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Summary

We describe the remapped particle-mesh advection method, a new mass-conserving method for solv-
ing the density equation which is suitable for combining with semi-Lagrangian methods for compressible
flow applied to numerical weather prediction. In addition to the conservation property, the remapped
particle-mesh method is computationally efficient and at least as accurate as current semi-Lagrangian
methods based on cubic interpolation. We provide results of tests of the method in the plane, results
from incorporating the advection method into a semi-Lagrangian method for the rotating shallow-water
equations in planar geometry, and results from extending the method to the surface of a sphere.

Keywords: Semi-Lagrangian advection Mass conservation Particle-mesh method Spline
interpolation

1. Introduction

The semi-implicit semi-Lagrangian (SISL) method, as originally introduced
by Robert (1982), has become very popular in numerical weather prediction
(NWP). The semi-Lagrangian aspect of SISL schemes allows for a relatively accu-
rate treatment of advection while at the same time avoiding step size restrictions
of explicit Eulerian methods. The standard semi-Lagrangian algorithm (see, e.g.,
Staniforth and Coté (1991)) calculates departure points, i.e., the positions of
Lagrangian particles which will be advected onto the grid during the time step.
The momentum and density equations are then solved along the trajectory of the
particles. This calculation requires interpolation to obtain velocity and density
values at the departure point. It has been found that cubic Lagrangian and cubic
spline interpolation are both accurate and computationally tractable (see, e.g.,
Staniforth and Coté (1991)).

Ideally, as well as being efficient and accurate, a density advection scheme
should exactly preserve mass in order to be useful for, e.g., climate prediction or
atmospheric chemistry calculations. Recent developments have involved comput-
ing the change in volume elements, defined between departure and arrival points,
making use of a technique called cascade interpolation (Purser and Leslie, 1991).
Several such methods have been suggested in recent years, including the methods
of Nair and Machenhauer (2002); Nair et al. (2002); Nair et al. (2003) and the
SLICE schemes of Zerroukat et al. (2002); Zerroukat et al. (2004); Zerroukat et
al. (2006a); Zerroukat et al. (2006b).

In this paper, we give a new density advection scheme, the remapped
particle-mesh method, which is based on the particle-mesh discretisation for
the density equation used in the Hamiltonian Particle-Mesh (HPM) method
suggested by Frank et al. (2002), which itself is a combination of smoothed
particle-hydrodynamics (Lucy, 1977; Gingold and Monaghan, 1977) and particle-
in-cell methods (Harlow, 1964). The particle-mesh method provides a very simple
discretisation which conserves mass by construction, and may be adapted to
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nonplanar geometries such as the sphere (Frank and Reich, 2004). In this paper,
we show that an efficient scheme can be obtained by mapping the particles back
to the grid after each time step. Our numerical results show that this scheme
is of comparable accuracy to other mass-conserving semi-Lagrangian advection
schemes. We show how the method may be included in the staggered semi-
Lagrangian schemes, proposed by Staniforth et al. (2006) and Reich (2006), and
show how to adapt it to spherical geometry.

In section 2, we describe the particle-mesh discretisation for the density
equation. The method is modified to form the remapped particle-mesh method
in section 3. We discuss issues of efficient implementation in section 4 and an
extension to spherical geometry in section 5. In section 6, we give numerical results
for advection tests in planar geometry and on the sphere, as well as results from
rotating shallow-water simulations using the remapped particle-mesh method in
the staggered leapfrog scheme (Reich, 2006). We give a summary of our results
and discussion in section 7.

2. Continuity equation and particle advection

In this section we describe the particle-mesh discretisation for the density
equation. This discretisation forms the basis for the remapped particle-mesh
method discussed in this paper. For simplicity, we restrict the discussion to two-
dimensional flows.

We begin with the continuity equation

ρt +∇ · (ρu) = 0, (1)

where ρ is the density and u = (u, v)T ∈ R
2 is the fluid velocity. We write (1) in

the Lagrangian formulation as

DX

Dt
= u, (2)

ρ(x, t) =

∫

ρ0(x0) δ(x−X(x0, t)) dA(x0), (3)

where δ(·) denotes the Dirac delta function, dA(x0) denotes the infinitesimal
area element at x

0 = (x0, y0)T ∈ R
2, ρ(x, t) is the density at time t> 0 at a fixed

Eulerian position x = (x, y)T ∈R
2,

D

Dt
(·) = (·)t + (·)x u+ (·)y v (4)

is the Lagrangian time derivative,

X(x0, t) = (X(x0, t), Y (x0, t))T ∈ R
2 (5)

is a Lagrangian particle position at time t with initial position X(x0, 0) = x
0 ∈ R

2,
and ρ0(x) = ρ(x, 0) is the initial density.

To discretise the integral representation (3), we introduce a finite set of La-
grangian particles Xβ(t) = (Xβ(t), Yβ(t))T ∈ R

2, β = 1, . . . , N , and a fixed Eu-

lerian grid xk,l = (xk, yl)
T = (k ·∆x, l ·∆y)T , k, l = 0, . . . , M . Then we approxi-

mate the Eulerian grid density ρk,l(t)≈ ρ(xk,l, t) by

ρk,l(t) :=
∑

β

ρ0(x0
β) ψk,l(Xβ(t)) Aβ , (6)
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where ψk,l(x) > 0 are basis functions, which satisfy
∫

ψk,l(x) dA(x) = 1. The
particles are initially arranged on a uniform grid with grid cell areas denoted
by Aβ. Equation (6) may be simplified to

ρk,l(t) =
∑

β

m0
β ψk,l(Xβ(t)), (7)

where m0
β := ρ0

β Aβ is the “mass” of particle β and ρ0
β := ρ0(x0

β).
Let us now also request that the basis functions ψkl satisfy the partition-of-

unity (PoU) property

∑

k,l

ψk,l(x) Ak,l = 1, Ak,l := ∆x∆y, (8)

for all x ∈ R
2. This ensures that the total mass is conserved since
∑

k,l

ρk,l(t) Ak,l =
∑

k,l

∑

β

m0
β ψk,l(Xβ(t)) Ak,l =

∑

β

m0
β, (9)

which is constant. The time evolution of the particle positions Xβ(t) is simply
given by

d

dt
Xβ = uβ. (10)

Given a time-dependent (Eulerian) velocity field u(x, t), we can discretise (7)
and (10) in time with a simple differencing method:

X
n+1
β = X

n
β + ∆tu

n+1/2
β , u

n+1/2
β := u(Xn

β, tn+1/2), (11)

ρn+1
k,l =

n
∑

β

m0
β ψk,l(X

n+1
β ). (12)

In Frank et al. (2002), this discretisation was combined with a time stepping
method for the momentum equation to form a Hamiltonian particle-mesh method
for the rotating shallow-water equations. The masses m0

β were kept constant
throughout the simulation. We note that the HPM advection scheme is somewhat
similar to the Lagrangian advection scheme, as proposed by Kaas et al. (1997),
using tracer points.

In this paper, we instead combine the HPM discretisation with a remapping
technique so that the particles trajectories start from grid points at the beginning
of each time step. Similar to other mass-conserving advection schemes, our
remapping approach requires the assignment of new particle “masses” in each
time step. Contrary to the volume-based (finite-volume type) remapping strategy
of, for example, Nair and Machenhauer (2002), we assign mass-parcels to each
grid point, which are moved downstream to provide the density approximation
as a superposition of these parcels. This approximation can be implemented very
efficiently. The resulting remapping conserves mass globally but not locally (in
contrast to volume-based remapping methods). A related downstream advection
scheme has been proposed by Laprise and Plante (1995). However, the definition
of mass-parcels and the assignment of mass is fundamentally different.
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3. Remapped particle-mesh method

In this section, we describe the remapped particle-mesh method for solving
the continuity equation. The aim is to exploit the mass conservation property
of the particle-mesh method whilst keeping an Eulerian grid data structure for
velocity updates. To achieve this we reset the particles to an Eulerian grid point
at the beginning of each time step, i.e.,

X
n
β = x

n
β := xk,l, β = 1 + k + l · (M + 1). (13)

This step requires the calculation of new particle “masses” mn
β, β = 1, . . . , N ,

according to

ρn
k,l =

∑

β

mn
β ψk,l(x

n
β) (14)

for given densities ρn
k,l. This is the remapping step. We finally step the particles

forward and calculate the new density on the Eulerian grid using equations
(11)-(12) with m0

β being replaced by mn
β. Note that the Lagrangian trajectory

calculation (11) can be replaced by any other consistent forward trajectory
approximation. Exact trajectories for a given time-independent velocity field u(x)
will, for example, be used in the numerical experiments.

The whole process is mass conserving since the PoU property (8) ensures
that

∑

β

mn
β =

∑

k,l

∑

β

mn
β ψk,l(X

n+1
β ) Ak,l =

∑

k,l

ρn+1
k,l Ak,l =

∑

β

mn+1
β . (15)

4. Efficient implementation

This density advection scheme can be made efficient since all the interpolation
takes place on the grid; this means that the same linear system of equations,
characterized by (14), is solved at each time step. The particle trajectories are
uncoupled and thus may even be calculated in parallel.

The computation of the particle masses in (14) leads to the solution of a
sparse matrix system. We discuss this issue in detail for (area-weighted) tensor
product cubic B-spline basis functions, defined by

ψk,l(x) :=
1

∆x∆y
ψcs

(

x− xk

∆x

)

· ψcs

(

y − yl

∆y

)

, (16)

where ψcs(r) is the cubic B-spline

ψcs(r) =







2
3 − |r|2 + 1

2 |r|3, |r|6 1,
1
6(2− |r|)3, 1< |r|6 2,
0, |r|> 2.

(17)

The basis functions satisfy
∑

k,l

ψk,l(x) Ak,l = 1 (18)

and
∫

ψk,l(x) dA(x) = 1 (19)
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Figure 1. Resulting mass values mk,l for a density ρk,l concentrated at a single grid point. The mesh-size
is ∆x = ∆y = 1.

as required.
A few basic manipulations reveal that (14) becomes equivalent to

ρn
k,l Akl = ρn

k,l ∆x∆y =

(

1 +
∆x2

6
δ2x

) (

1 +
∆y2

6
δ2y

)

mn
k,l (20)

where

δ2x m
n
k,l =

mn
k+1,l − 2mn

k,l +mn
k−1,l

∆x2
, δ2y m

n
k,l =

mn
k,l+1 − 2mn

k,l +mn
k,l−1

∆y2
, (21)

are the standard second-order central difference approximations, and we replaced
index β = 1 + k + l · (M + 1) by k, l, i.e., we write mn

k,l, X
n
k,l, etc. from now on.

Eq. (20) implies that the particle masses can be found by solving a tridiagonal
system along each grid line (in each direction).

It is instructive to compute the response function for (20), i.e., to evaluate the
resulting masses mn

k,l for a density ρn
k,l that is concentrated at a single grid point.

The response function for ∆x= ∆y = 1 can be found in Fig. 1. It can be seen that
the resulting values for mn

k,l are non-zero in an extended neighborhood and some
values are even negative. The implication is that the cubic B-spline approach does
not satisfy strict local mass-conservation, can potentially lead to negative masses,
and does not preserve monotonicity. Negative masses can be avoided by a local
redistribution of mass values (such that total mass is conserved). At present it is
not clear how to preserve strict monotonicity under cubic B-spline interpolation
in a systematic manner.

If the cubic spline ψcs in (16) is replaced by the linear spline

ψls(r) =

{

1− |r|, |r|6 1,
0, |r|> 1,

(22)
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then the system (14) is solved by

mn
k,l = ∆x∆y ρn

k,l. (23)

The resulting low-order advection scheme possesses the desirable property that
ρn

k,l > 0 for all k, l implies that ρn+1
k,l > 0 for all k, l. Local conservation of mass, in

the sense of finite-volume methods, and monotonicity are now also achieved. In
general, a remapping with linear splines can lead to undesirable levels of numerical
diffusion. However, implementations for the rotating shallow-water equations in
planar geometry give encouraging results. See the numerical results in section 6.
It should also be noted that it is not necessary to remap the particles to a grid
position after each single time step as long as the particles keep a relative uniform
distribution.

On a more abstract level, conservative advection schemes can be derived
for general (e.g. triangular) meshes with basis functions φkl(x) > 0, which form
a partition of unity. An appropriate quadrature formula for (3) leads then to
a discrete approximation of type (7). This extension will be the subject of a
forthcoming publication.

5. Extension to the sphere

In this section we suggest a possible implementation of the remapped particle-
mesh method for the density equation on the sphere. The method follows the
particle-mesh discretisation given by Frank and Reich (2004), combined with a
remapping to the grid.

We introduce a longitude-latitude grid with equal grid spacing ∆λ= ∆θ =
π/J . The latitude grid points are offset a half-grid length from the poles.
Hence we obtain grid points (λk, θl), where λk = k∆λ, θl =−π

2 + (l − 1/2)∆θ,
k = 1, . . . , 2J , l = 1, . . . , J , and the grid dimension is 2J × J .

Let ψk,l(x) denote the (area-weighted) tensor product cubic B-spline centered
at a grid point xkl ∈ R

3 with longitude-latitude coordinates (λk, θl), i.e.

ψk,l(x) :=
1

Ak,l
ψcs

(

λ− λk

∆λ

)

· ψcs

(

θ − θl

∆θ

)

, (24)

where (λ, θ) are the spherical coordinates of a point x = (x, y, z)T ∈ R
3 on the

sphere, ψcs(r) is the cubic B-spline as before, and

Ak,l :=R2 cos(θl) ∆θ∆λ. (25)

We convert between Cartesian and spherical coordinates using the formulas

x=R cos λ cos θ, y =R sin λ cos θ, z =R sin θ, (26)

and
λ= tan−1

(y

x

)

, θ = sin−1
( z

R

)

. (27)

At each time step we write the fluid velocity in 3D Cartesian coordinates and
step the particles Xi,j forward. We then project the particle positions onto the
surface of the sphere as described by Frank and Reich (2004). The Lagrangian
trajectory algorithm is then:

X
n+1
i,j = xi,j + ∆tu

n+1/2
i,j + µ xi,j , (28)
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where µ is a Lagrange multiplier chosen so that ‖Xn+1
i,j ‖=R on a sphere of

radius R. This algorithm can be replaced by any other consistent forward trajec-
tory approximation. Exact trajectories are, for example, used in the numerical
experiments.

We compute the particle masses mn
i,j by solving the system

ρn
k,l =

∑

i,j

mn
i,j ψk,l(xi,j) (29)

for given densities ρn
k,l. The density at time-level tn+1 is then determined by

ρn+1
k,l =

∑

i,j

mn
i,j ψk,l(X

n+1
i,j ). (30)

Note that the system (29) is equivalent to

ρn
k,l Ak,l =

(

1 +
∆λ2

6
δ2λ

) (

1 +
∆θ2

6
δ2θ

)

mn
k,l (31)

and can be solved efficiently as outlined in section 4. The implementation of the
remapping method is greatly simplified by making use of the periodicity of the
spherical coordinate system in the following sense. The periodicity is trivial in
the longitudinal direction. For the latitude, a great circle meridian is formed by
connecting the latitude data separated by an angular distance π in longitude (or
J grid points). See, for example, the paper by Spotz et al. (1998). It is then
efficient to solve the system (31) using a direct solver.

Conservation of mass is encoded in
∑

k,l

ρn+1
k,l Ak,l =

∑

k,l

ρn
k,l Ak,l, (32)

which holds because of the PoU property
∑

k,l

ψkl(x) Ak,l = 1. (33)

6. Numerical results

(a) 1D convergence test

Following Zerroukat et al. (2006a), we test the convergence rate of our
method for one-dimensional uniform advection of a sine wave over a periodic
domain Ω = [0, 1). The initial distribution is

ρ0(x) = sin(2πx) (34)

and the velocity field is u(x, t) = U = 1. The 1D version of our method is used to
solve the continuity equation

ρt =−(ρu)x. (35)

The experimental setting is equivalent to that of Zerroukat et al. (2006a). Table 1
displays the convergence of l2 errors as a function of resolution ∆x= 1/M . Note
that the results from Table 1 are in exact agreement with those displayed in Table
I of Zerroukat et al. (2006a) for the parabolic spline method (PSM) and fourth-
order accuracy is observed. The observed equivalence between our remapped
particle-mesh advection scheme and PSM only holds for one-dimensional uniform
advection. In particular, the extension to multi-dimensions (Zerroukat et al.,
2006b) is fundamentally different.
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M 8 16 32 64 128 256 512

l2 0.549E-02 0.254E-03 0.143E-4 0.872E-6 0.541E-07 0.337E-08 0.211E-09

TABLE 1. Convergence of l2-errors as a function of ∆x = 1/M for uniform advection with U = 1 of a
sine wave on a periodic domain Ω = [0, 1) with ∆t = 0.12∆x/U and 20 time steps.
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Figure 2. Rotating slotted-cylinder problem. Top panel: numerical solution after six rotations. Bottom
panel: error (analytic minus numerical) with contour minimum −0.5266 and contour interval 0.3803;
error measures, as defined in Zerroukat et al. (2002), rms1 = 0.062595, rms2 = 0.037329, and pdm =

-0.1454E-10 %.

(b) 2D planar advection: Slotted-cylinder problem

The slotted-cylinder problem consists of a solid-body rotation of a slotted
cylinder in a flow field that rotates with constant angular velocity about a fixed
point. We implemented the slotted-cylinder problem as, for example, described
in Nair et al. (1999a); Zerroukat et al. (2002).

Results for the newly proposed advection scheme can be found in Fig. 2.
We also computed the root-mean-square (rms) difference between the pointwise
(rms1) and the grid-box-averaged (rms2) analytic solution and the numerical one
as well as the relative error in total mass (pdm). See Zerroukat et al. (2002) for a
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Figure 3. Cyclogenesis problem. Top panel: numerical solution at time t = 5. Bottom panel: error
(analytic minus numerical) with contour minimum −0.627 and contour interval 0.418; error measures,
as defined in Zerroukat et al. (2002), rms1 = 0.081439, rms2 = 0.037703, and pdm = -0.176259E-11 %.

precise definition of these error measures. It is found that the rms values for our
method are slightly smaller than those reported in Zerroukat et al. (2002).

(c) 2D planar advection: Idealized cyclogenesis problem

The idealized cyclogenesis problem (see, e.g., Nair et al. (1999a); Zerroukat
et al. (2002)) consists of a circular vortex with a tangential velocity V (r) =
v0 tanh(r)/sech2(r), where r is the radial distance from the centre of the vortex
(xc, yc) and v0 is a constant chosen such that the maximum value of V (r) is unity.
The analytic solution ρ(x, t) is

ρ(x, t) =− tanh

[(

y − yc

δ

)

cos(ωt)−
(

x− xc

δ

)

sin(ωt)

]

, (36)

where ω = V (r)/r is the angular velocity and δ = 0.05. The experimental setting
is that of Nair et al. (1999a); Zerroukat et al. (2002). In particular, the domain
of integration is Ω = [0, 10]× [0, 10] with a 129× 129 grid. The time step is
∆t= 0.3125 and a total of 16 time steps is performed. Numerical reference
solutions can be found in Zerroukat et al. (2002) for the standard bicubic
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α 0 π/2 π/2 − 0.05

l1 0.0492 0.0591 0.0627

l2 0.0336 0.0393 0.0397

l∞ 0.0280 0.0367 0.0374

TABLE 2. Comparison of error norms for solid body rotation with three different values of α t after
one complete revolution using 256 time steps over a 128× 64 grid. The meridional Courant number is

Cθ = 0.5.

and several conservative SL methods. The corresponding results for the newly
proposed advection scheme can be found in Fig. 3. It turns out that the rms
values of the newly proposed advection scheme are about the same size as those
reported by Zerroukat et al. (2002).

(d) Spherical advection: Solid body rotation

Solid body rotation is a commonly used experiment to test an advection
scheme over the sphere. We apply the experimental setting of Nair and Machen-
hauer (2002); Nair et al. (2002); Nair et al. (2003); Zerroukat et al. (2004). The
initial density is the cosine bell,

ρ0(λ, θ) =

{

1/2 [1 + cos(πr/R)], r 6R,
0, r > R,

(37)

where R= 7π/64,

r = cos−1 [sin θ + cos θ cos(λ− λc)] , (38)

and λc = 3π/2. The bell is advected by a time-invariant velocity field

u= cos α cos θ + sin α cos λ sin θ, (39)

v =− sin α sin λ, (40)

where (u, v) are the velocity components in λ and θ direction, respectively, and
α is the angle between the axis of solid body rotation and the polar axis of the
sphere.

Experiments are conducted for α= 0, α= π/2, and α= π/2− 0.05. Analytic
trajectories are used and ∆t is chosen such that 256 time steps correspond to
a complete revolution around the globe (the radius of the sphere is set equal
to one). Accuracy is measured as relative errors in the l1, l2, and l∞ norms (as
defined, for example, in Zerroukat et al. (2004)). Results are reported in Table
2 for a 128 × 64 grid (i.e., J = 64). It turns out that the relative errors of the
newly proposed advection scheme are about the same size as those reported by
Zerroukat et al. (2004).

Note that (31) may lead to a non-uniform distribution of particle masses near
the polar cap regions for meridional Courant numbers Cθ > 1. This can imply a
loss of accuracy if a “heavy” extra-polar particle moves into a polar cap region.
We verified this for 72, 36 and 18, respectively, time steps per complete revolution
(implying a meridional Courant number of Cθ = 1.78, Cθ = 3.56, and Cθ = 7.12,
respectively). It was found that the accuracy is improved by applying a smoothing
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(a) 72 time steps (b) 36 time steps (c) 18 time steps

γ 0 π/(3J)

l1 0.0491 0.0283

l2 0.0468 0.0168

l∞ 0.0723 0.0122

γ 0 π/(3J)

l1 2.3264 0.0222

l2 1.5124 0.0137

l∞ 1.1383 0.0151

γ 0 π/(3J)

l1 2.3217 0.0143

l2 1.5126 0.0105

l∞ 1.0764 0.0143

TABLE 3. Comparison of error norms for solid body rotation with α = π/2 for different values of
the smoothing parameter γ in (41) after one complete revolution over a 128 × 64 grid (i.e., J = 64).
Panel (a): Complete revolution using 72 time step. The meridional Courant number is Cθ = 1.78. Panel
(b): Complete revolution using 36 time step. The meridional Courant number is Cθ = 3.56. Panel (c):

Complete revolution using 18 time step. The meridional Courant number is Cθ = 7.12.

operator along lines of constant θ near the polar caps, e.g.,

ρn+1 =

[

1−
( γ

cos θ

)6 ∂6

∂λ6

]−1

ρn+1
∗ , (41)

γ� π/J , J = 64. Here ρn+1
∗ denotes the density approximation obtained from

(30). The filter (41) is mass conserving and acts similarly to hyper-viscosity. The
disadvantage of this simple filter is that ρn+1 6= ρn under zero advection.

Results for γ = 0 and γ = π/192, respectively, and 72, 36 and 18 time steps,
respectively, are reported in Table 3. It is evident that filtering by (41) improves
the results significantly. Corresponding results for standard advection schemes
can be found in Nair and Machenhauer (2002) for the case of 72 time steps per
complete revolution. It turns out that the relative errors of the newly proposed
advection scheme with γ = π/(3J) are slightly smaller than as those reported by
Nair and Machenhauer (2002).

(e) Spherical advection: Smooth deformational flow

To further evaluate the accuracy of the advection scheme in spherical
geometry, we consider the idealized vortex problem of Doswell (1984). The flow
field is deformational and an analytic solution is available (see Nair et al. (1999b);
Nair and Machenhauer (2002) for details).

We summarize the mathematical formulation. Let (λ′, θ′) be a rotated
coordinate system with the north pole at (π + 0.025, π/2.2) with respect to the
regular spherical coordinates. We consider rotations of the (λ′, θ′) coordinate
system with an angular velocity ω, i.e.,

dλ′

dt
= ω,

dθ′

dt
= 0, (42)

where

ω(θ′) =
3
√

3 sech2(3 cos θ′) tanh(3 cos θ′)

6 cos θ′
. (43)

An analytic solution to the continuity equation (1) in (λ′, θ′) coordinates is
provided by

ρ(λ′, θ′, t) = 1− tanh

[

3 cos θ′

5
sin(λ′ − ω(θ′) t)

]

. (44)



12 C. J. Cotter and J. Frank and S. Reich

t 3 6

l1 0.0019 0.0055

l2 0.0062 0.0172

l∞ 0.0324 0.0792

TABLE 4. Comparison of error norms at different times t for spherical polar vortex problem. Compu-
tations are performed with a step size of ∆t = 1/20 and a 128 × 64 grid.

Simulations are performed using a 128 × 64 grid and a step size of ∆t= 0.05.
The filter (41) is not applied. The exact solution (evaluated over the given grid)
and its numerical approximation at times t= 3 and t= 6 are displayed in Fig. 4.
The relative l1, l2 and l∞ errors (as defined in Zerroukat et al. (2004)) can be found
in Table 4. These errors are slightly larger than the ones reported in Nair and
Machenhauer (2002); Zerroukat et al. (2004). One can also conclude from Fig. 4
that the numerical solution at t= 3 is somewhat lagging behind the analytic one
while, at t= 6, the difference between the numerical and analytic solution is very
large near the pole.

( f ) Rotating shallow-water equations in planar geometry

To demonstrate the behavior of the new advection scheme under a time-
dependent and compressible velocity field, we consider the shallow-water equa-
tions (SWEs) on an f -plane (Durran, 1998; Salmon, 1999):

Du

Dt
= +fv − gµx, (45)

Dv

Dt
=−fu− gµy, (46)

Dµ

Dt
=−µ (ux + vy). (47)

Here µ= µ (x, y, t) is the fluid depth, g is the gravitational constant, and f is
twice the (constant) angular velocity of the reference plane.

Let H denote the maximum value of µ over the whole fluid domain. We also
introduce the fluid depth perturbation µ̃= µ−H. The perturbation satisfies the
continuity equation

Dµ̃

Dt
=−µ̃ (ux + vy) (48)

which we solve numerically using the newly proposed scheme. The overall time
stepping procedure is given by the semi-Lagrangian Störmer-Verlet (SLSV)
method with only equation (5.7) from Reich (2006) being replaced by the
following steps:

(i)

µn+1/2−ε = µn − ∆tH

2
[ux + vy]

n+1/2−ε .

(ii) Solve (48) over a full time step using the newly proposed remapped particle-

mesh advection scheme with velocities (un+1/2−ε, vn+1/2−ε) and initial fluid
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(a) exact solution at t = 3
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Figure 4. Results of a polar vortex simulation over the sphere. The exact solution and its numerical
approximation at time t = 3 can be found in panels (a) and (b), respectively. Contours plotted between

0.5 and 1.5 with contour interval 0.05. Panels (c) and (d) display the same results for time t = 6.

depth perturbation µ̃n+1/2−ε = µn+1/2−ε −H. Denote the resulting fluid
depth by µn+1/2+ε = µ̃n+1/2+ε +H. We implemented the remapped particle-
mesh advection scheme with linear and cubic splines, respectively.

(iii)

µn+1 = µn+1/2+ε − ∆tH

2
[ux + vy]

n+1/2+ε .

The SLSV method has been implemented using the standard C-grid (Durran,
1998) over a double periodic domain with Lx = Ly = 3840 km (see Staniforth et
al. (2006) for details). The grid size is ∆x= ∆y = 60 km. The time step is ∆t=
20 min and the value of f corresponds to an f -plane at 45o latitude. The reference
height of the fluid is set to H = 9665 m. The Rossby radius of deformation is
LR ≈ 3000 km. Initial conditions are chosen as in Staniforth et al. (2006); Reich
(2006) and results are displayed in an identical format for direct comparison.

To assess the new discretization, results are compared to those from a
two-time-level semi-implicit semi-Lagrangian (SISL) method with a standard
bicubic interpolation approach to semi-Lagrangian advection (see, e.g., McDonald
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Figure 5. Left panels: Computed time evolution, from initial time to t = 6 days, of PV over the domain
(x, y) ∈ [0, 3840 km]× [0, 3840 km] using the semi-Lagrangian Störmer-Verlet (SLSV) method and the
remapped particle-mesh advection scheme with cubic splines. The time step is ∆t = 20 min. Contours
plotted between 6.4× 10−8 m−1s−1 and 2.2× 10−7 m−1s−1 with contour interval 1.56× 10−8 m−1s−1.
Middle panels: Time evolution of PV as obtained from a semi-implicit semi-Lagrangian (SISL) method.
Right panels: Differences (semi-Lagrangian Störmer-Verlet minus semi-implicit semi-Lagrangian) at
corresponding times are plotted with a 10 times smaller contour interval, where thin (thick) lines are

positive (negative) contours.

and Bates (1987); Temperton and Staniforth (1987)). The resulting nonlinear
equations are iterated to convergence. It is apparent from Figs. 5 and 6 that the
SLSV and SISL simulations yield similar results in terms of potential vorticity
advection. Furthermore, the results displayed in Figs. 5 and 6 are nearly identical
to those displayed in Fig. 6.1 of Reich (2006). The good behavior of the linear
spline implementation of the remapped particle-mesh advection scheme is rather
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Figure 6. Left panels: Computed time evolution, from initial time to t = 6 days, of PV over the domain
(x, y) ∈ [0, 3840 km]× [0, 3840 km] using the semi-Lagrangian Störmer-Verlet (SLSV) method and the
remapped particle-mesh advection scheme with linear splines. The time step is ∆t = 20 min. Contours
plotted between 6.4× 10−8 m−1s−1 and 2.2× 10−7 m−1s−1 with contour interval 1.56× 10−8 m−1s−1.
Middle panels: PV evolution as obtained from a semi-implicit semi-Lagrangian (SISL) method. Right
panels: Differences (semi-Lagrangian Störmer-Verlet minus semi implicit semi-Lagrangian) at corre-
sponding times are plotted with a 10 times smaller contour interval, where thin (thick) lines are positive

(negative) contours.

surprising and has been confirmed for other simulations such as a shear flow
instability.

7. Summary and outlook

A computationally efficient and mass conserving forward trajectory semi-
Lagrangian approach has been proposed for the solution of the continuity
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equation (1). At every time step a “mass” is assigned to each grid point which is
then advected downstream to a (Lagrangian) position. The gridded density at the
next time step is obtained by evaluating a bicubic spline representation with the
advected masses as weights. The main computational cost is given by the need
to invert tridiagonal linear systems in (20). Computationally efficient iterative or
direct solvers are available. We also proposed an extension of the advection scheme
to spherical geometry. A further generalization to 3D would be straightforward.
Numerical experiments show that the new advection scheme achieves accuracy
comparable to standard non-concerving and published conserving SL schemes.
The main drawbacks of the proposed approach are that higher order splines do
not lead to monotonicity preserving schemes and that conservation of mass is not
strictly local (in the sense of finite-volume methods).

We note that the proposed advection scheme can be used to advect momenta
according to

D

Dt
(ρu) =−(ρu)∇ · u. (49)

This possibility is particularly attractive in the context of the newly proposed
semi-Lagrangian Störmer-Verlet (SLSV) scheme (Reich, 2006).
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