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Abstract

The hybrid Monte Carlo (HMC) method is a popular and rigorous method for sampling from

a canonical ensemble. The HMC method is based on classical molecular dynamics simulations

combined with a Metropolis acceptance criterion and a momentum resampling step. While the

HMC method completely resamples the momentum after each Monte Carlo step, the generalized

hybrid Monte Carlo (GHMC) method can be implemented with a partial momentum refreshment

step. This property seems desirable for keeping some of the dynamic information throughout

the sampling process similar to stochastic Langevin and Brownian dynamics simulations. It is,

however, ultimate to the success of the GHMC method that the rejection rate in the molecular

dynamics part is kept at a minimum. Otherwise an undesirable Zitterbewegung in the Monte Carlo

samples is observed. In this paper, we describe a method to achieve very low rejection rates by

using a modified energy, which is preserved to high-order along molecular dynamics trajectories.

The modified energy is based on backward error results for symplectic time-stepping methods. The

proposed generalized shadow hybrid Monte Carlo (GSHMC) method is applicable to NVT as well

as NPT ensemble simulations.
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I. INTRODUCTION

A rigorous method for performing constant temperature simulations is provided by the

hybrid Monte Carlo (HMC) method [1, 2]. The HMC method combines constant energy

molecular dynamics simulations with a Metropolis acceptance criterion and a momentum

resampling step. It is crucial that the constant energy molecular dynamics simulations are

performed with a volume preserving and time-reversible method. While having the ad-

vantage of providing a rigorous sampling technique, practical experience shows, however,

that the acceptance rate in the molecular dynamics part of HMC decreases with the size of

the molecular system. In particular, HMC simulations become rather inefficient for large

biomolecular simulations. Possible rescues include reduction of step-size or increase of accu-

racy of the molecular simulations by using a higher-order method. Both approaches increase

however the computational cost significantly. A different approach has been considered by

Hampton and Izaguirre [3], who suggest to make use of the modified equations analysis

available for symplectic time-stepping methods such as the Störmer-Verlet method. The

fundamental result of [4–6] is that any symplectic integrator (see [7, 8] for a general discus-

sion of symplectic methods) possesses a modified Hamiltonian H∆t, which is preserved along

the numerical trajectories up to terms ∝ exp(−c/∆t), where c > 0 is a constant and ∆t is

the step-size. The shadow hybrid Monte Carlo (SHMC) method [3] samples from a properly

defined modified energy and is able to achieve very high acceptance rates in the molecular

dynamics part of HMC. Efficient algorithms for computing modified energies can be found

in [9] and [10]. However, the momentum resampling step becomes more complex under the

SHMC method. In fact, the necessary balance between increased acceptance in the molecu-

lar dynamics update and reduced acceptance in the momentum updates limits the efficiency

gains of SHMC over HMC [11]. More recently, the S2HMC method has been introduced in

[12], which overcomes the efficiency limitation of SHMC at the level of fourth-order mod-

ified energies. An extension of S2HMC to higher-order modified energies is currently not

available.

In a related paper [13], Akhmatskaya and Reich proposed the targeted shadow hybrid

Monte Carlo (TSHMC) method, which combines the idea of modified energies for HMC with

a partial momentum update. It is the purpose of the present paper to develop the TSHMC

method further by making a link to the generalized hybrid Monte Carlo (GHMC) method
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[14, 15]. We call the new method generalized shadow hybrid Monte Carlo (GSHMC). The

link to GHMC will allow us in particular to develop an efficient momentum refreshment

step for GSHMC based on the work of [15]. This partial momentum update keeps some

of the dynamic information throughout the sampling process similar to stochastic Langevin

and Brownian dynamics simulations. Furthermore, we develop the GSHMC method for

molecular systems in generalized coordinates and for the constant pressure formulation of

Andersen [16] in particular. A key prerequisite is the derivation of an appropriate symplec-

tic and time-reversible time-stepping method and the formulation of modified energies. A

high acceptance rate in the molecular dynamics part of GSHMC is necessary to avoid an

undesirable Zitterbewegung due to momentum reversal after a rejected molecular dynamics

update. Under the GSHMC method we can achieve this by using modified energies of high

enough order. We finally note that the possibility of combining HMC with the constant

pressure method of Andersen has been indicated in [2] already.

The paper is organized as follows. We first summarize the GHMC method. We then show

how to derive a symplectic and time-reversible time-stepping method for constant energy

molecular dynamics in generalized coordinates. This is followed by the introduction of the

GSHMC method, the derivation of a fourth-order modified energy, and the discussion of

improved momentum refreshment steps. We provide implementation details for GSHMC

simulations under an NVT and NPT ensemble. We demonstrate that the constant pressure

GSHMC method can be thought of as a rigorous implementation (in the sense of time-

stepping artifacts) of the Langevin piston method of Feller et al. [17]. We finally provide

numerical results from simulations for argon and a lysozyme protein (2LZM) in water solvent.

II. THE GENERALIZED HYBRID MONTE CARLO METHOD

We consider a molecular system with m degrees of freedom described by generalized

coordinates q ∈ Rm, potential energy function V (q) and symmetric (possibly non-constant)

mass matrix M(q) ∈ Rm×m. The corresponding equations of motion can be derived from

the Lagrangian functional

L[q] =

∫ t1

t0

L(q̇(t),q(t)) dt (1)

with Lagrangian density

L(q̇,q) =
1

2
q̇ · [M(q) q̇]− V (q). (2)
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The associated Euler-Lagrange equations are given by

d

dt

∂L
∂q̇

− ∂L
∂q

=
d

dt
[M(q) q̇] +∇qV (q)− 1

2
∇q {q̇ · [M(q) q̇]} = 0. (3)

To switch to the Hamiltonian formulation, we first introduce the momentum conjugate to

q:

p =
∂L
∂q̇

= M(q) q̇. (4)

The resulting Hamiltonian (energy) is

H(q,p) =
∂L
∂q̇

· q̇− L =
1

2
q̇ · [M(q) q̇] + V (q) =

1

2
p ·
[
M(q)−1 p

]
+ V (q) (5)

with canonical equations of motion

q̇ = +∇pH(q,p) = M(q)−1 p, (6)

ṗ = −∇pH(q,p) = −1

2
∇q

{
p ·
[
M(q)−1p

]}
−∇qV (q). (7)

We now recall that a Markov process will converge to some distribution of configurations

if it is constructed out of updates each of which has the desired distribution as a fixed

point, and which taken together are ergodic. The generalized hybrid Monte Carlo (GHMC)

algorithm for sampling from the canonical ensemble with density function

ρ(q,p) ∝ exp(−βH(q,p)), (8)

β = 1/KBT , is defined as the concatenation of a molecular dynamics Monte Carlo (MDMC)

and a partial momentum refreshment Monte Carlo (PMMC) step [14, 15]. We now describe

both steps in more detail.

A. Molecular dynamics Monte Carlo (MDMC)

This step in turn consists of three parts:

(i) Molecular dynamics (MD): an approximate integration of Hamilton’s equations of

motion (6)-(7) with a time-reversible and volume-preserving method Ψ∆t over L steps

and step-size ∆t. We will derive an appropriate numerical time-stepping method in

section III.

The resulting time-reversible and volume-preserving map from the initial to the final

state is denoted by Uτ : (q,p) → (q′,p′), τ = L∆t. Recall that a map Uτ is called

time-reversible if Uτ = U−1
−τ and volume-preserving if det ∂Uτ (q,p)

∂(q,p)
= 1.
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(ii) A momentum flip F : (q,p) → (q,−p).

(iii) Monte Carlo (MC): a Metropolis accept/reject test

(q′,p′) =

 F · Uτ (q,p) with probability min(1, exp(−β δH))

(q,p) otherwise
, (9)

with

δH := H(Uτ (q,p))−H(q,p) = H(F · Uτ (q,p))−H(q,p) (10)

and H defined by (5)

Molecular dynamics Monte Carlo (MDMC) satisfies detailed balance since (F ·Uτ )
2 = id

and Uτ is volume conserving.

B. Partial momentum refreshment Monte Carlo (PMMC)

We first apply an extra momentum flip F so that the trajectory is reversed upon an

MDMC rejection (instead of upon an acceptance). The momenta p are now mixed with a

normal (Gaussian) i.i.d. distributed noise vector u ∈ Rm and the complete partial momentum

refreshment step is given by u′

p′

 =

 cos(φ) − sin(φ)

sin(φ) cos(φ)

 · F

 u

p

 (11)

where

u = β−1/2M(q)1/2ξ, ξ = (ξ1, . . . , ξm)T , ξi ∼ N(0, 1), i = 1, . . . ,m, (12)

and 0 ≤ φ ≤ π/2. Here N(0, 1) denotes the normal distribution with zero mean and unit

variance.

If p and u are both distributed according to the same normal (Gaussian) distribution,

then so are p′ and u′. This special property of Gaussian random variables under an orthog-

onal transformation (11) makes it possible to conduct the partial momentum refreshment

step without a Metropolis accept/reject test. See [15] for details.
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C. Special cases of GHMC

Several well-known algorithms are special cases of GHMC:

• The standard hybrid Monte Carlo (HMC) algorithm of Duane, Kennedy, Pendleton

and Roweth [1] is the special case where φ = π/2. The momentum flips may be ignored

in this case since p′ = u in (11) and the previous value of p is entirely discarded.

According to theoretical results in [15], this choice is optimal for sampling purposes

and long MD trajectories. However, one has to keep in mind that the theoretical

setting of [15] is unlikely to apply for biomolecular simulations and that a different

choice of φ could be more appropriate for such simulations.

• The choice φ = 0 corresponds to constant energy molecular dynamics under the as-

sumption that the propagator Uτ conserves energy exactly.

• The Langevin Monte Carlo algorithm of Horowitz [14] corresponds to L = 1; i.e., a

single MD time-step with τ = ∆t, and φ arbitrary. The single step (L = 1) may be

replaced by a small number of MD steps and τ = L∆t. Langevin Monte Carlo recovers

stochastic Langevin molecular dynamics [18]

q̇ = M−1(q)p, ṗ = −1

2
∇q

{
p ·
[
M(q)−1p

]}
−∇qV (q)− γp + σẆ, (13)

provided φ =
√

2γτ � 1. Here γ > 0 is a constant, W(t) is an m-dimensional

Wiener process, and σ is determined by the standard fluctuation-dissipation relation

[18]. Indeed, we find that (11) without the momentum flip F reduces to

p′ ≈ (1− γτ)p + (2γτ)1/2u (14)

for φ =
√

2γτ � 1 and one may view the GHMC algorithm as a mean to perform

stochastic molecular dynamics (instead of using GHMC as a pure sampling device).

III. A SYMPLECTIC AND TIME-REVERSIBLE PROPAGATOR

To implement the generalized hybrid Monte Carlo method for Hamiltonian systems of

the form (6)-(7), we need to find a time-reversible and volume-preserving approximation to
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the exact solution flow map. The essential idea is to replace exact time derivatives q̇ in the

Lagrangian density (2) by (forward and backward) finite difference approximations

δ+
t qn =

qn+1 − qn

∆t
, δ−t qn =

qn − qn−1

∆t
, (15)

and to start from a discrete approximation

L∆t[{qn}] =
∑

n

L∆t(δ
+
t qn, δ−t qn,qn) ∆t (16)

to the Lagrangian functional (1) with

L∆t(δ
+
t qn, δ−t qn,qn) =

1

4

{
δ+
t qn ·

[
M(qn) δ+

t qn
]
+ δ−t qn ·

[
M(qn) δ−t qn

]}
− V (qn). (17)

Following the discrete variational principle (see, e.g., [8]), we find the associated discrete

equations of motion from ∂L∆t/∂q
n = 0 and obtain the generalized leapfrog scheme

0 =δ+
t

{
1

2

[
M(qn) +M(qn−1)

]
δ−t qn

}
+∇qV (qn)

− 1

4
∇q

{
δ+
t qn ·

[
M(qn) δ+

t qn
]
+ δ−t qn ·

[
M(qn) δ−t qn

]}
. (18)

This scheme is time-reversible since replacing qn+1 by qn−1 and ∆t by −∆t leaves the scheme

unchanged.

We now convert this scheme into an equivalent (in terms of q-propagation) symplectic

one-step method by noting that∑
n

L∆t(δ
+
t qn, δ−t qn,qn) ∆t =

∑
n

Ln+1/2
∆t (19)

with

Ln+1/2
∆t =

1

2

{
δ+
t qn ·

[
M(qn) +M(qn+1)

]
δ+
t qn −

[
V (qn) + V (qn+1)

]}
∆t. (20)

The discrete approximation Ln+1/2
∆t is now used as a generating function (see, e.g., [8]) to

yield a symplectic (and hence volume-preserving) time-stepping method

Ψ∆t : (qn,pn) → (qn+1,pn+1) (21)

via

pn+1 = +∇qn+1Ln+1/2
∆t

=
1

2

(
M(qn) +M(qn+1)

)
δ+
t qn +

∆t

2
∇q

{
δ+
t qn ·

[
M(qn+1) δ+

t qn
]
− V (qn+1)

}
(22)
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and

pn =−∇qnLn+1/2
∆t

=
1

2

(
M(qn) +M(qn+1)

)
δ+
t qn − ∆t

2
∇q

{
δ+
t qn ·

[
M(qn) δ+

t qn
]
− V (qn)

}
. (23)

Given (qn,pn), the map Ψ∆t is implemented numerically by first solving (23) for qn+1. The

new momentum pn+1 is then given explicitly by (22). We finally note that the generating

function (20) was first proposed by MacKay in [19] for deriving symplectic methods for

systems with general Lagrangian density L(q̇,q).

The generalized Störmer-Verlet method is second-order in time and the average energy

fluctuation 〈δH〉 satisfies

〈δH〉 = O(m∆t4), (24)

where m is the number of degrees of freedom and δH is given by (10) [3, 20]. Following the

analysis of [15, 20], the average Metropolis acceptance rate for the MDMC step is given by

Pacc = erfc

(
1

2

√
β〈δH〉

)
(25)

and the acceptance rate deteriorates with increasing system size m.

IV. GENERALIZED SHADOW HYBRID MONTE CARLO (GSHMC) METHOD

The basic idea of the GSHMC method is to implement the GHMC method with respect

to an appropriately modified reference energy H∆t. This reference energy is chosen such

that the acceptance rate (25) in the MDMC part of the GHMC algorithm is increased.

This goal can indeed be achieved by making use of backward error analysis and the implied

existence of modified energies, which are preserved to high accuracy by the time-stepping

method [3, 13]. The price we pay for this increased acceptance rate is that (i) the PMMC

step becomes more complex and that (ii) computed samples need to be reweighted after the

simulation to become consistent with the desired canonical distribution function (8).

We provide the details of the GSHMC method in several steps. First we describe the

MDMC step when implemented with respect to a reference energyH∆t = H+O(∆tp), p ≥ 4.

This step is a rather trivial modification of the GHMC method. We then explicitly derive a

fourth-order modified energy H[4]
∆t for the generalized Störmer-Verlet method of Section III.

We finally discuss the necessary modifications to the momentum refreshment Monte Carlo

step, which are non-trivial but vital to the success of the GSHMC method.
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A. Modified MDMC step

The MDMC step of Section IIA remains as before with only (10) replaced by

δH = H∆t(Uτ (q,p))−H∆t(q,p). (26)

In the remaining part of the subsection we derive a fourth-order reference energy H∆t = H[4]
∆t

for the generalized Störmer-Verlet method of Section III. A generalization to sixth-order

and higher can be found in the Appendix.

Given a numerical trajectory {qi}L+k
i=−k, we construct for tn, n ∈ {0, L}, the unique inter-

polation polynomial Q(t) ∈ Rm of order p ≤ 2k, k ≥ 2, such that

Q(ti) = qi, i = n− k, . . . , n, . . . , n+ k (27)

[21]. We then make use of standard Taylor expansion, i.e.

qn±1 = Q(tn)±∆tQ̇(tn) +
∆t2

2
Q̈(tn)± ∆t3

6
Q(3)(tn) + · · · , (28)

in the discrete Lagrangian density (17) to obtain

L∆t =
1

4

(
Q̇ +

∆t

2
Q̈ +

∆t2

6
Q(3)

)
·
[
M(Q)

(
Q̇ +

∆t

2
Q̈ +

∆t2

6
Q(3)

)]
+

1

4

(
Q̇− ∆t

2
Q̈ +

∆t2

6
Q(3)

)
·
[
M(Q)

(
Q̇− ∆t

2
Q̈ +

∆t2

6
Q(3)

)]
− V (Q) +O(∆t3)

=L(Q̇,Q) + ∆t2 δL[4](Q(3), Q̈, Q̇,Q) +O(∆t4) (29)

with

δL[4](Q(3), Q̈, Q̇,Q) =
1

24

{
3Q̈ ·

[
M(Q) Q̈

]
+ 4Q̇ ·

[
M(Q)Q(3)

]}
(30)

and with all quantities involving the interpolation polynomial Q(t) evaluated at t = tn.

We note that the truncated expansion

L[4]
∆t =

1

2
Q̇ ·
[
M(Q) Q̇

]
− V (Q) +

∆t2

24

{
3Q̈ ·

[
M(Q) Q̈

]
+ 4Q̇ ·

[
M(Q)Q(3)

]}
(31)

can be viewed as a new (higher-order) Lagrangian density with associated (higher-order)

Euler-Lagrange equations. We derive the associated conserved energy according to the

formula

H[4]
∆t =

∂L[4]
∆t

∂Q̇
·Q̇+

∂L[4]
∆t

∂Q̈
·Q̈− d

dt

L[4]
∆t

∂Q̈
·Q̇+

∂L[4]
∆t

∂Q(3)
·Q(3)− d

dt

∂L[4]
∆t

∂Q(3)
·Q̈+

d2

dt2
∂L[4]

∆t

∂Q(3)
·Q̇−L[4]

∆t. (32)
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An explicit expression is provided by

H[4]
∆t =

1

2
Q̇ ·
[
M(Q) Q̇

]
+ V (Q)

+
∆t2

24

{
4Q̇ ·

[
M(Q)Q(3)

]
− 6Q̇ · d

dt

[
M(Q) Q̈

]
+ 4Q̇ · d

2

dt2

[
M(Q) Q̇

]}
+

∆t2

24

{
3Q̈ · M(Q) Q̈− 4Q̈ · d

dt

[
M(Q) Q̇

]}
. (33)

It can be shown that H[4]
∆t is preserved to fourth-order along trajectories of (23)-(22) and

(18), respectively, provided k = 2 and p = 4 in (27). This procedure can be generalized and

we obtain modified energies H[2k]
∆t for any k ≥ 2. See the Appendix for the case k = 3. These

modified energies H[2k]
∆t , with an appropriate order p = 2k ≥ 4, will be used in the GSHMC

method as the reference energy function H∆t.

It should be noted that the thus constructed value of a modified energy H∆t at time

t = tn depends only on the positions qn and the momenta pn at t = tn. This follows

from the uniqueness of the numerical trajectory {qi}n+k
i=n−k and, hence, of the interpolation

polynomial Q(t) on a given pair (qn,pn).

Using modified energies, the estimate (24) gets replaced by

〈δH〉 = O(m∆t4k), (34)

with δH now being given by (26) and H∆t = H[2k]
∆t . Hence an increase in system size m can

be counterbalanced by an increase in the order p = 2k of the modified energy to keep the

product of m and ∆t4k roughly constant. In other words, modified energies offer a rather

inexpensive way to increase the acceptance rate (25) of the MDMC step.

B. Modified PMMC step

The original TSHMC method has been based on a simple momentum proposal step of

the form

p′ = p + σ u. (35)

Here σ > 0 is a free parameter and u is defined by (12). Smaller values of σ lead to smaller

perturbations in the momenta. The new set of momenta p′ is accepted/rejected according

to an appropriate Metropolis criterion [13].
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It has been found that increased values of σ lead to an increased rejection rate. In this

section, a modified momentum update is proposed for GSHMC to reduce this undesirable

increase in the rejection rate. This modification is indeed found to significantly improves

the efficiency of GSHMC as a sampling tool.

The idea of the modification is to combine the GHMC momentum update (11) with the

fact that in GSHMC one samples with respect to a modified energy function H∆t. This idea

can be realized by implementing the PMMC step of Section II B as a Markov chain Monte

Carlo step with respect to the reference energy H∆t. Specifically, we define u as in (12) and

propose a new set of momenta p′ and auxiliary variables u′ by (11). The set of momenta p′

and the vector u′ are accepted according to the Metropolis test

(u′,p′) =


[
R(φ)(u,p)T

]T
with probability P (q,p,u,p′,u′)

(u,p) otherwise
, (36)

where

P (q,p,u,p′,u′) = min

(
1,

exp
(
−β
[
H∆t(q,p

′) + 1
2
(u′)TM(q)−1u′

])
exp

(
−β
[
H∆t(q,p) + 1

2
uTM(q)−1u

]) )
(37)

and

R(φ) =

 cos(φ) sin(φ)

sin(φ) − cos(φ)

 . (38)

It should be noted that the updated variable u′ is entirely discarded after each momentum

refreshment step and is replaced by a new set of random variables (12). The Monte Carlo

step is therefore best understood by interpreting the update as a ’classical’ hybrid Monte

Carlo method with u taking the role of ’momentum’ and p the role of ’positions’. Note

that the ’real’ positions q are not changed. Note furthermore that (11) is a linear map from

(p,u) to (p′,u′). This map is characterized by the 2 × 2 matrix (38). Since det(R) = −1

and R2 = I, the proposal step (11) satisfies detailed balance. Hence (12) and (11) together

with (36) sample from a canonical distribution with density function

ρext(q,p,u) ∝ exp

(
−β
[
H∆t(q,p) +

1

2
uTM(q)−1u

])
. (39)

The angle φ in (38) is chosen such that the rejection rate in the momentum refreshment

step is below 10%. A much higher rejection rate would imply that the system gets ’thermal-

ized’ too infrequently. A fixed rejection rate implies that larger systems require a smaller
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value of φ, which seems acceptable once we take into account that large NVE simulations

behave almost like an NVT ensemble.

To further decrease the rejection rate one can repeat the refreshment step before continu-

ing with the molecular dynamics part of GSHMC. Hence the complete GSHMC cycle consists

then of a molecular dynamics Monte Carlo step, a momentum flip, a Monte Carlo momen-

tum refreshment step, followed by another Monte Carlo momentum refreshment step. In

other words, GSHMC becomes the concatenation of four Markov processes (here we counted

the momentum flip as an independent Markov process) with identical invariant distribution

functions (here the canonical distribution with respect to a modified Hamiltonian H∆t). Of

course, this approach can be further modified by additional (relatively inexpensive) momen-

tum update steps.

Inspired by the work of Sweet et al. [12], we finally mention an additional strategy for

increasing the acceptance rate of the PMMC step. We replace (11) by u′

p̄′

 =

 cos(φ) sin(φ)

sin(φ) − cos(φ)

 u

p̄

 , (40)

where p̄′ is defined through an appropriate change of variables p̄ = ψ(q,p,∆t). It is assumed

that the map ψ is invertible in the momentum vector p. The new momentum vector p′,

implicitly defined by p̄′ = ψ(q,p′,∆t), is then accepted with probability (37).

See [12] for an appropriate choice of ψ in case of a constant mass matrix. More specifically,

given (q,p), we perform a single time step forward and backward in time. The results are

denoted by (q+,p+) and (q−,p−), respectively. We define

p̄ = ψ(q,p,∆t) := p− ∆t

24

(
∇qV (q+)−∇qV (q−))

)
. (41)

Note that, contrary to the S2HMC method [12], the modified PMMC step (40)-(41) can be

used together with any choice of the reference Hamiltonian H∆t in (37) and also for systems

with non-constant mass matrix.

C. Reweighting

Given an observable Ω(q,p) and its values Ωi, i = 1, . . . , K, along a sequence of states

(qi,pi), i = 1, . . . , K, computed by the GSHMC method, we need to reweight Ωi to compute
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averages 〈Ω〉K according to the desired canonical distribution (8). In particular, one needs

to apply the formula

〈Ω〉K =

∑K
i=1wi Ωi∑K

i=1wi

(42)

with

wi = exp(−β{H(qi,pi))−H∆t(qi,pi)}). (43)

V. APPLICATIONS

A. Constant temperature and volume (NVT) GSHMC

The starting point of any (classical) molecular simulation is a system of N particles,

which interact through both long and short range forces via Newton’s second law. We write

the equations of motion in the form

ṙ = M−1pr, ṗr = −∇rV (r), (44)

where r ∈ R3N is the vector of atomic positions, pr ∈ R3N the associated momentum vector,

M ∈ R3N×3N is the (constant) symmetric mass matrix and V : R3N → R is the empirical

potential energy function. The equations of motion (44) are equivalent to the Euler-Lagrange

equations

M r̈ +∇rV (r) = 0 (45)

for the Lagrangian density

L =
1

2
ṙ · [M ṙ]− V (r). (46)

We find that (46) fits into the general form (2) with constant mass matrix M(q) = M ,

q = r, and m = 3N .

Because the mass matrix M is now constant, the symplectic time-stepping method Ψ∆t,

defined by (22)-(23) becomes equivalent to the standard Störmer-Verlet method (see, e.g.,

[7, 8])

pn+1/2
r =pn

r −
∆t

2
∇rV (rn), (47)

rn+1 =rn +M−1pn+1/2
r , (48)

pn+1
r =pn+1/2

r − ∆t

2
∇rV (rn+1), (49)
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and the expression for the modified energy H[4]
∆t reduces to

H[4]
∆t =

1

2
Ṙ ·
[
M Ṙ

]
+ V (R) +

∆t2

24

{
2Ṙ ·

[
M R(3)

]
− R̈ ·M R̈

}
, (50)

where R(t) denotes now the interpolating polynomial and replaces Q(t) in (33).

The application of the GSHMC method, as described in Section IV, is now straightfor-

ward. Numerical results will be presented in Section VII.

We finally note that the equations of motion (45) subject to holonomic constraints (such

as bond stretching and bending constraints) can be treated numerically by the SHAKE

extension [22] of the standard Störmer-Verlet/leapfrog method. The associated modified

energies remain unaffected by that extension and the fourth-order modified energy, in par-

ticular, is still provided by the expression (50).

B. Constant temperature and pressure (NPT) GSHMC

We first summarize the constant energy and pressure formulation of Andersen [16]. We

then discuss a symplectic and time-reversible integration method and derive its fourth-order

modified energy. This provides the essential building block to extend the GSHMC method

to molecular simulations in an NPT ensemble.

1. Constant pressure molecular dynamics

Given a classical molecular system described by (44), the constant pressure and energy

(NPE) formulation of Andersen is derived as follows. The coordinate vector r ∈ R3N in (45)

is replaced by a scaled vector d ∈ R3N defined by

d = r/V1/3 (51)

where V is the volume of the simulation box. Consider now the extended Lagrangian density

L(ḋ, q̇,d, q) =

{
1

2
q2/3 ḋ ·

[
M ḋ

]
− V (q1/3d) +

µ

2
q̇2 − αq

}
. (52)

We interpret q as the (dynamic) value of the volume V and call this additional degree of

freedom the ‘piston’ degree of freedom. The constant α corresponds to the external pressure

acting on the system and µ > 0 is the mass of the ‘piston’.

14



Upon defining q = (dT , q)T ∈ Rm, m = 3N + 1, we find that (52) fits into the general

form (2) with non-constant mass matrix

M(q) =

 q2/3M 0

0 µ

 . (53)

The associated NPE equations of motion are now easily derived using (3). See also Ander-

sen’s original publication [16]. The conserved energy H can be derived from the Lagrangian

density (52) according to the standard formula (5), i.e.,

H =ḋ · ∇ḋL+ q̇∇q̇L − L

=
1

2
q2/3ḋ ·

[
M ḋ

]
+
µ

2
q̇2 + V (q1/3d) + αq

=
1

2
q−2/3pd ·

[
M−1pd

]
+

1

2µ
p2 + V (q1/3d) + αq

=
1

2
pr ·

[
M−1pr

]
+ V (r) +

1

2µ
p2 + αq, (54)

where

pd = q2/3M ḋ, p = µq̇ (55)

are the conjugate momenta in the NPE formulation and pr = M ṙ = pd/q
1/3 is the classical

momentum vector of the NVE formulation (44).

2. A time-reversible and symplectic implementation

We use the previously developed discrete variational principle to derive a symplectic

time-stepping method and obtain the generalized leapfrog method

δ+
t

{
1

2

[
(qn)2/3 + (qn−1)2/3

]
M δ−t dn

}
= −∇dV ((qn)1/3dn) (56)

and

µ δ+
t δ

−
t q

n =
(qn)−1/3

6

{
δ+
t dn ·

[
M δ+

t dn
]
+ δ−t dn ·

[
M δ−t dn

]}
− α−∇qV ((qn)1/3dn). (57)

The equivalent generalized Störmer-Verlet formulation is defined as follows. Given

(dn, qn,pn
d , p

n), we first find dn+1 and qn+1 from the equations

pn
d =

1

2

[
(qn+1)2/3 + (qn)2/3

]
M

(
dn+1 − dn

∆t

)
+

∆t

2
∇dV ((q1/3)ndn) (58)
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and

pn =µ

(
qn+1 − qn

∆t

)
− ∆t

6
(qn)−1/3

(
dn+1 − dn

∆t

)
·
[
M

(
dn+1 − dn

∆t

)]
+

∆t

2

[
∇qV ((qn)1/3dn) + α

]
. (59)

The values for pn+1
d and pn+1 are explicitly given by

pn+1
d =

1

2

[
(qn+1)2/3 + (qn)2/3

]
M

(
dn+1 − dn

∆t

)
− ∆t

2
∇dV ((qn+1)1/3dn+1) (60)

and

pn+1 =µ

(
qn+1 − qn

∆t

)
+

∆t

6
(qn+1)−1/3

(
dn+1 − dn

∆t

)
·
[
M

(
dn+1 − dn

∆t

)]
− ∆t

2

[
∇qV ((qn+1)1/3dn+1) + α

]
. (61)

This completes one time step.

The time-reversible and symplectic method (58)-(61) allows for the implementation of a

hybrid Monte Carlo methods as proposed in [2]) and described in more detail in [23]. We

now derive a fourth-order modified energy for the GSHMC method.

Let Q(t) and D(t) denote the interpolation polynomials along numerical trajectories {qn}

and {dn}, respectively. Then the associated fourth-order modified energy, defined by (33),

is given by

H[4]
∆t =H +

∆t2

24

[
2µQ̇Q(3) − µQ̈2

]
+

∆t2

24

{
4Ḋ ·

[
Q2/3M D(3)

]
− 6Ḋ

d

dt

[
Q2/3M D̈

]
+ 4Ḋ · d

2

dt2

[
Q2/3M Ḋ

]}
+

∆t2

24

{
3D̈ ·

[
Q2/3M D̈

]
− 4D̈ · d

dt

[
Q2/3M Ḋ

]}
=H +

∆t2

24

{
2µQ̇Q(3) − µQ̈2 + 2Q2/3Ḋ ·

[
M D(3)

]
−Q2/3D̈ ·

[
M D̈

]}
+

∆t2

12

{(
4Q̈

3Q1/3
− 4Q̇2

9Q4/3

)
Ḋ ·

[
M Ḋ

]
− 2

3Q1/3
Q̇Ḋ ·

[
M D̈

]}
(62)

with H given by (54).

3. A modified PMMC step

The one-step formulation (58)-(59) together with (60)-(61) will be used in the GSHMC

method. After each completed NPE molecular dynamics sub-step, we refresh the momenta

pd and p as described in Section IV.
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Following the Langevin piston method of Feller et al. [17], one can also apply the following

simplified momentum update. We always keep the particle momentum pd and only refresh

the “piston” momentum p, i.e., we replace (11) by

u′d = ud, (63)

p′d = −pd, (64)

u′ = sin(φ) p+ cos(φ)u (65)

p′ = − cos(φ) p+ sin(φ)u, (66)

with

u = β−1µ1/2ξ, ξ ∼ N(0, 1). (67)

The probability (37) is replaced by

P (d, q,pd, p, u, p
′, u′) = min

1,
exp

(
−β
[
H∆t(d, q,pd, p

′) + 1
2µ

(u′)2
])

exp
(
−β
[
H∆t(d, q,pd, p) + 1

2µ
u2
])

 , (68)

where H∆t is an appropriate modified energy, e.g., H∆t = H[4]
∆t with H[4]

∆t given by (62).

Given a collision frequency γ for the Langevin piston method [17], we choose φ and

τ = L∆t such that φ =
√

2γτ � 1 and the resulting GSHMC method can be viewed as a

rigorous implementation of the Langevin piston method in the sense of section IIC under

the assumption of ergodicity of the induced Markov process. Note that, on the contrary, the

Langevin piston method combined with the Brunger, Brooks, Karplus (BBK) time-stepping

algorithm [24] leads to statistical errors proportional to ∆t2. In particular, one needs to

require that γ∆t is small.

VI. ALGORITHMIC SUMMARY OF THE GSHMC METHOD

We summarize the algorithmic implementation of the GSHMC method for the fourth-

order modified energy (33) as follows:

A. MDMC step of GSHMC

Given an accepted MC sample with generalized position vector q and momentum vector

p, we determine the associated modified energy H[4]
∆t(q,p) by integrating the equations of
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motion two steps forward and backward in time using (22)-(23) in order to construct the

required interpolation polynomial Q(t) as defined in section IVA.

The equations of motion are then solved forward in time over L time steps using the

symplectic and time-reversible method (22)-(23). Denote the result by (q′,p′).

An additional two time steps are performed to evaluate the associated modified energy

H[4]
∆t(q

′,p′) and the proposal step (q′,p′) is accepted with probability

min
(
1, exp(−β{H[4]

∆t(q
′,p′)−H[4]

∆t(q,p)}
)
. (69)

In case of rejection, we continue with (q′,p′) = (q,−p).

B. PMMC step of GSHMC

Using a change of variables as, for example, defined by (41), we first compute p̄′ =

ψ(q′,p′,∆t). The momentum vector p̄′ is now mixed with a noise vector u distributed

according to (12). We formally set q′′ = q′ and define u′

p̄′′

 =

 cos(φ) − sin(φ)

sin(φ) cos(φ)

 u

p̄′

 . (70)

The proposal momentum vector p′′, implicitely defined by p̄′′ = ψ(q′′,p′′,∆t), is accepted

with probability

min

1,
exp

(
−β
[
H[4]

∆t(q
′′,p′′) + 1

2
(u′)TM(q′′)−1u′

])
exp

(
−β
[
H[4]

∆t(q
′,p′) + 1

2
uTM(q′)−1u

])
 , (71)

where two time steps forward and backwards need to be performed in order to evaluate

H[4]
∆t(q

′′,p′′). In case of rejection, we continue with (q′′,p′′) = (q′,p′).

A single GSHMC step is now completed. We store the accepted MC sample as

(qi+1,pi+1) = (q′′,p′′) and evaluate the associated weight factor wi+1 using (43).

C. Comments

We summarize here a few general comments on the GSHMC method.

(i) Note that different angles φ can be assigned to different components of u and p̄′ in

(70). This freedom has been used in section VB3.
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(ii) Note also that the summmary of the GSHMC method has been formulated such that

the number of necessary momentum flips is minimized. This is in contrast to the

(entirely equivalent) presentation used so far, which has been based on the detailed

balance requirement.

(iii) The number of additional force evaluations for GSHMC with p̄ = p over standard

HMC amounts to p − 2, where p is the order of the modified energy. For example,

GSHMC with (33) requires two additional force evaluations per complete Monte Carlo

step.

The change of variables (41) requires additional force evaluations [12].

(iv) The time step ∆t and the angle φ should be chosen such that the probability of having

both the MDMC as well as the PMMC step being simultaneously rejected is less than

1%. This is because we obtain qi+1 = qi and pi+1 = −pi in such a case, which leads

to the undesired Zitterbewegung in the MC samples.

This requires, in general, a decrease of φ in (70) as the system size, d = 3N , increases.

Furthermore, the discussion in [16] on a dynamically consistent collision frequency

γ for a small volume of liquid surrounded by a much larger volume suggests that

φ ∝ γ1/2 ∝ 1/N1/3, where N is the number of atoms.

(v) In case the PMMC step is performed with a change of variables as defined, for example,

by (41), we refer to the resulting method as the GS2HMC method (in analogy to the

S2HMC method of [12]).

In case of p̄ = p, we continue using the acronym GSHMC.

VII. NUMERICAL RESULTS

In this section, we perform three sets of experiments. The first set is based on an NVT

simulation of argon and assesses rejection rates for several MC methods in the context of

sampling. The second set of experiments is based on an NPT simulation of argon. Here we

compare the GSHMC algorithm and the Langevin piston method of Feller et al. [17] and

assess the performance of GSHMC in the context of stochastic dynamics simulations. We

finally implement GSHMC for a larger biomolecular system, the bacteriophage T4 lysozyme
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protein, and compare the sampling efficiency of GSHMC to constant temperature MD using

the Berendsen thermostat [25].

A. Argon

We perform simulations for argon in a periodic box under an NVT and NPT, respectively,

ensemble. We now present numerical results for both ensembles. We begin with the NVT

simulations.

1. NVT simulations

We perform NVT simulations at a temperature of T = 120 K using the following two

settings:

(A) N = 53, L = 20.1 Å,

(B) N = 83, L = 31.96 Å.

We implement the GSHMC method with three values of the angle φ (π/2, π/4, π/8) in

the PMMC step. We also implement the GSHMC method with the modified momentum

refreshment step, as defined by (41), with φ = π/2. We refer to this implementation as

GS2HMC.

Results are compared to implementations of the standard HMC method and the newly

proposed S2HMC method of [12].

All Monte Carlo (MC) implementations use τ = L∆t = 2.17 ps and generate a total of

K = 104 Monte Carlo samples to compute expectation values according to (42). Simulations

are performed for four different values of ∆t (τ/50 ≈ 43.4 fs, τ/75 ≈ 28.9 fs, τ/100 ≈ 21.7

fs, τ/200 ≈ 10.9 fs).

We state rejection rates for the MDMC step and the PMMC step (where applicable) in

table I for setting A and in table II for setting B, respectively. We observe an increase in

rejection rates for all methods for increasing system size d and step-size ∆t. The acceptance

rate for the MDMC step is similar for all GSHMC and S2HMC implementations and is

consistently better than the corresponding rate of standard HMC. The acceptance rate of

PMMC step in GSHMC improves with smaller values of φ. The GS2HMC method almost
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MDMC/PMMC rejections ∆t ≈ 43.4 fs ∆t ≈ 28.9 fs ∆t ≈ 21.7 fs ∆t ≈ 10.9 fs

GSHMC method, φ = π/2 20% / 23% 2% / 12% <1% / 6% <1% / 2%

GSHMC method, φ = π/4 22% / 17% 2% / 8% <1% / 4% <1% / 1%

GSHMC method, φ = π/8 21% / 9% 2% / 5% <1% / 2% <1% / <1%

GS2HMC method, φ = π/2 19% / <1% 2% / <1% <1% / <1% <1% / <1%

S2HMC method 20% / NA 1% / NA <1% / NA <1% / NA

HMC method 22% / NA 9% / NA 6% / NA 2% / NA

TABLE I: Rejection rates for MDMC and PMMC steps, respectively, for all tested methods under

the experimental setting A.

MDMC/PMMC rejections ∆t ≈ 43.4 fs ∆t ≈ 28.9 fs ∆t ≈ 21.7 fs ∆t ≈ 10.9 fs

GSHMC method, φ = π/2 33% / 37% 3% / 19% <1% / 10% <1% / 3%

GSHMC method, φ = π/4 33% / 27% 3% / 12% <1% / 7% <1% / 3%

GSHMC method, φ = π/8 32% / 15 % 3% / 7% <1% / 4% <1% / 1%

GS2HMC method, φ = π/2 32% / <1% 3% / <1% <1% / <1% <1% / <1%

S2HMC method 33% / NA 2% / NA <1% / NA <1% / NA

HMC method 99% / NA 15% / NA 10% / NA 3% / NA

TABLE II: Rejection rates for MDMC and PMMC steps, respectively, for all tested methods under

the experimental setting B.

reaches the perfect behavior of S2HMC and HMC in terms of momentum resampling. One

should note, however, that the transformation step (41) requires additional force evaluations.

We also give expectation values of total energy, E, diffusion constant,

D =
1

6Nt
‖r(t)− r(0)‖2, (72)

and pressure, P , as well as their standard deviation range (corresponding to the 95% confi-

dence interval of normally distributed data) for the experimental setting A and ∆t = τ/75 ≈

28.9 fs in table III. All methods lead to comparable results in terms of total energy, E, im-

plying that all methods correctly sample from the canonical ensemble. More remarkably,

the diffusion constant, D, increases significantly for smaller values of φ in the PMMC step of
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energy E [120 kb K] diffusion D [Å2 ps−1] pressure P [kN/cm2]

GSHMC method, φ = π/2 -442.6 ± 33.6 0.2873 ± 0.0564 0.5904 ± 0.7302

GSHMC method, φ = π/4 -442.7 ± 32.8 0.4782 ± 0.1275 0.5881 ± 0.7204

GSHMC method, φ = π/8 -442.0 ± 31.2 0.7742 ± 0.1465 0.5958 ± 0.7049

GS2HMC method, φ = π/2 -441.0 ± 33.2 0.2927 ± 0.0205 0.6515 ± 0.7317

S2HMC method -441.9 ± 32.6 0.2877 ± 0.0668 0.6630 ± 0.7266

HMC method -438.0 ± 33.8 0.2691 ± 0.0219 0.6571 ± 0.7344

TABLE III: Expectation values and their standard deviation range for total energy, E, diffusion

constant, D, and pressure, P , from numerical experiments using setting A and ∆t ≈ 28.9 fs.

GSHMC. This confirms the fact that HMC methods influence the dynamical properties of a

molecular system. Pressure, P , fluctuates largely for all methods, which is not unexpected

for a small molecular system such as that of setting A.

2. NPT simulations

We now simulate N = 125 argon atoms at constant temperature T = 120 K and constant

pressure P = 0.65 · 107 N m−2.

We implement a standard constant pressure and temperture HMC algorithm (see, e.g.,

[23]) and compare the results to the corresponding GSHMC implementation of section VB

with φ = π/2.

The simulation parameters are as follows. Both methods are implemented with a step-

size of ∆t = 10.9 fs, samples are taken at in intervals of τ = L∆t = 2.17 ps, i.e., L = 200,

and the total number of samples is K = 104. The mass of the piston degree of freedom is

set equal to µ = 6, and α = 0.65 · 107 N m−2.

We compare pressure, P , temperature, T , and total energy, E. Mean values and their

standard deviation range can be found in table IV. We also verify that the volume and

temperature fluctuations are Gaussian distributed. We display the results for the GSHMC

and HMC method in figure 1. Both methods lead to very similar distributions. The temper-

ature distribution is almost ideal while the volume fluctuations display some non-Gaussian

behavior in the tails. The effect can be attributed to the finite size of the sample.
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pressure [×107 N m−2] temperature [K] energy [120 kB K]

GSHMC method φ = π/2 0.6492 ± 0.8450 120 ± 17 -330 ± 49

HMC method 0.6342 ± 0.8404 120 ± 17 -331 ± 49

TABLE IV: Mean values and their standard deviation range for pressure, P , temperature, T , and

total energy, E, for GSHMC and HMC implementation of Andersen’s constant pressure formula-

tion.

(a) temperature, HMC (b) volume, HMC

(c) temperature, GSHMC (d) volume, GSHMC

FIG. 1: Normal probability plots for volume and temperature fluctuations from HMC and GSHMC

implementation of Andersen’s constant pressure formulation. Straight lines indicate a Gaussian

distribution of data.
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pressure [×107 N m−2] temperature [K] energy [120 kB K]

GSHMC method φ =
√

2γ∆t 0.6500 ± 0.8425 118 ± 14 -340 ± 11

Langevin piston, BBK algorithm 0.6477 ± 0.8580 123 ± 18 -314 ± 45

TABLE V: Mean values and their standard deviation range for pressure, P , temperature, T , and

total energy, E, for GSHMC and Langevin piston BBK simulation of the NPT ensemble.

We also implement the constant pressure and temperature GSHMC algorithm using the

partial momentum update (63)-(66) and compare the results to the Langevin piston method

of Feller et al [17]. The Langevin piston equations of motion are implemented using the

Brunger, Brooks, Karplus (BBK) algorithm [24].

The simulation parameters are now as follows. Both methods are implemented with a

step-size of ∆t = 21.7 fs, samples are taken at in intervals of τ = L∆t = 0.217 ps, i.e., L =

10, and the total number of samples is K = 2×104. The mass of the piston degree of freedom

is set equal to µ = 6, α = 0.65 · 107 N m−2, and the collision frequency in the Langevin

piston is set equal to γ = 0.1152 ps−1. The angle, φ, in (65)-(66) is determined according

to φ =
√

2 ∆t γ ≈ 0.2236. Both methods are started from an equilibrated configuration.

We compare pressure, P , temperature, T , and total energy, E. Mean values and their

standard deviation range can be found in table V. Note that both methods couple to a

constant temperature ’heat bath’ only through the piston degree of freedom. The results

from both methods are in agreement (to within the expected errors given the simulation

length, the system size, and the weak coupling to the ’heat bath’) with the desired NPT

ensemble.

B. Lysozyme protein in water

A larger molecular system, the bacteriophage T4 lysozyme protein (pdb entry 2LZM), is

simulated to compare the sampling efficiency of GSHMC and constant temperature MD. A

united atoms representation is used to eliminate all hydrogen atoms from the protein, and

water is modeled using the SPC model [26]. The total number of atoms is 23207, which are

placed in a rhombic dodecahedron simulation box. Both simulation approaches, MD and

GSHMC, use GROMACS 3.2.1 [27] to perform the molecular dynamics steps. Specifically,
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a switch cut-off scheme is used for Lennard-Jones interactions. Coulomb interactions are

treated using a particle-mesh Ewald summation (PME) method [28, 29]. The full direct and

reciprocal space parts are calculated in each step and a lattice spacing of 0.1 nm is applied.

All bonds are constrained using the SHAKE method [22] with a relative tolerance of 10−12

allowing for a step-size of ∆t = 2 fs.

The system is initially equilibrated for 1 ns using standard MD techniques. The MD and

GSHMC simulations are then performed for another 1 ns at a temperature of 300 K. In

the traditional MD approach the temperature is coupled to a heat bath of 300 K using the

Berendsen thermostat with a coupling time constant of 0.1 ps [25].

To find the optimal settings for GSHMC production stage we investigate the effect of

different simulation parameters on the sampling efficiency of GSHMC. A set of comparatively

short simulations is performed using three different step-sizes ∆t (1, 2 and 4 fs), two different

MD simulation lengths τ (2 and 4 ps), five values of the angle φ (π/24, π/12, 0.3, 0.5, π/2)

and two values of the order p (4, 6) for the modified Hamiltonian H[p]. The results of this

study are shown in figures 2 and 3.

Since we found that acceptance rate for MDMC step was consistently high (98-100%) for

all tested parameters, we present here the results for the acceptance rate in the PMMC step

only. Figure 2 demonstrates the effect of step-size and MD simulation length on the momen-

tum acceptance rates whereas figure 3 shows how the momentum acceptance rate depends

on the angle φ. The momentum acceptance rate was found to be essentially independent of

the order (here 4th and 6th order) of the modified energies.

It can be concluded from figures 2 and 3 that smaller step-sizes, larger MD simulation

lengths, and smaller values of φ induce a higher acceptance rate in the PMMC step. A

nearly optimal choice of the parameter φ and the step-size ∆t is crucial for the performance

of GSHMC. Choosing φ = π/2 is found to be not efficient for this large system.

We have to stress that the PMMC step is cheap compared with the MDMC step. To

decrease the rejection rate of the PMMC step one can repeat the step a desired number of

times. This strategy is efficiently implemented in parallel in our code.

In addition, we consider the evolution of the mean-square displacement of the centre-

of-mass (c.o.m.) of the protein for GSHMC simulations using two different values of φ:

φ = π/24 and φ = π/12. We find that the c.o.m. mobility of the protein in GSHMC

simulation increases with an increasing of φ. This is shown in figure 4.
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FIG. 2: PMMC acceptance rate vs. MD step-size ∆t and MD length τ for fixed angle φ = π/24.

FIG. 3: PMMC acceptance rate vs. φ for fixed step-size ∆t = 2 fs and MD simulation length τ = 2

ps.

To perform a comparison between GSHMC and MD simulations we run the GSHMC

simulation with a step-size of ∆t = 2 fs, the number of MD steps in MDMC equal to

L = 1000, and φ = π/12 on ten processors of a PC cluster. We use a sixth-order modified

energy.
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FIG. 4: Mean-square displacements of the protein centre-of-mass vs. φ. The mean trajectory for

φ = π/24 is depicted by a dashed line whereas the trajectory for φ = π/12 is presented by a solid

line. The step-size is ∆t = 2 fs and the MD simulation length is τ = 2 ps.

FIG. 5: VMD [30] ribbon diagram of 2LZM illustrating locations of catalytic residues Glu11,

Asp20, and Thr26.
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FIG. 6: Autocorrelation function of main chain torsion angle Φ of residue Thr26.

FIG. 7: Autocorrelation function of main chain torsion angle Ψ of residue Thr26.

To compare the sampling efficiency of different sampling methods with respect to an

observable Ω, we evaluate the integrated autocorrelation function values of a time series

{Ωi}K
i=1, where K is the number of samples [15]. The integrated autocorrelation function
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FIG. 8: Autocorrelation function of side chain torsion angle χ1 of residue Thr26.

value is defined by

AΩ =
K′∑
l=1

C(τl), (73)

where C(τl), l = 0, . . . , K ′ < K is the standard autocorrelation function for the time series

{Ωi}K
i=1 with the normalization C(τ0) = C(0) = 1. The integrated autocorrelation function

value provides a good measure for the efficiency of a sampling method since, on average,

1 + 2AΩ correlated measurements Ωi are needed to reduce the variance by the same amount

as a single truly independent measurement of Ω [15].

We present the autocorrelation functions for the dihedrals of Asp20, Glu11 and Thr26

residues in figure 5. These dihedrals are known to be critical catalytic residues in lysozyme.

In fact, it has been reported that the catalytic activity of most lysozymes is largely due to

three amino acids. In the case of the bacteriophage T4 lysozyme, catalysis takes place due

to the concerted action of Glu11, Asp20, and Thr26 with the substrate [31–35].

The autocorrelation functions C(τl) for the main chain torsion angles Φ, Ψ, and a side

chain torsion angle χ1 of the Thr26 residue are shown in figures 6, 7, and 8, respectively, for

τl ≤ 100 ps.

Computed integrated autocorrelation function values, AΩ, are based on autocorrelation

functions C(τl) and τl ≤ 500 ps. Ratios of integrated autocorrelations function values for

the main chain torsion angles Φ, Ψ and side chain torsion angles χ1, χ2, χ3 for residues
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AMD
Ω /AGSHMC

Ω Asp20 Thr26

Φ 3.8 14.0

Ψ 3.4 4.5

TABLE VI: Comparison between GSHMC and MD in efficiency for sampling of main chain torsion

angles of important catalytic residues. AMD
Ω /AGSHMC

Ω is the ratio of integrated autocorrelation

function values obtained from MD and GSHMC simulations.

AMD
Ω /AGSHMC

Ω Glu11 Asp20 Thr26

χ1 5.54 1.0 2.69

χ2 7.11 1.56 NA

χ3 3.76 NA NA

TABLE VII: Comparison between GSHMC and MD in efficiency for sampling of side chain tor-

sion angles of important catalytic residues. AMD
Ω /AGSHMC

Ω is a ratio of integrated autocorrelation

function values obtained from MD and GSHMC simulations.

Asp20, Glu11 and Thr26, as observed during GSHMC and MD simulations, are presented

in table VI and table VII, respectively. As shown in tables VI and VII, GSHMC requires

less (up to 14 times!) iterations (MD steps) than standard MD to achieve one statistically

independent sample for all torsion angles of catalytic residues Asp20, Glu11 and Thr26.

VIII. SUMMARY

We have presented a more efficient implementation of the GHMC method, which is based

on the use of modified energies. The resulting GSHMC/GS2HMC methods allow the user

to either perform pure sampling or stochastic dynamics simulations.

In the case of sampling, the GS2HMC method has the advantage of keeping the acceptance

rate in the PMMC step high without having to make φ smaller as the system size increases.

However, the transformation step (41) requires additional force field evaluations. Repeated

application of the PMMC step with a reduced value of φ and p̄ = p, i.e. no transformation,

provides a viable alternative.

The GS2HMC method behaves similarly to the recently proposed S2HMC method. An
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advantage of GS2HMC over S2HMC is that it can be combined with higher-order (higher

than fourth order) modified energies and that it can be used with partial momentum refresh-

ment. To take full advantage of higher-order modified energies, the force field evaluations

have to be performed accurately enough and sufficiently smooth cut-off functions need to

be implemented.

For small values of φ =
√

2γ∆t, i.e. stochastic dynamics simulations, the GSHMC method

without the transformation (41) is to be recommended since the acceptance rate in the

PMMC step of GSHMC is high for small values of φ and since GSHMC is cheaper to

implement than GS2HMC.

Numerical experiments have demonstrated that GSHMC/GS2HMC are suitable for NVT

as well as NPT simulations. In particular, we have shown that GSHMC/GS2HMC outper-

form both classical MD as well as standard HMC in terms of sampling. Furthermore,

GSHMC provides a statistically rigorous simulation tool for stochastic dynamics in an NVT

or NPT ensemble.

We finally wish to mention that the GSHMC method can be used to solve statistical

inference problems in the same manner as the standard HMC method can be applied to

such problems (see, e.g., [36, 37]). In particular, in a Bayesian framework, all inference

problems can be reduced to the evaluation of certain expectation values with respect to the

posterior distribution of unknown variables. This target posterior distribution can always

be written out explicitly, up to a normalization constant, as

π(q) ∝ f(y|q)π0(q) ≡ exp(−V (q)) (74)

where f is the probabilistic model that connects data y with unknown parameters q, π0 is

the prior distribution in q (which is often assumed to be Gaussian), and

V (q) = − log f(y|q)− log π0(q). (75)

In order to use the GSHMC to sample the posterior distribution (74), we introduce an

auxiliary ’momentum’ variable p, a (constant) symmetric mass matrix M , and the ’guide

Hamiltonian’

H =
1

2
p · [M−1p] + V (q) (76)

with associated Newtonian equations of motion

q̇ = M−1p, ṗ = −∇qV (q). (77)
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These equations can be integrated in time by a symplectic and time-reversible method such

as Störmer-Verlet. The resulting propagator Uτ , with appropriate reference Hamiltonian

H∆t, is then to be used in the MDMC part of the GSHMC method. The PMMC part and

the re-weighting procedure for expectation values remain unchanged.

Appendix

We derive the sixth-order modified energy. Following the approach of section IVA we

first derive a modified Lagrangian density to sixth order:

L∆t =
1

4

(
∞∑
i=1

∆ti−1

i!
Q(i)

)
·

[
M(Q)

(
∞∑
i=1

∆ti−1

i!
Q(i)

)]

+
1

4

(
∞∑
i=1

(−1)i−1∆ti−1

i!
Q(i)

)
·

[
M(Q)

(
∞∑
i=1

(−1)i−1∆ti−1

i!
Q(i)

)]
− V (Q),

=L+ ∆t2 δL[4] + ∆t4 δL[6] +O(∆t6) (78)

where L is given by (2), δL[4] by (30), and δL[6] by

δL[6] =
1

720

{
6 Q̇ ·

[
M(Q)Q(5)

]
+ 15 Q̈ ·

[
M(Q)Q(4)

]
+ 20Q(3) ·

[
M(Q)Q(3)

]}
. (79)

Hence, we define the sixth-order modified Lagrangian density by

L[6]
∆t = L+ ∆t2 δL[4] + ∆t4 δL[6] (80)

and higher-order modified Lagrangian can be found by including higher-order terms in the

expansion (78). The sixth-order modified energy is now given by

H[6]
∆t =

5∑
i=1

{
i−1∑
j=0

(−1)j

[
dj

dtj
∂L[6]

∆t

∂Q(i)

]
·Q(i−j)

}
− L[6]

∆t (81)

with the generalization to higher-order again being straightforward.
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