flip numerical 〈Vtors〉 exact 〈Vtors〉 numerical 〈Ekinetic〉 exact 〈Ekinetic〉 AR

GHMC Yes 2.6720 ± 0.1135 2.6313 14.9894 ± 0.0210 14.9663 78%
GHMC No 2.6136 ± 0.1874 2.6313 15.0028 ± 0.0674 14.9663 74%
GSHMC Yes 2.5845 ± 0.1298 2.6313 15.0142 ± 0.0652 14.9663 99%
GSHMC No 2.5754 ± 0.1276 2.6313 14.9579 ± 0.0598 14.9663 99%

Table 1: Simulation results for butane with h = 6 fs and τ = hL = 600 fs. All energy values
are stated in kJ mol−1. Simulations are run at T = 300 K. The acceptance rates (AR) are
stated for the Molecular Dynamics Monte Carlo (MDMC) step.

(a)

(b) (c)

Figure 1: Autocorrelation functions (ACFs) for torsion angle of a single butane molecular at
T = 150 K. Displayed are results from GHMC simulations with (c) and without (b) momentum
flip. These results are compared to a Langevin dynamics simulation (a) of the same system.
It is found that GHMC without momentum flip reproduces the ACF from Langevin dynamics
well for h = 1 fs as well as h = 2 fs. GHMC with momentum flip, on the other hand, leads to
a dramatic reduction in the autocorrelation, which would be desirable for sampling purposes
but is not appropriate for thermostated molecular dynamics.
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Method h = 1 fs h = 2fs h = 4 fs

GHMC without momentum flip 99.8% 98.7 % 90.3%
GHMC with momentum flip 99.8% 98.9% 91.0%

Table 2: Acceptance rates in the Molecular Dynamics Monte Carlo (MDMC) steps for GHMC
with and without momentum flip for τ = h and φ = (2γh)/12 in (10), γ = 0.5 ps−1.

6.1 Butane

We perform two sets of experiments. The first set is to test GHMC/GSHMC with and with-
out momentum flip as a sampling tool. In this context we wish to achieve a high degree of
decorrelation between samples. In the second test we are interested in the behavior of GHMC
with and without momentum flip as a Metropolis corrected Langevin thermostat (see §4.2). In
this case, we wish to preserve the autocorrelation in a molecular model as much as possible.
We assume that the molecular model is given by second-order Langevin dynamics (13) with an
appropriate damping coefficient γ.

6.1.1 Sampling

All Monte Carlo simulations are performed with a step-size of h = 6 fs and trajectory length
τ = hL = 600 fs, i.e, L = 100, in the MDMC part. The angle in (10) is set to φ = π/10.
A total of 1.9e + 5 Monte Carlo steps are performed with target temperature T = 300 K.
Each experiment is repeated five times and we compute the mean value of the torsion potential
energy, the mean kinetic energy, and the acceptance rate (AR) in the MDMC part. The
results are displayed in Table 1, where computed quantities are stated in terms of the mean
and standard deviation over the five independent experiments. The exact mean value for the
torsion potential energy has been taken from [12]. We find that GHMC without momentum flips
leads to a reduced acceptance rate and that the deviations in the computed expectation values
are larger. In case of the GSHMC method (with a fourth order modified energy) no significant
difference between implementations with and without momentum flips can be detected. This
is very likely due to the high acceptance rate in the MDMC part. We will come back to this
issue in a more demanding membrane protein test case.

6.1.2 Metropolis corrected Langevin thermostat

We compare the GHMC method with and without momentum flip to a GHMC implementation
with all proposal steps in the MDMC part being accepted. Such an implementation samples
no longer exactly from the canonical distribution (and, in fact, is no longer a MCMC method)
but it provides a consistent discretization of the underlying Langvin equations (13) for L = 1,
i.e., τ = h in the MDMC part of GHMC.

All three simulations are performed with L = 1, φ =
√

2γh in (10), γ = 0.5 ps−1 in (13), and
target temperature T = 150 K. We used three different step-sizes h (1fs, 2fs, 4fs) and simulated
over a constant time-interval Ttotal = NMC h = 40 ps with the number of time/Monte Carlo
steps NMC appropriately adjusted.

In Figure 1 we display the computed autocorrelation functions (ACFs) [3] for the torsion
angle. We find that GHMC with momentum flip leads to a rapid decay of correlation even
for relatively modest rejection rates (see Tabel 2). The ACFs obtained from the discretization
of the Langevin equations (13) are, on the contrary, well reproduced by the GHMC method
without momentum flip for h = 1 fs and h = 2 fs. A rejection rate of nearly 10 % (see Table
2) leads to significant distortions in the ACFs for both GHMC implementations. Note from
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Figure 2: Time evolution of the distance d between the centre of mass (c.o.m.) of the toxin
and the c.o.m. of the bilayer along the bilayer normal under GSHMC1–GSHMC6. The dotted
horizontal line corresponds to the average of d obtained from a control MD simulation (averaged
over 15 to 200 ns). The lower Metropolis acceptance rates for GSHMC5/GSHMC6 lead to a
slower convergence of the toxin to its preferred interfacial position.

Table 2 that the rejection rates with and without momentum flips are nearly identical in this
simulation regime.

6.2 Membrane protein

To investigate the sampling performance of the GSHMC method with and without momentum
flips, we chose the previously studied [23] gating-modifier peptide toxin VSTx1 from spider
venom in a palmitoyl-oleoyl-phosphatidyl choline (POPC) membrane environment as a test
application.

We implemented GSHMC in combination with a CG force-field [18, 4] where four “heavy”
particles on average were represented as one CG particle. The details of the molecular model
are the same as described in [23]. The toxin was initially buried in the hydrophobic core of a
POPC bilayer and we measured the rate of drift of the toxin along the bilayer normal (which
corresponds to the z-axis) to an interfacial location. The initial orientation of the toxin in the
bilayer was such that its hydrophilic face pointed towards the headgroup region of the upper
leaflet of the bilayer.

We performed six GSHMC simulations (GSHMC1–GSHMC6) for three different values of
the molecular dynamics times-step h (20 fs, 42 fs, and 43 fs) with and without momentum flips.
Note that the smallest step-size of 20 fs has also been used in the study [23]. The two larger
step-sizes have been chosen such that we can demonstrate the difference between high and low
acceptance rates in the MDMC part of GSHMC. In fact, a time-step of 43 fs is close to the
stability limit of the Störmer-Verlet method for this problem.

Each simulation was run for 50 ns. The MD stage of GSHMC was performed using a
modified version of GROMACS 3.2.1 [16]. The simulations were run at a temperature of 310
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Method length (ns) step-size (fs) flip AR in MDMC AR in PMMC

GSHMC1 50 20 Yes 99.8% 99.9%
GSHMC2 50 20 No 99.9% 99.7%
GSHMC3 50 42 Yes 98.2% 27.2%
GSHMC4 50 42 No 98.1% 27.2%
GSHMC5 50 43 Yes 65.6% 48.1%
GSHMC6 50 43 No 51.8% 18.2%

Table 3: Acceptance rates (AR) in the Molecular Dynamics Monte Carlo (MDMC) and Partial
Momentum Monte Carlo (PMMC) steps of GSHMC simulations of membrane protein imple-
mented with and without momentum flip and run with different values of molecular dynamics
step-size h.

Method length (ns) step-size (fs) flip d (Å) LJpb (kJ mol−1) LJpw (kJ mol−1)

MD 200 20 N/A 24.8±1.8 -697.9±62.6 -620.1±65.7
GSHMC1 50 20 Yes 23.8±2.0 -760.3±66.8 -545.6±72.1
GSHMC2 50 20 No 24.7±1.7 -719.2±52.4 -614.2±53.7
GSHMC3 50 42 Yes 23.4±0.9 -667.3±44.8 -561.6±59.2
GSHMC4 50 42 No 24.6±0.9 -718.0±45.4 -619.2±38.7
GSHMC5 50 43 Yes 26.2±0.5 -697.3±20.3 -590.7±22.8
GSHMC6 50 43 No 24.2±0.1 -728.7±31.5 -540.7±52.1

Table 4: Average ± standard deviation of observable Ω ( Ω = d, LJpb, and LJpw). d is the
distance between the centre of mass (c.o.m.) of the toxin and the c.o.m. of the bilayer along
the bilayer normal, LJpb is the Lennard-Jones (LJ) interaction energy between the toxin and
the bilayer and LJpw is the LJ interaction energy between the toxin and water. Averages are
taken from 20 to 50 ns, except for control MD simulation [23], where averages are taken from
15 to 200 ns.
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Figure 3: Autocorrelation functions (ACF) for the time series displayed in Figure 3. No signif-
icant difference between implementations with and without momentum flips can be observed
for step-sizes of 20 fs and 42 fs. However, the large time-step simulations GSHMC5/GSHMC6
display a longer correlation due to lower Metropolis acceptance rates. This effect is more pro-
nounced for the method without momentum flip (GSHMC6). Despite of this, the toxin has
converged to the correct interfacial position after a simulation interval of 50 ns for all imple-
mentations GSHMC1–GSHMC6. See also Figure 2.

K.
The number of MD steps between Monte Carlo steps was set to L = 1000, the angle

in (10) was chosen to be φ = 0.18 and the order of a modified Hamiltonian was assigned
to 6th order [2]. We calculated the acceptance rates in both MDMC and PMMC steps for
each simulation and found that the smaller step-sizes lead to similar acceptance rates in the
GSHMC implementations with momentum flip (GSHMC1/GSHMC3) and without momentum
flip (GSHMC2/GSHMC4). The MDMC acceptance rates are kept high in these four simula-
tions. The acceptance rates deteriorate for the larger step-size of 43 fs in both GSHMC im-
plementations though GSHMC with momentum flip (GSHMC5) allows for significantly higher
acceptance rate than in the simulation without momentum flip (GSHMC6). The acceptance
rates for all simulations can be found in Table 3.

To probe our simulations further, we monitored the time evolution of the distance d of the
centre of mass (c.o.m.) of the toxin with respect to the c.o.m. of the bilayer along the bilayer
normal. See Figure 2 for the time evolution of d under GSHMC1–GSHMC6 and Figure 3 for
the associated autocorrelation functions (ACF) [17, 23], where the ACF is computed over data
from 0 to 50 ns. No significant differences in behavior of d between GSHMC with and without
momentum flip can be observed for step-sizes of 20 and 42 fs. A visibly slower decay of the ACF
can be observed for GSHMC without momentum flip at the large step-size of 43 fs (GSHMC6)
compared to GSHMC5.

In all simulations, the toxin drifts towards the headgroup/water interface of the bilayer.
To make this statement more precise, we examined sample averages for the distance d, the
Lennard-Jones (LJ) interaction energy between the toxin and the bilayer (LJpb), and the LJ
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interaction energy between the toxin and water (LJpw). We found the averages in Table 4 in
good agreement with the previously obtained simulation data for all GSHMC methods. See
Table 4 in [23]. The values from the control MD simulation, as displayed in Table 4, are
reproduced from [23].

7 Summary and Discussion

We have made use of a modified detailed balance condition to propose an implementation of the
generalized hybrid Monte Carlo (GHMC) method without momentum flip. Numerical evidence
indicates, however, that the standard GHMC method with momentum flip leads to higher
acceptance rates and more efficient sampling. The same effect is observed for the generalized
shadow hybrid Monte Carlo (GSHMC) method. These findings are also in line with a similar
observation made in [22] for Metropolis corrected second-order Langevin dynamics.

An intuitive explanation for the reduced acceptance rates of the GHMC/GSHMC methods
without momentum flip can be provided for small values of the angle φ in the partial momentum
update (10) and a small number L of molecular dynamics time-steps. In that case, rejection
of the molecular dynamics proposal step will lead to an almost identical molecular dynamics
proposal under the next GHMC iteration and the probability of rejection will remain high. If,
on the other hand, the momenta are negated, then the subsequent molecular dynamics proposal
will lead back close to a previously accepted state and the acceptance rate will be high. We note
that this does not yet explain the observed higher sampling efficiency of the GHMC/GSHMC
methods with momentum flips.

GHMC without momentum flip is a viable option for thermostated molecular dynamics
since it interferes less with the natural autocorrelation functions of the underlying (stochastic)
molecular dynamics model. We explicitly demonstrated this effect for a single butane molecule
and observed that momentum flips reduce the correlation quite dramatically while GHMC with-
out momentum flip reproduces the autocorrelation function in the torsion angle well provided
the rejection rate is kept below 10%.

GSHMC offers the possibility to run the MDMC part at a very high acceptance rate by
using a high order shadow Hamiltonian [2]. Combining this property with a sufficiently small
angle φ in (10) allows for the interpretation of GSHMC as a thermostated molecular dynamics
simulation method. In this context, an implementation without momentum flip is advisable.
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