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Abstract

A regularized time-staggered discretization of the shallow-water equations has recently been

proposed. The form of the regularization operator is chosen such that linear equivalence with

the semi-implicit method can be achieved. Here, we present a further generalization of the

regularization that also takes into account nonlinear balance. The performance of the improved

regularization procedure is demonstrated for a simple nonlinear test problem.

1 Introduction

A time-staggered discretization, combined with a regularization of the continuous governing equa-
tions, has recently been proposed as a solution method for the shallow-water equations (Frank et
al., 2005). Unconditional linear stability of the method was shown for an appropriate regularization
of the geopotential field. An improved regularization procedure, which additionally preserves any
linear balance present in the shallow-water equations, is described in Wood et al. (2006). Numerical
implementations for the shallow-water equations including the effect of advection and spatial dis-
cretization on an Arakawa C-grid have been proposed by Staniforth et al. (2006) and Reich (2006).
In this note, we propose a further generalization of the regularization procedure that also takes into
account nonlinear balance.

The concept of linear and nonlinear balance for shallow-water equations is summarized in §2
(for more details see, e.g., Haltiner (1971) section 3.12). Equivalence between the regularized time-
staggered discretization of Wood et al. (2006) and the semi-implicit method (see, e.g.,(Durran, 1998))
for the linearized shallow-water equations is demonstrated in §3. This analysis is generalized to the
nonlinear situation in §4 and motivates the new regularization procedure that takes into account
nonlinear balance. Since equivalence between the semi-implicit method and the regularized time-
staggered discretization is lost on the nonlinear equation level, a set of numerical experiments is
conducted in §5 to demonstrate the performance of the newly proposed regularization procedure.
Conclusions are drawn in §6.
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2 Shallow-water equations

For the purpose of this note it is convenient to write the shallow-water equations (SWEs) on an
f -plane in Eulerian form

∂u

∂t
+ A(u) − fv = −∂Φ

∂x
, (1)

∂v

∂t
+ A(v) + fu = −∂Φ

∂y
, (2)

∂Φ

∂t
+ A(Φ) = −Φ

(
∂u

∂x
+

∂v

∂y

)
, (3)

where Φ is the geopotential field and, for general X,

A(X) ≡ DX/DT − ∂X/∂t = u
∂X

∂x
+ v

∂X

∂y
(4)

is the advection operator. The effect of orographic forcing is ignored for simplicity.

2.1 Linearized equations and linear balance

The equations are linearized about a motionless reference state of constant geopotential Φ0. The
resulting linear SWEs are

∂u

∂t
− fv = −∂Φ

∂x
, (5)

∂v

∂t
+ fu = −∂Φ

∂y
, (6)

∂Φ

∂t
= −Φ0

(
∂u

∂x
+

∂v

∂y

)
. (7)

From these it follows that

∂D

∂t
− fζ = −∇2Φ, (8)

∂ζ

∂t
+ fD = 0, (9)

∂Φ

∂t
= −Φ0 D, (10)

where

D ≡ ∂u

∂x
+

∂v

∂y
, ζ ≡ ∂v

∂x
− ∂u

∂y
. (11)

The linear balance relation (Haltiner, 1971)

fζ −∇2Φ = 0 (12)

is obtained by setting ∂D/∂t = 0 in (8).

2.2 Nonlinear balance

We now generalize (12) to the nonlinear SWEs. The divergence equation (8) becomes

∂D

∂t
+

[
∂

∂x
A(u) +

∂

∂y
A(v)

]
− fζ = −∇2Φ. (13)
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Since
∂

∂x
A(u) +

∂

∂y
A(v) = D2 + A(D) − 2J(u, v) (14)

with Jacobian

J(u, v) ≡ ∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
, (15)

we can reformulate (13) as

∂D

∂t
+ D2 + A(D) = −∇2Φ + fζ + 2J(u, v). (16)

A scale analysis for medium to large scale atmospheric motion (see, e.g., Haltiner (1971) chapter
3) reveals that the terms on the LHS of (16) are much smaller than the terms on the RHS and we
obtain the nonlinear balance relation

∇2Φ − fζ − 2J(u, v) = 0, (17)

where, formally, the velocity components in J(u, v) are replaced by their rotational components.

3 Regularized shallow-water equations

The SWEs are unchanged except that the geopotential, Φ, is replaced by a regularized geopotential,
Φ̃, in the momentum equations (Frank et al., 2005):

∂u

∂t
+ A(u) − fv = −∂Φ̃

∂x
, (18)

∂v

∂t
+ A(v) + fu = −∂Φ̃

∂y
, (19)

∂Φ

∂t
+ A(Φ) = −Φ

(
∂u

∂x
+

∂v

∂y

)
. (20)

As proposed in Wood et al. (2006), the regularized geopotential is defined by

[
1 − α2∇2

] (
Φ̃ − Φ

)
= α2

(
∇2Φ − fζ

)
, (21)

and Φ̃ = Φ under linear balance (12). The choice of the parameter α > 0 will be discussed in §3.2
(see also Wood et al. (2006)).

3.1 Staggered time-stepping for linearized equations

The linearized regularized equations

∂u

∂t
− fv = −∂Φ̃

∂x
, (22)

∂v

∂t
+ fu = −∂Φ̃

∂y
, (23)

∂Φ

∂t
= −Φ0

(
∂u

∂x
+

∂v

∂y

)
, (24)
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with regularized geopotential, Φ̃, given by (21) are discretized by the staggered time-stepping method

un+1 − un

∆t
− f

2

(
vn+1 + vn

)
= −∂Φ̃n+1/2

∂x
, (25)

vn+1 − vn

∆t
+

f

2

(
un+1 + un

)
= −∂Φ̃n+1/2

∂y
, (26)

Φn+1/2 − Φn−1/2

∆t
= −Φ0

(
∂un

∂x
+

∂vn

∂y

)
, (27)

and [
1 − α2∇2

] (
Φ̃n+1/2 − Φn+1/2

)
= α2

(
∇2Φn+1/2 − f ζ̂n+1/2

)
, (28)

where

ζ̂n+1/2 ≡ ζn − ∆tf

2
Dn (29)

is an explicit midpoint approximation (predictor) to the vorticity, ζ , obtained from a discrete form
of (9).

3.2 Linear equivalence to semi-implicit method

Equivalence between the semi-implicit method applied to the linear equations (5)-(7) and the stag-
gered time discretization (25)-(28) has been shown by Wood et al. (2006) for the particular choice

α2 =

(
1 +

∆t2f 2

4

)
−1

∆t2Φ0

4
. (30)

We now provide an alternative derivation of this result. The semi-implicit method applied to
(5)-(7) yields

un+1 − un

∆t
− fvn+1/2 = −∂Φn+1/2

∂x
, (31)

vn+1 − vn

∆t
+ fun+1/2 = −∂Φn+1/2

∂y
, (32)

Φn+1 − Φn

∆t
= −Φ0

(
∂un+1/2

∂x
+

∂vn+1/2

∂y

)
, (33)

where midpoint values are defined, for general X, by

Xn+1/2 ≡ 1

2

(
Xn+1 + Xn

)
. (34)

From these equations it follows that

Dn+1/2 = Dn +
∆tf

2
ζn+1/2 − ∆t

2
∇2Φn+1/2, (35)

ζn+1/2 = ζn − ∆tf

2
Dn+1/2, (36)

Φn+1/2 = Φn − ∆tΦ0

2
Dn+1/2. (37)

We combine (35) and (36) to obtain

[
1 +

∆t2f 2

4

]
Dn+1/2 = Dn +

∆tf

2
ζn − ∆t

2
∇2Φn+1/2. (38)
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We now use (37) to eliminate Dn+1/2 from (38). Rearranging terms finally yields

[
1 +

∆t2f 2

4
− ∆t2Φ0

4
∇2

]
Φn+1/2 =

[
1 +

∆t2f 2

4

]
Φ̂n+1/2 − ∆t2Φ0

4
f ζ̂n+1/2. (39)

Here ζ̂n+1/2 is defined by (29) and

Φ̂n+1/2 ≡ Φn − ∆tΦ0

2
Dn (40)

is the explicit midpoint approximation (predictor) to the geopotential, Φ, obtained by approximating
Dn+1/2 in (37) by Dn. Furthermore, the continuity equation (33) becomes equivalent to

Φ̂n+1/2 − Φ̂n−1/2

∆t
= −Φ0D

n. (41)

Hence, we have shown that the semi-implicit method (31)-(33) is algebraically equivalent to a stag-
gered formulation consisting of (31)-(32), (41), and (39) when the identification (34) is made.

This formulation in turn is equivalent to (25)-(28) under the identification Φ̂n+1/2 → Φn+1/2,

Φn+1/2 → Φ̃n+1/2, and α given by (30).

4 The staggered scheme for nonlinear SWEs

Numerical implementations of the regularized equations for the fully nonlinear SWEs have been
proposed by Staniforth et al. (2006) and Reich (2006). It is the purpose of this section to investigate
the relation between a semi-implicit method and the regularized staggered time-stepping method in
more detail. For simplicity of presentation we assume that advection terms can be treated in a grid-
based (non-SL) manner and the semi-implicit method will be analyzed from an Eulerian perspective.

4.1 A semi-implicit method

We repeat the analysis of §3.2 and consider a simple version of the semi-implicit method of the form

un+1 − un

∆t
+ A(un) − fvn+1/2 = −∂Φn+1/2

∂x
, (42)

vn+1 − vn

∆t
+ A(vn) + fun+1/2 = −∂Φn+1/2

∂y
, (43)

Φn+1 − Φn

∆t
+ A(Φn) = −Φ0

(
∂un+1/2

∂x
+

∂vn+1/2

∂y

)
− (Φn − Φ0)

(
∂un

∂x
+

∂vn

∂y

)
. (44)

This method is first-order for any choice of the linearly implicit part and second-order when the
linearization is performed about the current (time-level tn) state (see, e.g., Hundsdorfer & Verwer
(2003)). The specific nature of the spatial approximation is not relevant for the subsequent discussion
and we formally treat spatial variables as continuous.

Using the midpoint approximation (34) it follows from equations (42)-(44) that

Dn+1/2 = Dn +
∆tf

2
ζn+1/2 − ∆t

2
∇2Φn+1/2 − ∆t

2

[
∂

∂x
A(un) +

∂

∂y
A(vn)

]
, (45)

ζn+1/2 = ζn − ∆tf

2
Dn+1/2 − ∆t

2

[
∂

∂x
A(vn) − ∂

∂y
A(un)

]
, (46)

Φn+1/2 = Φn − ∆tΦ0

2
Dn+1/2 − ∆t

2
[(Φn − Φ0)D

n + A(Φn)] . (47)
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We combine (45) and (46) to obtain

[
1 +

∆t2f 2

4

]
Dn+1/2 = Dn +

∆tf

2
ζn − ∆t

2
∇2Φn+1/2 − ∆t

2

[
∂

∂x
A(un) +

∂

∂y
A(vn)

]

− ∆t2f

4

[
∂

∂x
A(vn) − ∂

∂y
A(un)

]
. (48)

We now apply (47) to eliminate Dn+1/2 from (48). Rearranging terms finally yields

[
1 +

∆t2f 2

4
− ∆t2Φ0

4
∇2

]
Φn+1/2 =

[
1 +

∆t2f 2

4

]
Φ̂n+1/2

− ∆t2Φ0

4

{
f ζ̂n+1/2 − ∂A(un)

∂x
− ∂A(vn)

∂y

}
. (49)

Here Φ̂n+1/2 is now the explicit midpoint approximation (predictor) defined by

Φ̂n+1/2 ≡ Φn − ∆t

2
[ΦnDn + A(Φn)] (50)

and, similarly,

ζ̂n+1/2 = ζn − ∆t

2

{
fDn +

[
∂

∂x
A(vn) − ∂

∂y
A(un)

]}
. (51)

These approximations are obtained from a forward Euler discretization of (1)-(3) over half a time-
step.

4.2 Regularization

We now turn (49) into a regularization procedure for the staggered approach. We rewrite (49) as

[
1 − α2∇2

] (
Φn+1/2 − Φ̂n+1/2

)
= α2

{
∇2Φ̂n+1/2 − f ζ̂n+1/2 +

[
∂

∂x
A(un) +

∂

∂y
A(vn)

]}
, (52)

where α is given by (30).
Our analysis of the semi-implicit method (42)-(44) and the results from §3.2 suggest that (21)

should be modified to

[
1 − α2∇2

] (
Φ̃ − Φ

)
= α2

(
∇2Φ − fζ +

{
∂

∂x
A(u) +

∂

∂y
A(v)

})
, (53)

where α is still given by (30). Scaling arguments, as used in §2.2, imply that this expression can be
simplified further to obtain

[
1 − α2∇2

] (
Φ̃ − Φ

)
= α2

(
∇2Φ − fζ − 2J(u, v)

)
. (54)

We conclude that Φ̃ = Φ under the nonlinear balance relation (17). It is now also transparent that
(54) is a proper “nonlinear” generalization of (21).

4.3 A numerical implementation of nonlinear balance

The methods of Staniforth et al. (2006) and Reich (2006) can be used as published with linear balance
replaced by nonlinear balance. The only changes required come from a necessary approximation of the
Jacobian J(u, v). Following the corresponding approximation (52) for the semi-implicit method, such
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an approximation can be found by using current (time-level tn) velocity values and direct evaluation
of J(un, vn). This is the approach used for the numerical experiments of §5. Alternatively, one can
make use of the approximation

J(u, v) =
1

2

{
D2 + A(D) −

[
∂

∂x
A(u) +

∂

∂y
A(v)

]}

≈ 1

2

{
A(D) −

[
∂

∂x
A(u) +

∂

∂y
A(v)

]}
. (55)

The RHS of (55) can be evaluated conveniently by a semi-Lagrangian approximation (see, e.g.,
Staniforth & Coté (1991) or Durran (1998)).

We stress that any staggered semi-Lagrangian implementation will not be entirely equivalent to
a semi-implicit semi-Lagrangian implementation. However it is expected that nonlinear balance will
reduce the level of spurious gravity wave activities. This aspect will now be assessed by a simple
numerical experiment.

5 Numerical experiment

The semi-Lagrangian regularized time-staggered method of Reich (2006) is implemented for both
linear and nonlinear balance. The spatial discretization uses the Arakawa C-grid over a doubly
periodic domain with Lx = Ly = 3840 km (see Staniforth et al. (2006) for specific implementation
details). The grid size is ∆x = ∆y = 60 km. The time step is ∆t = 20 min and the value of f
corresponds to an f -plane at 14.5o latitude. The reference geopotential is set to Φ0 = 9.50 × 104 m2

s−2. The resulting smoothing length, determined by (30), satisfies α ≈ 3.3 ∆x. The Rossby radius of
deformation is LR ≡

√
Φ0/f ≈ 8500 km. The initial configuration consists of two counterclockwise

rotating vortices with a spatial length-scale of L ≈ 500 km. The maximum initial wind speed is
approximately 30 m s−1. The initial wind fields and the initial geopotential, Φ, satisfy the nonlinear
balance relation (17). This implies Φ̃ = Φ at initial time for the regularized method with the improved

balance relation (54) while Φ̃ 6= Φ under linear balance (see Figure 1). Results are compared to a
semi-implicit semi-Lagrangian scheme over a time period of two days with identical initial wind field
and geopotential. Numerical results for the geopotential fields at initial time and after two days can
be found in Figure 1 for all three methods. Displayed is the regularized geopotential, Φ̃, for the case
of the regularized time-staggered discretization methods. It is evident that linear balance leads to
relatively large amplitude deviations in the regularized geopotential, Φ̃, while both the semi-implicit
semi-Lagrangian method and the regularized method with nonlinear balance lead to nearly identical
geopotential fields.

The effect of nonlinear balance should become less pronounced for increasing values of the param-
eter F = (L/LR)2 (Haltiner, 1971; Pedlosky, 1987). To verify this statement we conduct a sequence of
experiments with identical initial conditions except for changing the value of the reference geopoten-
tial Φ0. Specifically, given the initial velocity field (u, v) and the initial geopotential Φ with reference
value Φ0 as described above, we introduce Φ′

0 = κΦ0, κ = 1, 1/4, 1/9, 1/16, and define associated
initial geopotentials

Φκ = Φ − Φ0 + Φ′

0. (56)

For each value of κ we compute a reference solution ΦR(t) using the SISL implementation with
ΦR = Φκ at initial time and compare it to simulations of the regularized equations with linear and
nonlinear balance again using Φ = Φκ at initial time. We compute the following normalized l2-norm
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SISL, time = 0
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SISL, time = 2 days
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linear balance, time = 0
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Figure 1: Computed time evolution of geopotential fields over the domain (x, y) ∈ [0, 3840 km] ×
[0, 3840 km] using (a) a semi-implicit semi-Lagrangian method, (b) a regularized time-staggered
method with linear balance and (c) a regularized time-staggered method with nonlinear balance.
For (b) and (c) the regularized geopotential Φ̃ is displayed. All methods use a timestep ∆t = 20 min.
Contours plotted between 9.35×104 m2s−2 and 9.50×104 m2s−2 with contour interval 1.50×102 m2s−2.

of the difference between Φ(t) and Φ̃(t) over the grid:

Res(t) =

{∑
i,j

[
Φ̃i+1/2,j+1/2(t) − Φi+1/2,j+1/2(t)

]2
}1/2

{∑
i,j

[
ΦR

i+1/2,j+1/2
(0) − Φ′

0

]2
}1/2

(57)

and the normalized l2-norm of the difference between Φ(t) and the reference solution ΦR(t):

Diff(t) =

{∑
i,j

[
ΦR

i+1/2,j+1/2
(t) − Φi+1/2,j+1/2(t)

]2
}1/2

{∑
i,j

[
ΦR

i+1/2,j+1/2
(0) − Φ′

0

]2
}1/2

. (58)

The results can be found in Table 1 for t = 0 and t = 2 days. Note that the denominator in (57) and
(58), respectively, is the same for all simulations and, hence, it becomes a constant normalization
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linear balance nonlinear balance
κ Res(0) Res(2) Diff(2) Res(0) Res(2) Diff(2)
1 0.2215 0.5512 0.6104 5.6832e-05 0.0332 0.0411

1/4 0.1047 0.1219 0.1536 1.6157e-05 0.0056 0.0181
1/9 0.0573 0.0523 0.0813 4.5814e-06 0.0035 0.0200
1/16 0.0352 0.0291 0.0587 3.0460e-06 0.0028 0.0169

Table 1: Difference in geopotentials, as measured by (57) and (58), for simulations using linear
and nonlinear balance as a function of the parameter κ with the parameter F = (L/LR)2 being
proportional to 1/κ.

factor. It can be seen that the solutions with nonlinear balance are always closer to the reference
solution ΦR(t) as provided by the SISL scheme. However, the difference between linear and nonlinear
balance diminishes for decreasing values of κ (and, hence, for increasing values of F = (L/LR)2 ∝
1/κ).

6 Conclusion

Based on an analysis of a semi-implicit method a further (inexpensive) refinement of the reg-

ularization procedure has been suggested. The relation Φ̃ = Φ is now also maintained under
nonlinear balance (17). The dramatic improvement on the geopotential fields has been demonstrated
numerically for a simple nonlinear shallow-water problem.

Acknowledgments. We would like to thank Mike Cullen and Andy White for discussions on the
concept of nonlinear balance and its relevance to numerical simulations.
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