
Q. J. R. Meteorol. Soc. (2007), 133, pp. 1–21 doi: 10.1256/qj.yy.n

A regularization approach for a vertical slice model and semi-Lagrangian

Störmer-Verlet time-stepping

By T. Hundertmark and S. Reich∗

Universität Potsdam, Potsdam, Germany

(Received 27 September 2006; revised 25 April 2007)

Summary

In this paper, we provide a systematic derivation of regularized equations for a non-hydrostatic
and compressible vertical slice model of the dry atmosphere. The derivation is based on an analysis
of a semi-implicit discretization of the equations of motion and the regularized formulation by Dubal
et al. (2006) is obtained as a special case. An implementation of the regularized equations, using the
second-order, centred-in-time, two-time-level semi-Lagrangian Störmer-Verlet method of (Reich, 2006),
is discussed and a series of numerical experiments is conducted.

Keywords: semi-implicit semi-Lagrangian regularization vertical slice Euler equations

1. Introduction

Atmospheric models contain motions on many different time scales. Often
only the “slow” solution components are of interest and different strategies for an
efficient computation of such solutions have been proposed. One possibility is to
formulate (filtered) equations for the slow dynamics only (see, for example, Lynch
(1989)). Another methodology, called initialization, keeps some or all fast modes
in the model equations but prepares the initial data so that no “fast” waves are
excited (Hinkelmann, 1951). This methodology requires the use of semi-implicit
(SI) or split-step time-stepping methods as pioneered by Robert (1969); Kwizak
& Robert (1971); Robert et al. (1972) and Marchuk (1974), respectively. In this
paper, we will further develop an alternative approach called regularization. The
basic idea is to derive a set of regularized equations of motion, which can be
integrated by explicit time-stepping methods while, at the same time, leaving
the “slow” solution components of the given model equations unaltered. While
Staniforth et al. (2007) treated the shallow-water equations on an f -plane, we
will focus in this paper on a vertical slice atmospheric model.

Regularized vertical slice Euler fluid equations of motion have been proposed
and analyzed on a linear equation level by Dubal et al. (2006). The analysis is
based on earlier work by Frank et al. (2005) and Wood et al. (2006) on regularized
shallow-water equations and their link to SI and semi-implicit semi-Lagrangian
(SISL) methods (see, e.g., (Robert, 1982; Tanguay et al., 1990; Temperton &
Staniforth, 1987)).

In this paper, we provide a systematic derivation of regularized vertical
slice models and their numerical implementation. Our approach is based on the
methodology described by Reich et al. (2007), which links regularized formula-
tions and SI time discretization schemes in a systematic manner.

More precisely, we consider a non-hydrostatic and compressible vertical
slice model and its discretization by a simple SI method (without the semi-
Lagrangian (SL) aspect). An appropriate reformulation, similar to Reich et al.
(2007), suggests a regularized formulation, which can be discretized by a second-
order, centred-in-time, two-time-level (2-TL), non-extrapolating time-stepping
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method. In this paper, we discuss in particular the semi-Lagrangian Störmer-
Verlet (SLSV) method of Reich (2006). The SLSV implementation requires the
solution of a single elliptic problem per time step. See, for example, Bénard (2003)
for a discussion of related 2-TL SISL schemes.

The new approach is validated by a series of numerical experiments.

2. Vertical slice Euler model

We consider a vertical slice model for a non-rotational atmosphere without
orography. The Euler fluid equations of motion using a vertical height coordinate
are given by

∂u

∂t
=−A(u)− cpθ

∂π

∂x
, (1)

∂w

∂t
=−A(w)− cpθ

∂π

∂z
− g, (2)

∂π

∂t
=−A(π)− π

κ

1− κ

(
∂u

∂x
+

∂w

∂z

)
, (3)

∂θ

∂t
=−A(θ), (4)

with parameter κ≡R/cp ≈ 2/7. Here u denotes the horizontal velocity, w the
vertical velocity, π the Exner function, and θ potential temperature (Durran,
1998). Furthermore, A(X) denotes the advection operator of a quantity X,
defined by

A(X)≡ DX

Dt
− ∂X

∂t
= u

∂X

∂x
+ w

∂X

∂z
. (5)

The thermodynamic relation

R

ps
ρθ = π

1−κ

κ (6)

between density, ρ, potential temperature, θ and Exner function, π, allows us to
derive the following identities for frequent use throughout the paper:

∂π

∂x
=

κ

1− κ

π

ρθ

∂(ρθ)

∂x
=

c2
s

cpρθ2

∂(ρθ)

∂x
, (7)

∂π

∂z
=

κ

1− κ

π

ρθ

∂(ρθ)

∂z
=

c2
s

cpρθ2

∂(ρθ)

∂z
, (8)

where the speed of sound, cs, is defined by

c2
s ≡ cpT

κ

1− κ
= cpθπ

κ

1− κ
(9)

and T denotes temperature. For example, it follows that (3) is equivalent to

∂π

∂t
=− c2

s

cpρθ2

[
∂

∂x
{ρθu}+

∂

∂z
{ρθw}

]
. (10)
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3. A semi-implicit discretization

We consider the following 2-TL SI method:

un+1 − un

∆t
=−A(un)− cpθ

n∂πn+1/2

∂x
, (11)

wn+1 − wn

∆t
=−A(wn)− cp

[
θn∂πn+1/2

∂z
+ θn+1/2 ∂πn

∂z
− θ̂n+1/2 ∂πn

∂z

]
− g, (12)

πn+1 − πn

∆t
=− (cn

s )2

cpρn(θn)2

[
∂

∂x

{
ρnθnun+1/2

}
+

∂

∂z

{
ρnθnwn+1/2

}]
(13)

θn+1 − θn

∆t
=−un ∂θn

∂x
−wn+1/2 ∂θn

∂z
, (14)

where we introduced the midpoint approximation of a quantity X by

Xn+1/2 ≡ Xn+1 + Xn

2
, (15)

the explicit midpoint predictor

θ̂n+1/2 ≡ θn − ∆t

2

(
un ∂θn

∂x
+ wn ∂θn

∂z

)
, (16)

and the density, ρn, by (6) using πn and θn. The precise form of the numerical
advection terms A(un) and A(wn) is not relevant for the following discussion;
one could apply Eulerian or SL approximations.

SISL discretizations such as the predictor-corrector formulation of the Unified
Model (Davies et al., 2005) could also be considered. But such (more complex)
discretization schemes would make the discussion rather technical. The particular
formulation (11)-(14) has been chosen because it motivates the regularized
equations of §4 in a rather natural manner.

The equations (11)-(14) can be implemented by first deriving the following
set of linear equations in the midpoint values:

un+1/2 = un − ∆t

2

[
A(un) + cpθ

n∂πn+1/2

∂x

]
, (17)

wn+1/2 = wn − ∆t

2

[
A(wn) + cpθ

n∂πn+1/2

∂z
+ cp(θ

n+1/2 − θ̂n+1/2)
∂πn

∂z
+ g

]
,

(18)

πn+1/2 = πn − ∆t

2

(cn
s )2

cpρn(θn)2

[
∂

∂x

{
ρnθnun+1/2

}
+

∂

∂z

{
ρnθnwn+1/2

}]
, (19)

θn+1/2 = θn − ∆t

2

[
un∂θn

∂x
+ wn+1/2 ∂θn

∂z

]
, (20)

followed by an application of (15) to obtain the solutions at time-level tn+1. We

furthermore apply (20) and (16) to eliminate θn+1/2 and θ̂n+1/2 from (18):

wn+1/2 = wn − 1

1 + ∆t2(N n)2/4

∆t

2

[
A(wn) + cpθ

n∂πn+1/2

∂z
+ g

]
, (21)
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where

(N n)2 ≡−cp
∂πn

∂z

∂θn

∂z
≈ g

∂

∂z
log θn. (22)

We now introduce a modification to (21). We note that the SI method (11)-
(14) leads to a scaling of both advection and forcing terms in (21). A SL treatment
(Staniforth & Coté, 1991) of advection would instead lead to a scaling of the
vertical forcing terms only, which suggests to replace (21) by

wn+1/2 = wn − ∆t

2
A(wn) +

1

1 + ∆t2(N n)2/4

∆t

2

[
cpθ

n∂πn+1/2

∂z
+ g

]
. (23)

A scaling of the vertical acceleration has also been suggested by Browning &
Kreiss (1986). Their work is motivated by the bounded derivative principle and
leads to a rather different factor of (Lz/Lx)2, where Lz and Lx, respectively, are
the vertical and horizontal, respectively, length scales.

The practical implementation of (17), (23), and (19)-(20) leads to a linearly

implicit system in πn+1/2. Similarly to the analysis provided by Reich et al.
(2007) for a SI discretization of the shallow-water equations, we first introduce
the midpoint predictor

π̂n+1/2 ≡ πn − (cn
s )2

cpρn(θn)2
∆t

2

[
∂

∂x
{ρnθnun}+

∂

∂z
{ρnθnwn}

]
. (24)

This predictor corresponds to a forward Euler approximation to (10) over half
a time-step. Next we substitute (17) and (23) into (19) and make use of (24) to
obtain

Hnπn+1/2 = π̂n+1/2 +
(cn

s )2

cpρn(θn)2
∆t2

4

[
∂

∂x
{ρnθnA(un)}

+
∂

∂z

{
ρnθn

(
A(wn) +

g

1 + ∆t2(N n)2/4

)}]
,

(25)

with elliptic operator Hn defined by

Hnf ≡ f − (cn
s )2

ρn(θn)2
∆t2

4

[
∂

∂x

{
ρn(θn)2

∂f

∂x

}
+

∂

∂z

{
ρn(θn)2

1 + ∆t2(N n)2/4

∂f

∂z

}]
.

(26)
Provided the initial conditions are chosen appropriately (balanced initial

conditions), we expect that π̂n+1/2 is approximately equal to πn+1/2 even for
“large” step-sizes ∆t. This observation is now developed further. In particular,
we will derive a set of regularized fluid equations based on (25). The regularized
fluid equations will reduce to the original Euler equations whenever

π̂n+1/2 ≈ πn+1/2 (27)

for the associated SISL discretization. Furthermore, we will demonstrate in §6 on
a linearized equation level that fast unbalanced waves are slowed down for the
regularized equations similar to what is achieved by the SISL method.
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4. Regularized slice model

Following the work by Reich et al. (2007) on regularized shallow-water models
and the regularized vertical slice formulation of Dubal et al. (2006), the analysis of
§3 suggests to consider the following regularized form of the vertical slice model:

∂u

∂t
=−A(u)− cpθ

∂π̃

∂x
, (28)

∂w

∂t
=−A(w)− 1

1 + α2N 2

[
cpθ

∂π̃

∂z
+ g

]
, (29)

∂π

∂t
=− c2

s

cpρθ2

[
∂

∂x
{ρθu}+

∂

∂z
{ρθw}

]
, (30)

∂θ

∂t
=−A(θ), (31)

where

N 2 ≡ g
∂

∂z
log θ. (32)

The regularized Exner function, π̃, is determined by an elliptic problem of
the general form

H (π̃ − π) = α2Rπ. (33)

The elliptic operator, H, and the RHS, α2Rπ, are chosen such that (33) mimics

(25) under the identification π̃→ πn+1/2 as well as π→ π̂n+1/2 and discrete time-
level tn replaced by continuous time. More specifically, we define Rπ by

Rπ ≡
c2
s

cpρθ2

[
∂

∂x
(ρθRu) +

∂

∂z
(ρθRw)

]
, (34)

with

Ru ≡A(u) + cpθ
∂π

∂x
, Rw ≡A(w) +

1

1 + α2N 2

[
cpθ

∂π

∂z
+ g

]
, (35)

and the elliptic operator H by

Hf ≡ f − α2c2
s

ρθ2

[
∂

∂x

{
ρθ2 ∂f

∂x

}
+

∂

∂z

{
ρθ2

1 + α2N 2

∂f

∂z

}]
, (36)

where α > 0 is a free parameter, which will be determined in §6 based on a linear
stability analysis.

The elliptic problem (33) can be transformed to

Hπ̃ = π +
α2c2

s

cpρθ2

[
∂

∂x
{ρθA(u)}+

∂

∂z

{
ρθ

(
A(w) +

g

1 + α2N 2

)}]
, (37)

and we note that, as desired, (37) with α = ∆t/2 is of the same form as (25).
Furthermore, we have π̃ = π whenever Rπ = 0. In that case Ru =−∂u/∂t,

Rw =−∂w/∂t, and

cpθ
2ρRπ =−c2

s

{
∂

∂x

(
θρ

∂u

∂t

)
+

∂

∂z

(
θρ

∂w

∂t

)}
= 0. (38)
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Note that Rπ = 0 if, for example, ∂π/∂x = cpθ∂π/∂z + g = 0 as well as A(u) =
A(w) = 0 and, hence, a hydrostatic reference state leads to π̃ = π. However,
following (27), we only require the weaker condition π̃ ≈ π.

With a slight abuse of notation, we will call (37) a “nonlinear” regularization,
while the corresponding form with the advection terms A(u) and A(w) set equal
to zero will be called a “linear” regularization, i.e.

Hπ̃ = π +
α2c2

s

cpρθ2

∂

∂z

{
gρθ

1 + α2N 2

}
. (39)

The elliptic problem (37) can be simplified by making use of additional as-
sumptions such as that of a constant hydrostatic reference state. These simpli-
fications are discussed in detail in the Appendix. Here we only summarize the
formulations which will be implemented in the numerical experiments of §7. Given
some hydrostatic reference state, characterized by π̄(z), θ̄(z), ρ̄(z), and c̄s(z), we
introduce the constant coefficient elliptic operator

HFf ≡ f − α2c̄2
s

ρ̄θ̄2

[
∂

∂x

{
ρ̄θ̄2∂f

∂x

}
+

∂

∂z

{
ρ̄θ̄2

1 + α2N̄ 2

∂f

∂z

}]
, (40)

and replace (37) by

HF π̃ = π +
α2c2

s

cpρ̄θ̄2

[
W +

∂

∂z

{
ρ̄θ̄2g

θ(1 + α2N̄ 2)

}]
(41)

with

W ≡ ∂

∂x

{
ρ̄θ̄A(u)

}
+

∂

∂z

{
ρ̄θ̄A(w)

}
. (42)

Note that W is set equal to zero in case of “linear” regularization. Note also
that (50)-(41) with W = 0 corresponds to the formulation proposed by Dubal et
al. (2006).

We can simplify (41) even further under the assumption that

dπ̄

dz
= 0,

dθ̄

dz
= 0, N̄ = const., c̄s = const. (43)

As shown in the Appendix, we obtain the system

HC π̃ = π + α2 c̄2
s

cpθ̄

[
∂

∂x
(A(u)) +

∂

∂z
(A(w)) +

1

1 + α2N̄ 2

∂

∂z

(
gθ̄

θ

)]
. (44)

with constant coefficient elliptic operator

HCf ≡ f − α2

[
c̄2
s

∂2f

∂x2
+

c̄2
s

1 + α2N̄ 2

∂2f

∂z2

]
. (45)

Regularized formulations can also be derived in terms of pressure, p, and its
regularization, p̃. The associated regularized Euler equations are stated in part
(d) of the Appendix.
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5. A description of the semi-Lagrangian Störmer-Verlet (SLSV) time
discretization for the regularized vertical slice model

The temporal discretization of the regularized vertical slice model follows
along the lines of the semi-Lagrangian Störmer-Verlet (SLSV) method proposed
by Reich (2006). The SLSV method is based on the popular Störmer-Verlet time-
stepping method for Newtonian dynamics of interacting particle systems (see, for
example, Leimkuhler & Reich (2005)). Consider, for example, a single particle
with position q ∈ R

3, mass m = 1, velocity u ∈ R
3, and applied force F (q) ∈R

3.
The equations of motion are

q̇ = u, u̇ = F (q). (46)

The Störmer-Verlet (SV) time-stepping reads now as follows:

Step 1 (half time step of velocity update):

un+1/2 = un +
∆t

2
F (qn). (47)

Step 2 (full time step of force-free drift):

qn+1 = qn + ∆tun+1/2. (48)

Step 3 (half time step of velocity update):

un+1 = un+1/2 +
∆t

2
F (qn+1). (49)

The two-time-level (2-TL) SV method is second-order, centred-in-time, and
explicit. It also conserves linear and angular momentum in case of distant-
dependent forces. See Leimkuhler & Reich (2005) for a detailed discussion.

For a continuum of particles (as in case of fluid dynamics), Step 2 is
implemented in a semi-Lagrangian fashion to yield a grid-based method. This
modification gives rise to the SLSV method of Reich (2006). We now describe
the SLSV method in detail for the regularized vertical slice model with constant-
coefficient regularization (41).

The SLSV method is based on the following reformulation of (28)-(31). We
introduce material time derivatives D(·)/Dt = (·)t +A(·) and replace (30) by the
mass continuity equation to obtain:

Du

Dt
=−cpθ

∂π̃

∂x
, (50)

[
1 + α2N̄ 2

] Dw

Dt
=−cpθ

∂π̃

∂z
− g, (51)

D ln ρ

Dt
=−

(
∂u

∂x
+

∂w

∂z

)
, (52)

Dθ

Dt
= 0, (53)

with π determined from ρ and θ by (6). The regularized Exner function π̃ is
defined by (41). The implementation of the SLSV method consists now of three
steps. (The spatial grid structure will be discussed in §7.)
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Step 1 (half time step of Eulerian velocity update). Given the regularized Exner
function π̃n we compute

un+1/2−ε = un − cpθ
n∆t

2

∂π̃n

∂x
, (54)

wn+1/2−ε = wn − 1

1 + α2N̄ 2

∆t

2

[
cpθ

n∂π̃n

∂z
+ g

]
. (55)

We use superscript −ε in (un+1/2−ε, wn+1/2−ε) to indicate that these are the grid
values of (u, w) just before the advection step. Similarly, we will use superscript
+ε to denote the grid values of (u, w) immediately after the advection step
which we describe next.

Step 2 (full time step of force-free advection). We first solve

Du

Dt
=

Dw

Dt
= 0,

Dx

Dt
= u,

Dz

Dt
= w (56)

using a SL method (Staniforth & Coté, 1991; Durran, 1998). The exact solutions
to (56) are given by linear trajectories, which we approximate using

xa = xn
d + ∆t u

n+1/2−ε
d , (57)

za = zn
d + ∆t w

n+1/2−ε
d , (58)

where (u
n+1/2−ε
d , w

n+1/2−ε
d ) are obtained from the grid values

(un+1/2−ε, wn+1/2−ε) by bilinear interpolation to the departure points. The
arrival points (xa, za) are identified with given grid points. The equations
(57)-(58) are solved by applying two iterations of a simple fixed point algorithm
(Smolarkiewicz & Pudykiewicz, 1992) and determine all departure points
(xd, zd).

Once the departure point calculation has been completed, bicubic interpo-

lation is used to first obtain (u
n+1/2−ε
d , w

n+1/2−ε
d ) and, finally, the new updated

values of (un+1/2+ε, wn+1/2+ε) over the grid via

un+1/2+ε = u
n+1/2−ε
d , wn+1/2+ε = w

n+1/2−ε
d . (59)

We next advect the density ρ. We make use of formulation (52) and obtain
the SL approximation

[
ln ρn+1 +

∆t

2

(
∂u

∂x
+

∂w

∂z

)n+1/2+ε
]

a

=

[
ln ρn − ∆t

2

(
∂u

∂x
+

∂w

∂z

)n+1/2−ε
]

d

,

(60)
where subscript a and d, respectively, denote arrival and departure point evalu-
ation, respectively. The potential temperature θ is advected according to

[
θn+1

]
a

= [θn]d . (61)

Bicubic interpolation is used for departure point approximations.

Step 3 (half time step of Eulerian velocity update). Given the Exner function
πn+1, potential temperature θn+1, and an approximation to W (see the following
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remark), we first compute the regularized Exner function π̃n+1 according to (41).
The time step is completed by

un+1 = un+1/2+ε − cpθ
n+1∆t

2

∂π̃n+1

∂x
, (62)

wn+1 = wn+1/2+ε − 1

1 + α2N̄ 2

∆t

2

[
cpθ

n+1∂π̃n+1

∂z
+ g

]
. (63)

Remark. In case of “nonlinear” regularization, expression (42) needs to be
approximated. We make use of the procedure suggested by Reich et al. (2007) for
the shallow-water equations, i.e.

W ≈
[

∂

∂x

{
ρ̄θ̄

Du

Dt

}
+

∂

∂z

{
ρ̄θ̄

Dw

Dt

}]
− D

Dt

[
∂

∂x

{
ρ̄θ̄u

}
+

∂

∂z

{
ρ̄θ̄w

}]
(64)

≈ 2

[
∂w

∂x

∂

∂z

(
ρ̄θ̄u

)
− ∂u

∂x

∂

∂z

(
ρ̄θ̄w

)]
. (65)

Equation (64) can be approximated conveniently by the SL technique (Staniforth
& Coté, 1991; Durran, 1998) using the arrival and departure points from Step
2, while (65) can be approximated directly using the current velocity values
(un+1/2+ε, wn+1/2+ε). Further details can be found in (Reich et al., 2007).

It can be shown that the 2-TL SLSV scheme given by (54)-(63) with W = 0 is
centered-in-time (up to higher order asymmetries due to interpolation and fixed
point iteration errors in the semi-Lagrangian advection under Step 2). Hence
the method is second-order in time for the regularized equations and “linear”
balance. The case of “nonlinear” balance is more technical due to the necessary
approximations to (64) or (65), respectively.

Note that the semi-Lagrangian advection in Step 2 could be replaced by
other methods suitable for advection problems (Durran, 1998). This applies, in
particular, to the continuity equation (52) and we intend to replace (60) by the
conservative remapped particle-mesh semi-Lagrangian method by Cotter et al.
(2007) in future implementations.

6. A linear stability analysis

We now apply the regularization to a vertical slice model linearized about an
isothermal stationary reference state with reference temperature T ∗. Reference
values are denoted by θ∗ = θ∗(z) etc. The resulting linear equations in the
perturbative quantities (u′, w′, π′, θ′) are given by

∂u′

∂t
=−cpθ

∗∂π′

∂x
, (66)

∂w′

∂t
=−cpθ

∗∂π′

∂z
+ g

θ′

θ∗
, (67)

∂π′

∂t
=−w′

dπ∗

dz
− π∗

κ

1− κ

(
∂u′

∂x
+

∂w′

∂z

)
, (68)

∂θ′

∂t
=−w′

dθ∗

dz
. (69)
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Figure 1. Dispersion relations for vertical slice model and its regularized formulation with the equations
being linearized about a stationary isothermal reference state. The regularization parameter, α, is set
equal to α = 10 min in panel (a) and to α = 10 s in panel (b), respectively. Lines corresponding to
different vertical length scales, Lz , are plotted with increasing line width for decreasing Lz . For fixed

Lz , each line represents wave frequency, ω, as a function of horizontal length scale, Lx = 2π/kx.

The reference values satisfy

u∗ = v∗ = w∗ = 0, (70)

T ∗ = constant, (71)

θ∗(z) = T ∗eκz/H , (72)

π∗(z) = e−κz/H , (73)

(c∗s)
2 ≡ cpT

∗ κ
1−κ , (N ∗)2 ≡ g d

dz log θ∗, Γ∗ ≡ 1−2κ
2H , H∗ ≡ RT ∗

g . (74)

The associated regularized equations are

∂u′

∂t
=−cpθ

∗∂π̃′

∂x
, (75)

∂w′

∂t
=

−1

1 + α2(N ∗)2

{
cpθ

∗∂π̃′

∂z
− g

θ′

θ∗

}
, (76)

∂π′

∂t
=−w′

dπ∗

dz
− π∗

κ

1− κ

(
∂u′

∂x
+

∂w′

∂z

)
, (77)

∂θ′

∂t
=−w′

dθ∗

dz
, (78)

with

Ĥ π̃′ = π′ + α2(c∗s)
2

{
1

1 + α2(N ∗)2
g

cp

[
∂

∂z
− 2Γ∗

] ( −θ′

(θ∗)2

)}
(79)

and

Ĥf ≡ f − α2(c∗s)
2

[
∂2f

∂x2
+

1

1 + α2(N ∗)2

(
∂2f

∂z2
− 2Γ∗

∂f

∂z

)]
. (80)

The linearized equations and a time-staggered disretization have been ana-
lyzed by Dubal et al. (2006). In particular, we make the general ansatz:

X ′(t, x, z) = X̄(z) exp(iωt) exp(ikxx). (81)
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A straightforward application of the results by Dubal et al. (2006)) reveals that
all frequencies ω, present in the regularized system (75)-(79), are bounded by

ω2
6

1

α2
. (82)

See Fig. 1 for a comparison of the exact and regularized dispersion relations for
two different values of α.

On the other hand, the Störmer-Verlet time stepping method is linearly stable
(see, e.g., Leimkuhler & Reich (2005)) for a harmonic oscillator with frequency
ω provided the step-size ∆t satisfies

∆t|ω|6 2. (83)

It follows that

α >
∆t

2
(84)

implies linear stability for the SLSV method of §5 applied to the regularized
vertical slice model.

7. Numerical experiments

Experiments are performed with the SLSV method described in §5. The
spatial discretization uses an Arakawa C-grid in the horizontal and a Charney-
Phillips grid in the vertical with periodic boundary conditions in the horizontal
and rigid boundary conditions w = 0 at z = 0 and z = zT (see, e.g., Durran (1998)
for a discussion of these spatial discretization methods). The rigid boundary
implies the boundary condition

∂π̃

∂z
= 0 at z = 0, z = zT (85)

for the arising elliptic equation in π̃. The regularization parameter α is set equal
to

α = 1.1
∆t

2
(86)

for all numerical experiments. A good indicator for the “strength” of the regu-
larization is provided by the horizontal and vertical smoothing lengths defined
by

lx ≡ c̄sα (87)

and

lz ≡
c̄sα√

1 + α2N̄ 2
, (88)

respectively. If either lx �∆x and/or lz �∆z, then the regularization has a
strong filtering effect on non-balanced contributions to the Exner function π.

Results are compared to available reference solutions. See the Standard
Test Set collected under http://www.mmm.ucar.edu/projects/srnwp tests in
particular.
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Figure 2. (a) Plots of θ′ at initial time. (b) Plot of θ′ at final time t = 3000 s. Computations are
performed with the regularized SLSV method using a 500 m spatial grid resolution and a time-step of

12 s. The contour interval is 0.5 × 10−3 K. Thick lines indicate positive values of θ′.

(a) Test case 1 from the Standard Test Set: Nonhydrostatic inertia gravity
waves

The reference solution and a detailed problem description can be found in
Skamarock & Klemp (1994). However, in contrast to Skamarock & Klemp (1994),
we computed the solution using the fully compressible vertical slice model with an
isothermal hydrostatic reference state corresponding to N̄ = 0.01 s−1 and c̄s = 300
m s−1. We implemented the regularization from §5 with “linear” regularization,
i.e., W = 0 in (41).

The mesh-size is ∆x = ∆z = 500 m. The time-step is ∆t = 12 s. This corre-
sponds to a horizontal and vertical smoothing length of lx ≈ lz ≈ 1800 m. Note
that 1 + (∆tN̄/2)2 ≈ 1.

The results displayed in Fig. 2 are in excellent agreement with those of
Skamarock & Klemp (1994) and even more so with those from the Standard
Test Set.

(b) Test case 1 from the Standard Test Set: Hydrostatic inertia gravity waves

We now include the Coriolis term with f = 10−4 s−1 and consider a channel
of length Lx = 6000 km and height Lz = 10 km. The problem formulation is again
as in (Skamarock & Klemp, 1994). However, in contrast to Skamarock & Klemp
(1994), we computed the solution using the fully compressible vertical slice model
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Figure 3. (a) Plot of θ′ at initial time. (b) Plot of θ′ at final time t = 60, 000 s. Computations are
performed with the regularized SLSV method using a 250 m vertical and a 20 km horizontal grid
resolution. The time-step is ∆t = 200 s. The contour interval is 0.5 × 10−3 K. Thick lines indicate

positive values of θ′.

on an f -plane:

Du

Dt
= fv − cpθ

∂π

∂x
, (89)

Dv

Dt
=−f(u− U0), (90)

Dw

Dt
=−cpθ

∂π

∂z
− g, (91)

Dρ

Dt
=−ρ

(
∂u

∂x
+

∂w

∂z

)
, (92)

Dθ

Dt
= 0, (93)

where U0 = 20 m s−1. We implemented the regularization from §5 with “linear”
regularization, i.e., W = 0 in (41).

The mesh-size is ∆x = 20 km and ∆z = 250 m. The time-step is ∆t = 200 s.
This corresponds to a horizontal smoothing length of lx ≈ 30 km and a vertical
smoothing length of lz ≈ 21 km, respectively.

The results displayed in Fig. 3 are again in excellent agreement with those
of (Skamarock & Klemp, 1994) and with those provided in the Standard Test Set.

Remark. The effect of the Coriolis terms could be included in the regularization
procedure as outlined by Wood et al. (2006). A detailed description will be the
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Figure 4. Plots of θ′ at 900 s from the regularized SLSV method using (a) 200, (b) 100, and (c) 66
m spatial resolution and a time-step of 4 s. The minimum contour line is at θ′ =−16.624 K and the

contour interval is 1 K.

subject of a forthcoming publication. For the current test problem such a more
sophisticated regularization is not required.

(c) Test case 2 from the Standard Test Set: Density current

This test case has been very well documented by Straka et al. (1993). We
implemented the regularized equations with a constant (reference) potential
temperature θ̄ = 300 K, a constant speed of sound c̄s = 347 m s−1, N̄ = 0, and
with (44) further simplified to

HC π̃ = π + α2 c̄2
s

cp

∂

∂z

(g

θ

)
(94)

(“linear” regularization). The results from Fig. 4 are in excellent agreement with
the reference solutions provided in Straka et al. (1993). Even the simulation
with a low resolution of ∆x = ∆z = 200 m yields a reasonable approximation.
Note that ∆t = 4 s corresponds to a vertical and horizontal smoothing length of
lx ≈ lz ≈ 694 m.

(d) Bubble convection test

This test case has been proposed by Robert (1993). The motion of a larger
warm bubble and a smaller cold bubble are considered in a neutrally stratified
basic-state atmosphere of constant potential temperature θ = 30o C. The bubbles
are Gaussian shaped at initial time and well resolved over the computational
grid with grid-size ∆x = ∆z = 5 m. Our setting corresponds exactly to that of
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Figure 5. Potential temperature perturbations at t = 0, 4, 7, and 10 min for a run with a large warm
bubble and a small cold bubble as initial conditions (panel (a)) for mesh-size ∆x = ∆z = 5 m and time-
step ∆t = 2.5 s. Contour lines are drawn at potential temperature perturbations of -0.1o, 0.0375o, 0.175o,

0.3125o, and 0.45o C

Fig. 9 from Robert (1993). Our numerical implementation of the regularized
SVSL method is identical to that of the density current experiment. The time-
step is ∆t = 2.5 s and corresponds to a vertical and horizontal smoothing length
of lx ≈ lz ≈ 434 m. The numerical results can be found in Fig. 5 and agree very
well with those displayed under Fig. 9 of Robert (1993).

(e) Gravity wave generator

This test is taken from Durran (1998). It is based on the following simplified
equations:

Du′

Dt
+

∂P

∂x
=−∂Ψ

∂z
, (95)

Dw

Dt
+

∂P

∂z
− b =

∂Ψ

∂x
, (96)

DP

Dt
+ c̄2

s

(
∂u′

∂x
+

∂w

∂z

)
= 0, (97)

Db

Dt
+ N̄ 2w = 0, (98)
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with advection operator

D(·)
Dt

= (·)t + (U + u′) (·)x + w (·)z, (99)

where U(z) is a constant mean horizontal wind, Ψ(x, z, t) is a given forcing
term (see Durran (1998) page 362 for the explicit expression), N̄ = 0.01 s−1,
and c̄s = 350 m s−1. The regularized equations are given by

Du′

Dt
+

∂P̃

∂x
=−∂Ψ

∂z
, (100)

(
1 + α2N̄ 2

) Dw

Dt
+

∂P̃

∂z
− b =

∂Ψ

∂x
, (101)

DP

Dt
+ c̄2

s

(
∂u′

∂x
+

∂w

∂z

)
= 0, (102)

Db

Dt
+ N̄ 2w = 0, (103)

where
(

1 + α2c̄2
s

[
∂2

∂x2
+

1

1 + α2N̄ 2

∂2

∂z2

])
P̃ = P + α2c̄2

s

(
2
dU

dz

∂w

∂x
− ∂b

∂z

)
(104)

(“nonlinear” regularization). Two test cases with constant mean wind U = 10 m
s−1 and with U(z) linearly increasing from 5 m s−1 to 15 m s−1, respectively,
have been implemented using the SLSV method with a step-size of ∆t = 12.5 s
(lx ≈ lz ≈ 2200 m) and mesh-sizes ∆x = 250 m, ∆z = 50 m. The resulting pressure

fields P̃ at time t = 8000 s and t = 3000 s, respectively, can be found in Fig. 6. The
agreement with the reference solutions, as provided by Durran (1998), is excellent
and demonstrates that the regularization procedure also works for forced systems
and under a strong horizontal shear flow. We stress that no divergence-damper or
any other form of artificial viscosity has been applied (except for the numerical
viscosity introduced by the semi-Lagrangian advection scheme).

8. Conclusions

We have presented a promising alternative to the popular SISL methodology.
The new method is based on a regularized formulation of the vertical slice
Euler equations, which is derived from a simple SI discretization. The temporal
discretization of the regularized equations is achieved by a SL implementation of
the Störmer-Verlet (SLSV) method (Reich, 2006).

The proposed SLSV method is a second-order, centred-in-time, 2-TL method
and requires the solution of a single Helmholtz problem per time-step. In that
regard the method is similar to 2-TL implementations of the SISL method
(Temperton & Staniforth, 1987; McDonald & Bates, 1987). Note, however, that
no velocity extrapolation from previous time-steps is required for the SL part
of the algorithm. Since the SLSV is naturally centred-in-time there is also no
need for an iterative centred-implicit implementation, as discussed by Bénard
(2003), for 2-TL non-extrapolating SISL schemes. All numerical experiments were
conducted without additional viscous filtering. Finally, as already pointed out in
§5, the SLSV scheme can easily be combined with a mass conserving SL advection



Regularized semi-Lagrangian Störmer-Verlet time-stepping 17

(a)

z 
(k

m
)

x (km)
−10 −5 0 5 10 15

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b)

z 
(k

m
)

x (km)
−15 −10 −5 0 5 10 15 20 25 30 35
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 6. (a) Contours of P at intervals of 0.25 m2 s−2 for constant mean advection with U = 10 m
s−1. (b) Contours of P at intervals of 0.25 m2 s−2 for mean wind U linearly increasing from 5 m s−1

to 15 m s−1. No zero contour line is shown in both cases and positive contour lines are drawn as thick
lines. Only a central portion of the computational domain is shown.

scheme. See Cotter et al. (2007) for such an implementation in the context of the
shallow-water equations.

Numerical results presented here and by Staniforth et al. (2007); Reich
(2006); Reich et al. (2007) indicate the exciting possibility to build the SLSV
method up to a fully three-dimensional fluid solver. The next steps towards
this “goal” are the inclusion of orography and the treatment of vertical model
equations on an f -plane along the lines of (Reich et al., 2007; Staniforth &
Wood, 2007)

Acknowledgements

We would like to thank Mark Dubal and Nigel Wood for numerous discussions
on the subject of this paper. We would also like to thank the two referees for
valuable comments and suggestions on how to improve the paper.

References

Bénard, P. 2003 , Stability of semi-implicit and iterative centred-implicit time
discretizations for various equation systems used in NWP, Mon. Weath. Rev.
131, 2479–2491.

Browning, G. & Kreiss, H.-O. 1986 , Scaling and computation of smooth atmos-
pheric motion, Tellus 38A, 295–313.

Cotter, C., Frank, J. & Reich, S. 2007 , The remapped particle-mesh semi-
lagrangian advection scheme, Q.J.R. Meteorolog. Soc. 133, 251–260.

Davies, T., Cullen, M., Malcolm, A., Mawson, M., Staniforth, A., White, A. &
Wood, N. 2005 , A new dynamical core for the Met Office’s global and regional
modelling of the atmosphere, Q.J.R. Meteorolog. Soc. 608, 1759–1782.



18 T. Hundertmark and S. Reich

Dubal, M., Staniforth, A., Wood, N. & Reich, S. 2006 , Analysis of a regularized,
time-staggered discretization applied to a vertical slice model, Atm. Sci. Lett.
7, 86–92.

Durran, D. 1998 , Numerical methods for wave equations in geophysical fluid
dynamics, Springer-Verlag, Berlin Heidelberg.

Durran, D. R. 1989 , Improving the anelastic approximation, J. Atmos. Sci.
46, 1453–1461.

Frank, J., Reich, S., Staniforth, A., White, A. & Wood, N. 2005 , Analysis of
a regularized, time staggered discretization and its link to the semi-implicit
method, Atm. Sci. Lett. 6, 97–104.

Hinkelmann, K. 1951 , Der Mechanismus des meteorologischen Lärms, Tellus
3, 285–296.

Kwizak, M. & Robert, A. 1971 , A semi-implicit scheme for grid point atmospheric
models of the primitive equations, Mon. Wea. Rev. 99, 32–36.

Leimkuhler, B. & Reich, S. 2005 , Simulating Hamiltonian Dynamics, Cambridge
University Press, Cambridge.

Lynch, P. 1989 , The slow equations, Q. J. R. Meteorolog. Soc. 115, 201–219.

Marchuk, G. 1974 , Numerical methods in weather prediction, Academic Press,
New York.

McDonald, A. & Bates, J. R. 1987 , Improving the estimate of the departure point
in a two-time level semi-Lagrangian and semi-implicit scheme, Mon. Wea. Rev.
115, 737–739.

Reich, S. 2006 , Linearly implicit time stepping methods for numerical weather
prediction, BIT 46, 607–616.

Reich, S., Wood, N. & Staniforth, A. 2007 , Semi-implicit methods, nonlinear
balance, and regularized equations, Atm. Sci. Lett. 8, 1–6.

Robert, A. 1969 , The integration of a spectral model of the atmosphere by
the implicit method, in ‘Proc. WMO-IUGG Symp. on NWP’, Vol. 7, Japan
Meteorology Agency, Tokyo, pp. 19–24.

Robert, A. 1982 , A semi-Lagrangian and semi-implicit numerical integration
scheme for the primitive meteorological equations, Japan Meteor. Soc. 60, 319–
325.

Robert, A. 1993 , Bubble convection experiments with a semi-implicit formulation
of the Euler equations, J. Atmos. Sci. 50, 1865–1873.

Robert, A., Henderson, J. & Turnbull, C. 1972 , An implicit time integration
scheme for baroclinic models of the atmosphere, Mon. Wea. Rev. 100, 329–
335.

Skamarock, W. & Klemp, J. 1994 , Efficiency and accuracy of the Klemp-
Wilhelmson time-splitting technique, Mon. Wea. Rev. 122, 2623–2630.



Regularized semi-Lagrangian Störmer-Verlet time-stepping 19

Smolarkiewicz, P. & Pudykiewicz, J. 1992 , A class of semi-Lagrangian approxi-
mations for fluids, J. Atmos. Sci. pp. 2082–2096.

Staniforth, A. & Coté, J. 1991 , Semi-Lagrangian integration schemes for atmos-
pheric models – A review, Mon. Weather Rev. 119, 2206–2223.

Staniforth, A. & Wood, N. 2007 , Analysis of the response to orographic forcing of
a TSSL discretization of the rotating SWEs, Q.J.R. Meteorolog. Soc. 132, 3117–
3126.

Staniforth, A., Wood, N. & Reich, S. 2007 , A time-staggered semi-Lagrangian
discretization of the rotating shallow-water equations, Q.J.R. Meteorolog. Soc.
132, 3107–3116.

Straka, J., Wilhelmson, R., Anderson, J. & Droegemeier, K. 1993 , Numerical so-
lutions of a nonlinear density current - A benchmark solution and comparisons,
Int. J. Numer. Meth. in Fluids 17, 1–22.

Tanguay, M., Robert, A. & Laprise, R. 1990 , A semi-implicit semi-Lagrangian
fully compressible regional forecast model, Mon. Wea. Rev. 118, 1970–1980.

Temperton, C. & Staniforth, A. 1987 , An efficient two-time-level semi-Lagrangian
semi-implicit integration scheme, Q. J. R. Meteorol. Soc. 113, 1025–1039.

Wood, N., Staniforth, A. & Reich, S. 2006 , An improved regularization for time-
staggered discretization and its link to the semi-implicit method, Atm. Sci.
Lett. 7, 21–25.

Appendix

In this appendix, we discuss a number of simplifications to the regularization
(33). In part ((d), we also state a regularized formulation in terms of pressure, p.

(a) Simplification: Pseudo-incompressibility

Given some hydrostatic reference state, characterized by π̄(z), θ̄(z), ρ̄(z), and
c̄s(z), we define

RR
π ≡

c̄2
s

cpρ̄θ̄2

[
∂

∂x

(
ρ̄θ̄Ru

)
+

∂

∂z

(
ρ̄θ̄Rw

)]
, (105)

as well as

HRf ≡ f − α2c̄2
s

ρ̄θ̄2

[
∂

∂x

{
ρ̄θ̄θ

∂f

∂x

}
+

∂

∂z

{
ρ̄θ̄θ

1 + α2N 2

∂f

∂z

}]
, (106)

and replace (33) by

HR(π̃ − π) = α2RR
π . (107)

We note that π̃ = π, if

0 = cpρ̄θ̄2RR
π =−c̄2

s

∂

∂t

{
∂

∂x

(
θ̄ρ̄u

)
+

∂

∂z

(
θ̄ρ̄w

)}
, (108)
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and (108) follows from the pseudo-incompressibility approximation (Durran,
1989)

∂

∂x

(
θ̄ρ̄u

)
+

∂

∂z

(
θ̄ρ̄w

)
= 0. (109)

The system (107) is equivalent to

HRπ̃ = π +
α2c2

s

cpρ̄θ̄2

[
∂

∂x

{
ρ̄θ̄A(u)

}
+

∂

∂z

{
ρ̄θ̄

(
A(w) +

g

1 + α2N 2

)}]
. (110)

Note that the results of this and the following section are also valid for a
general reference state of the form π̄(x, z), θ̄(x, z), etc.

(b) Simplification: Constant coefficient elliptic operator

We make the same assumption as in subsection (a). But we apply a further
simplification that leads to a constant coefficient elliptic operatorHF . Specifically,
we define

RF
π ≡

c̄2
s

cpρ̄θ̄2

[
∂

∂x

(
ρ̄θ̄RF

u

)
+

∂

∂z

(
ρ̄θ̄RF

w

)]
, (111)

with

RF
u ≡

θ̄

θ
Ru =

θ̄

θ
A(u) + cpθ̄

∂π

∂x
(112)

and

RF
w ≡

θ̄

θ
Rw =

θ̄

θ
A(w) +

1

1 + α2N̄ 2

[
cpθ̄

∂π

∂z
+ g

θ̄

θ

]
, (113)

as well as a constant coefficient operator, HF , by

HFf ≡ f − α2c̄2
s

ρ̄θ̄2

[
∂

∂x

{
ρ̄θ̄2∂f

∂x

}
+

∂

∂z

{
ρ̄θ̄2

1 + α2N̄ 2

∂f

∂z

}]
, (114)

and replace (33) by

HF (π̃ − π) = α2RF
π . (115)

We note that π̃ = π, if

0 = cpρ̄θ̄2RF
π =−c̄2

s

{
∂

∂x

(
θ̄ρ̄

θ̄

θ

∂u

∂t

)
+

∂

∂z

(
θ̄ρ̄

θ̄

θ

∂w

∂t

)}
. (116)

It appears that (115) makes sense under the assumption that

θ̄

θ
≈ 1,

∂

∂x

(
θ̄

θ

)
≈ 0,

∂

∂z

(
θ̄

θ

)
≈ 0,

∂

∂t

(
θ̄

θ

)
≈ 0 (117)

i.e.,

∂

∂x

(
θ̄

θ
θ̄ρ̄

∂u

∂t

)
+

∂

∂z

(
θ̄

θ
θ̄ρ̄

∂w

∂t

)
≈ ∂

∂t

[
∂

∂x

(
ρ̄θ̄u

)
+

∂

∂z

(
ρ̄θ̄w

)]
. (118)

The system (115) is equivalent to

HF π̃ = π +
α2c2

s

cpρ̄θ̄2

[
∂

∂x

{
ρ̄θ̄2

θ
A(u)

}
+

∂

∂z

{
ρ̄θ̄2

θ

(
A(w) +

g

1 + α2N̄ 2

)}]
.

(119)
Finally, using (117) for the advection terms on the RHS of (119), we obtain (41).
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(c) Simplification: Incompressibility

We can push things even further and may (under appropriate conditions)
assume that

dπ̄

dz
= 0,

dθ̄

dz
= 0, N̄ = const., c̄s = const. (120)

as well as (117). We can then simplify (115) by defining

RC
π ≡

c̄2
s

cpθ̄

∂

∂x

(
RF

u

)
+

c̄2
s

cpθ̄

∂

∂z

(
RF

w

)
(121)

as well as

HCf ≡ f − α2

[
c̄2
s
∂2f

∂x2
+

c̄2
s

1 + α2N̄ 2

∂2f

∂z2

]
, (122)

and replace (115) by

HC(π̃ − π) = α2RC
π . (123)

We note that π̃ = π is now equivalent to

0 = cpθ̄
2ρ̄RC

π ≈−c̄2
sρ̄θ̄

∂

∂t

(
∂u

∂x
+

∂w

∂z

)
. (124)

Using (117) for the advection terms on the RHS of (123), the system (123) is
further simplified to (44).

(d) Regularized formulation in terms of pressure

Often it is more convenient to formulate the fluid equations of motion in
terms of pressure, p, instead of the Exner function, π. We state the associated
regularized formulation. Specifically, we replace (28)-(31) by

∂u

∂t
=−A(u)− 1

ρ

∂p̃

∂x
, (125)

∂w

∂t
=−A(w)− 1

1 + α2N 2

[
1

ρ

∂p̃

∂z
+ g

]
, (126)

∂p

∂t
=−c2

s

θ

[
∂

∂x
{ρθu}+

∂

∂z
{ρθw}

]
, (127)

∂θ

∂t
=−A(θ), (128)

where N is defined as before. The regularized pressure, p̃, is determined by an
elliptic problem of the general form

HP (p̃− p) = α2Rp. (129)

The elliptic operator HP and the RHS α2Rp are defined by

Rp ≡
c2
s

θ

[
∂

∂x
(ρθRu) +

∂

∂z
(ρθRw)

]
, (130)

with

Ru =A(u) +
1

ρ

∂p

∂x
, Rw =A(w) +

1

1 + α2N 2

[
1

ρ

∂p

∂z
+ g

]
, (131)
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and

HP f ≡ f − α2c2
s

θ

[
∂

∂x

{
θ
∂f

∂x

}
+

∂

∂z

{
θ

1 + α2N 2

∂f

∂z

}]
, (132)

respectively. The parameter α is determined as for the regularized formulation in
terms of the Exner function π.

The constant coeffient formulation, corresponding to (115), is given by

HFP (p̃− p) =RF
p (133)

with

RF
p ≡

c̄2
s

θ̄

[
∂

∂x

(
ρθ̄Ru

)
+

∂

∂z

(
ρθ̄Rw

)]
(134)

and

HFPf ≡ f − α2c̄2
s

θ̄

[
∂

∂x

{
θ̄
∂f

∂x

}
+

∂

∂z

{
θ̄

1 + α2N̄ 2

∂f

∂z

}]
. (135)


