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Abstract.

The efficient time integration of the dynamic core equations for numerical weather
prediction (NWP) remains a key challenge. One of the most popular methods is
currently provided by implementations of the semi-implicit semi-Lagrangian (SISL)
method, originally proposed by Robert [5]. Practical implementations of the SISL
method are, however, not without certain shortcomings with regard to accuracy, con-
servation properties and stability. Based on recent work by Gottwald, Frank &

Reich [2], Frank, Reich, Staniforth, White & Wood [3] and Wood, Stani-

forth & Reich [9] we propose an alternative semi-Lagrangian implementation based
on a set of regularized equations and the popular Störmer-Verlet time stepping method
in the context of the shallow-water equations (SWEs). Ultimately, the goal is to de-
velop practical implementations for the 3D Euler equations that overcome some or all
shortcomings of current SISL implementations.
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1 Introduction

Germund Dahlquist’s work has significantly contributed to our understanding
of numerical time stepping methods and their stability properties. This paper,
devoted to the memory of Germund Dahlquist, summarizes and further develops
recent results concerning linearly implicit time stepping methods for numerical
weather prediction (NWP).

NWP is a key ingredient to the accurate and timely forecast of weather ele-
ments. Its aim is to numerically predict future states of the atmosphere based
on a current collection of data and an appropriate dynamic model. The dynamic
core of NWP models consists of the classical Euler equations of fluid dynamics
discretized in space and time. Both the spatial and temporal discretization as-
pects of NWP have been subject to intense research efforts over the years [1].
A particular problem in the time integration of the NWP model equations is
that the maximum permissible time steps are governed by stability rather than
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accuracy considerations. This is due to the coexistence of several fluid regimes
of which only the slowly varying ones are of atmospheric relevance. To circum-
vent the resulting severe restrictions on the achievable time steps, the following
two strategies have been followed. Firstly, one can derive reduced NWP model
equations, which explicitly filter out undesired fluid regimes. Secondly, one can
apply semi-implicit or fractional time stepping methods to the unapproximated
Euler equations [1]. Both strategies have been successfully applied to NWP.
However, the dominant trend is towards the numerical integration of unapprox-
imated fluid equations using semi-implicit or fractional time stepping methods.
The semi-implicit semi-Lagrangian (SISL) method, as originally proposed by
Robert [5], is among the most popular of those methods. The two essential
ingredients are a linearly implicit treatment of fast waves and a semi-Lagrangian
treatment of advection. In this paper, we suggest an alternative implementation
of these two ideas. This new approach can be put into the framework of the
Störmer-Verlet method [4], widely used in classical mechanics, and a regular-
ization of the governing fluid equations as suggested by Frank, Gottwald &

Reich [2] and further developed by Frank, Reich, Staniforth, White &

Wood [3] and Wood, Staniforth & Reich [9]. Ultimately this new regu-
larized Störmer-Verlet scheme is to be applied to the unapproximated 3D Euler
equations. In this paper, however, we restrict the discussion to the 2D shallow-
water equations (SWEs). These equations are often used in NWP to test new
algorithmic ideas.

We wish to point out that an alternative semi-Lagrangian implementation of
the regularized fluid equations has been proposed by Staniforth, Wood &

Reich in [8].

2 Shallow-water equations

A 2D model of the atmosphere which retains the important dynamic interac-
tions of real atmospheric flows is the orographically forced SWEs on an f -plane
[1, 6]:

Du

Dt
= +fv − gµx − gµS

x ,(2.1)

Dv

Dt
= −fu − gµy − gµS

y ,(2.2)

D lnµ

Dt
= −ux − vy.(2.3)

Here µS = µS (x, y) is the height of the orography above mean sea level and
µ = µ (x, y, t) is the fluid depth, i.e., the depth of the fluid between the orography
and the fluid’s free surface. Also, g is the gravitational constant, f is twice the
(constant) angular velocity of the reference plane,

(2.4)
D

Dt
(.) = (.)t + u (.)x + v (.)y ,

is the Lagrangian or material time derivative, and subscripts denote partial
differentiation with respect to that variable.
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The positions (x, y) of a material fluid particle are related to the velocity field
(u, v) by the kinematic relation

(2.5)
Dx

Dt
= u,

Dy

Dt
= v.

If, furthermore, we rewrite (2.1)-(2.2) in the form

(2.6)
Du

Dt
= F x,

Dv

Dt
= F y

with the forces F x and F y determined by

(2.7) F x := +fv − gµx − gµS
x , F y := −fu − gµy − gµS

y ,

we conclude that equations (2.5) and (2.6) are reminiscent of those of classical
mechanics with particles moving on a plane. The significant difference is that,
in case of fluid dynamics, we are dealing with a continuum of particles and that
the time evolution of (u, v, η) can be evaluated without use of the kinematic
relations (2.5) by employing (2.4) instead. For historic reasons, the classical
mechanics approach to fluid dynamics is called the Lagrangian description, while
the formulation (2.1)-(2.3) together with (2.4) is called the Eulerian description.
See Salmon [6] for more details.

A linearization of the equations (2.1)-(2.3) reveals that there are two basic
kinds of associated motion, fast moving gravitational oscillations and slow mov-
ing Rossby waves. Geostrophic theory reveals furthermore that Rossby waves
move to leading order with the local wind speed. Geostrophic theory is based
on potential vorticity (PV) conservation, i.e.

(2.8)
Dq

Dt
= 0, q =

vx − uy + f

η
,

and the geostrophic balance relations

(2.9) 0 ≈ fv − gµx − gµS
x , 0 ≈ −fu − gµy − gµS

y .

Note that (2.9) can be solved for the wind field (u, v) in case of strict equality,
which can be used to approximately advect the PV field q using (2.8). Knowledge
of the PV field on the other hand allows for the computation of a balanced fluid
depth µ via a process called PV inversion. PV inversion turns equations (2.8)-
(2.9) into a closed set of (filtered) equations for the approximate time evolution
of Rossby waves. See Salmon [6] for further details.

When numerically solving the unapproximated SWEs (2.1)-(2.3), large scale
Rossby waves should be resolved accurately while gravitational oscillations are of
little or no significance for atmospheric flow regimes. This suggests to apply an
implicit time stepping method to treat the insignificant gravitational oscillations
and a semi-Lagrangian method to resolve the geostrophic advection processes to
high accuracy. The most popular of these methods is the semi-implicit semi-
Lagrangian (SISL) method of Robert, which we briefly describe next.

We wish to emphasize that this paper is entirely devoted to the issue of time-
stepping. Spatial discretization aspects are largely ignored throughout the text.
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3 Semi-implicit semi-Lagrangian method

The SISL method has been designed with the goal of being able to use large
time steps, while not compromising on the accuracy in the advection of Rossby
modes. We follow here the description of the method given by Staniforth &

Coté [7].
We first introduce a few notations to shorten the presentation. In particular,

we define the two vectors x = (x, y)T , u = (u, v)T ,

(3.1) F = (F x, F y)T = −fu⊥
− g∇(µ + µS),

as well as u⊥ = (−v, u)T and ∇ = (∂x, ∂y)
T .

The definition of departure and arrival points is essential to the semi-
Lagrangian method. We denote arrival points by xa. Arrival points are grid
points while the departure points xn

d at time-level tn are computed using a dis-
cretization of the kinematic equations (2.5). We furthermore denote quantities
approximated at departure points by subscript d, e.g. un

d . These approximations
are derived by interpolating known grid values, e.g. un, to the departure point
locations. See [1, 7] for details.

The first step to derive a semi-implicit semi-Lagrangian method is to formulate
a fully implicit semi-Lagrangian method

un+1 = un
d +

∆t

2

(

Fn+1 + Fn
d

)

,(3.2)

lnµn+1 = [lnµn]d −
∆t

2

(

[ux + vy]
n+1

+ [ux + vy]
n
d

)

,(3.3)

xa = xn
d +

∆t

2

(

un+1 + un
d

)

.(3.4)

This method is equivalent to a trapezoidal rule discretization of the Lagrangian
description of fluid mechanics put within the context of semi-Lagrangian meth-
ods. A semi-implicit method is obtained by applying a linearly implicit predictor-
corrector approximation to (3.2)-(3.3) and by replacing (3.4) with an explicit
extrapolation formula. See [1, 7] for details. While these two modifications lead
to efficiency gains, they also compromise on the accuracy and stability of the
method. In particular, the semi-implicit method is no longer centered-in-time.

4 Regularized shallow-water equations

An alternative method to the integration of the SWEs has been proposed by
Gottwald, Frank & Reich [2] in the context of the Hamiltonian particle-
mesh (HPM) method. The HPM method is based on the Lagrangian description
of fluid mechanics and a Störmer-Verlet time-stepping [4] of the form

un+1/2 = un +
∆t

2
Fn,(4.1)

xn+1 = xn + ∆tun+1/2,(4.2)

un+1 = un+1/2 +
∆t

2
Fn+1,(4.3)
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where

(4.4) Fn = −f(un)⊥ − g∇(µn + µS)

and the correspondingly time shifted formulation for Fn+1. The required fluid
depth approximation µn can be derived from the particle distribution xn. See
[2] for details.

Explicit time stepping methods, such as Störmer-Verlet, are subject to severe
step size restrictions. To partially overcome those restrictions, it was suggested
by Frank, Gottwald & Reich [2] to regularize the fluid depth µ by a smooth-
ing operator

(4.5) A =
[

1 − α2
∇

2
]−1

.

and to replace the force (4.4) by the regularized expression

(4.6) Fn = −f(un)⊥ − g∇(A ∗ µn + µS).

Besides allowing for larger time-steps the smoothing was also found to prevent
the particle method from generating unbalanced gravity waves.

The analysis of Frank, Reich, Staniforth, White & Wood [3] resulted
in an optimal choice for the parameter α in terms of linear stability. However,
it was also found that (4.6) corrupts the geostrophic balance relation (2.9) of
the unregularized equations with potentially harmful effects on the advection of
Rossby waves.

In the subsequent publication [9], Wood, Staniforth & Reich suggested a
refined regularization procedure. Define a regularized fluid depth µ̃n by

(4.7)
[

1 − α2
∇

2
]

(µ̃n
− µn) = α2

[

f

g
(un

y − vn
x ) + ∇

2(µn + µS)

]

with the parameter α chosen as

(4.8) α2 =
gH∆t2/4

1 + f2∆t2/4
.

Here H denotes the maximum value of µ over the whole fluid domain. The regu-
larized fluid depth µ̃n replaces A∗µn in (4.6) to yield the improved formulation

(4.9) Fn = −f(un)⊥ − g∇(µ̃n + µS).

The resulting regularized Störmer-Verlet method is equivalent to the SISL
method on the level of linearized equations and zero mean advection. See [9]
for details. Furthermore µ̃ = µ in case of exact geostrophic balance, i.e., exact
equality in (2.9).
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5 Regularized semi-Lagrangian Störmer-Verlet method

We are now in a position to describe the newly proposed semi-Lagrangian
implementation of the regularized Störmer-Verlet method.

Step 1 (half time step of Eulerian momentum update). We assume that (un, vn),
and the regularized µ̃n are known. Update the velocities (u, v) over the given
grid according to:

un+1/2−ε = un +
∆t

2

[

f vn+1/2−ε
− g (µ̃n

x + µS
x )

]

,(5.1)

vn+1/2−ε = vn
−

∆t

2

[

f un+1/2−ε + g (µ̃n
y + µS

y )
]

.(5.2)

We use superscript −ε in (un+1/2−ε, vn+1/2−ε) to indicate that these are the
values of (u, v) just before the advection step. Similarly, we will use superscript
+ε to denote the values of (u, v) immediately after the advection step which we
describe next.

Step 2 (full time step of force-free advection). This step gets split into two sub-
steps. The first part determines the particle paths and the velocities are updated
according to

(5.3)
Du

Dt
=

Dv

Dt
= 0,

Dx

Dt
= u,

Dy

Dt
= v.

The exact solutions are given by linear trajectories, which we approximate using

xa = xn
d + ∆t u

n+1/2−ε
d ,(5.4)

ya = yn
d + ∆t v

n+1/2−ε
d ,(5.5)

where (u
n+1/2−ε
d , v

n+1/2−ε
d ) are obtained from the grid values

(un+1/2−ε, vn+1/2−ε) by bilinear interpolation to the departure points.
The equations (5.4)-(5.5) are solved by simple fixed point iteration.

Once the fixed point iteration has converged, bicubic interpolation is used

to first obtain (u
n+1/2−ε
d , v

n+1/2−ε
d ) and, finally, the new updated values of

(un+1/2+ε, vn+1/2+ε) over the grid via

(5.6) un+1/2+ε = u
n+1/2−ε
d , vn+1/2+ε = v

n+1/2−ε
d .

Next we update the layer-depth µn according to the continuity equation (2.3).
We apply the symmetric semi-Lagrangian formulation

(5.7) ln µn+1 +
∆t

2
[ux + vy]

n+1/2+ε
=

[

lnµn
−

∆t

2

(

un+1/2−ε
x + vn+1/2−ε

y

)

]

d

.

The departure point approximation is done using bicubic interpolation with the
departure points defined by (5.4)-(5.5).
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Step 3 (half time step of Eulerian momentum update). We compute the new
regularized fluid depth µ̃n+1 using

(5.8)
(

1 − α2
∇

2
)

µ̃n+1 = µn+1
− α2 f0

g
ζn+1,

where

(5.9) ζn+1 = vn+1
x − un+1

y

is the vorticity at time level tn+1. The velocity update is explicitly defined by

un+1 = un+1/2+ε +
∆t

2

[

f vn+1/2+ε
− g (µ̃n+1

x + µS
x )

]

,(5.10)

vn+1 = vn+1/2+ε
−

∆t

2

[

f un+1/2+ε + g (µ̃n+1
y + µS

y

]

.(5.11)

Note that the value of ζn+1 does not depend on µ̃n+1 and that Step 3 is hence
entirely explicit except for the solution of a modified Helmholtz problem (5.8).

It can be shown that the scheme given by (5.1)-(5.11) is centered-in-time up
to higher order asymmetries due to interpolation errors in the semi-Lagrangian
advection under Step 2. Hence the method is second-order in time. Note that
the semi-Lagrangian advection in Step 2 could be replaced by other methods
suitable for advection problems [1].

Following the linear analysis provided in [8] for a similar discretization, it can
be shown that the newly proposed method is linearly equivalent to the SISL
method not only under zero mean advection [9] but also in case of non-vanishing
mean advection. This statement follows from the fact that (5.1)-(5.11) can be
viewed as a composition method (see, for example, [4]) and the property that
advection and wave propagation commute on a linearized equation level [1].

6 Numerical experiment

Both the fully implicit SL scheme (3.2)-(3.4) as well as the newly proposed
semi-Lagrangian implementation of the regularized Störmer-Verlet method have
been implemented using the standard C-grid [1] over a double periodic domain
with Lx = Ly = 3840 km (see [8] for details). The grid size is ∆x = ∆y = 60 km.
The time step is ∆t = 20 min and the value of f corresponds to an f -plane at 45o

latitude. The reference height of the fluid is set to H = 9665 m. The resulting
smoothing length (4.8) satisfies α ≈ 3.3 ∆x. The Rossby radius of deformation
is LR ≈ 3000 km. The maximum initial wind speed is approximately 11 m s−1.

In Fig. 6.1, we display the computed time evolution of potential vorticity (PV)
over a time period of 6 days using the newly proposed semi-Lagrangian Störmer-
Verlet (SLSV) method (5.1)-(5.11). We also provide the difference to the PV
field obtained from the fully implicit semi-Lagrangian method (3.2)-(3.4). (The
reference solution from the fully implicit semi-Lagrangian method can be found
in [8].) The results indicate that the SLSV method and the fully implicit SL
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Figure 6.1: Left panels: Computed time evolution, from initial time to t = 6
days, of PV over the domain (x, y) ∈ [0, 3840 km] × [0, 3840 km] using the
semi-Lagrangian Störmer-Verlet (SLSV) method with timestep ∆t = 20 min.
Contours plotted between 6.4 × 10−8 m−1s−1 and 2.2 × 10−7 m−1s−1 with con-
tour interval 1.56 × 10−8 m−1s−1. Right panels: Differences (semi-Lagrangian
Störmer-Verlet minus fully implicit semi-Lagrangian) at corresponding times are
plotted with a 10 times smaller contour interval, where thin (thick) lines are pos-
itive (negative) contours.
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method (3.2)-(3.4) lead to similar results for strongly nonlinear flow regimes (in
addition to being equivalent on a linearized equation level). Finally, note that
stability would require a time step of ∆t ≈ 1.6 min for a traditional explicit
Eulerian leapfrog method [1].

7 Conclusion

We have presented a promising alternative to the popular SISL method. The
new method shares the same linear stability properties as the SISL method and
maintains geostrophic balance relations. It is based on a semi-Lagrangian and
linearly implicit implementation of the popular Störmer-Verlet method applied
to a set of regularized fluid equations. An alternative implementation has been
proposed by Staniforth, Wood & Reich in [8].

Acknowledgments. We would like to thank Jason Frank, Andrew Staniforth,
and Nigel Wood for discussions on the subject of this paper.
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