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Abstract. Following IZAGUIRRE & HAMPTON [14], HOROWITZ [13], and ATTARD [1] as
well as work of one of the authors on dissipative particle dynamics [4] and modified equations
[23], we suggest a modified Metropolis criterion and a more flexible momentum update to
improve the acceptance rate and the flexibility of the thermal coupling in standard hybrid
Monte Carlo simulations.

1 Introduction

The starting point of any (classical) molecular simulation is a system of N particles,
which interact through both long and short range forces through Newton’s second
law:

ṙi = pi/mi, (1)

ṗi = Fi, i = 1, . . . , N (2)

where mi is the mass of particle i with position vector ri = (xi, yi, zi)T ∈ R
3 and

momentum pi = miṙi ∈ R
3. It is also assumed that the force acting on the ith

particle is conservative, i.e., there is a potential energy function V (r1, . . . , rN ) such
that

Fi = −∇ri
V.

Molecular dynamics can be performed under various ensembles. The most pop-
ular ensembles are (i) constant number of particles, constant energy, and constant
volume (NVE) ensemble, (ii) constant number of particles, constant pressure, and
constant temperature (NPT) ensemble, and (iii) constant number of particles, con-
stant volume, and constant temperature (NVT) ensemble. For the purpose of this pa-
per we will restrict ourselves to NVT ensemble simulations using the hybrid Monte
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Carlo (HMC) method of DUANE, KENNEDY, PENDLETON & ROWETH [6]. How-
ever, NVE simulation techniques play an important role in the design of the HMC
method.

The main contribution of this paper is the development of a new HMC method
that allows for (i) a modified momentum update and (ii) leads to a much improved
acceptance rate. That part of the report relies on theoretical results for symplectic
time-stepping methods (see, for example, BENETTIN & GIORGILLI [2]), the recently
introduced shadow hybrid Monte Carlo (SHMC) method of IZAGUIRRE & HAMP-
TON [14], the modified Monte-Carlo method suggested by HOROWITZ [13] (see also
ATTARD [1]), and work of one of the authors on dissipative particle dynamics (DPD)
(see, for example, [4]) and modified equations [23].

2 Description of the Basic HMC Method

The HMC method offers an elegant and efficient way to turn an NVE simulation into
a sampling method for the NVT ensemble. Let us assume that we have a numerical
method that time-steps the equations (1)-(2). We first randomly sample all momenta
pi according to the Boltzmann distribution

ρBoltzmann ∼ e−β‖pi‖2/2mi .

Here β = 1/kBT denotes the inverse temperature.
We next apply a MD simulation for a fixed number of time-steps and denote the

resulting update from the current positions and momenta (ri,pi), i = 1, . . . , N , to a
new configuration (r′i,p

′
i), i = 1, . . . , N , by

Ψ : (r,p) → (r′,p′),

where r is the collection of the N particle position vectors ri and p is the associated
momentum vector.

The new configuration is accepted with a probability of

min
(
1, exp

[
−β
{
(p′)T M−1p′/2 + V (r′) − pT M−1p/2 − V (r)

}])
. (3)

The sequence of steps:

1. randomly re-sample momenta from the Boltzmann distribution,
2. generate a new configuration (r′,p′),
3. accept the new configuration according to the Metropolis criterion (3),

is now repeated as often as necessary to sample properly from an NVT ensemble. As
shown by MEHLIG, HEERMANN & FORREST [21], it is essential for the method to
work properly that the map Ψ is time-reversible and volume preserving.

A number of modifications to Step 1 and Step 3 have been suggested. In par-
ticular, IZAGUIRRE & HAMPTON [14] implemented a modified Metropolis crite-
rion (3) to further increase the acceptance rate of HMC. Their approach relies on
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recent advances for symplectic integration methods and their theoretical understand-
ing. Furthermore, HOROWITZ [13] (see also [1]) pointed out that it is not necessary
to completely re-sample the momenta under Step 1 of a HMC scheme. However,
the scheme is not widely used due to its frequent reversal of momenta in case of
non-negligible rejection rates.

Combining these two specific modifications with work of one of the authors (see,
e.g., [4]) on dissipative particle dynamics (DPD) [7, 11], we will derive yet another
class of HMC methods, which we will describe in §4 and which we wish to promote
for further use in NVT simulations.

The results of the paper can be easily extended to Hamiltonian systems with
holonomic constraints by using the SHAKE extension [26] of the standard Störmer-
Verlet time-stepping method [9, 18].

3 Störmer-Verlet Time-Stepping Method
and Modified Hamiltonian

The most widely used numerical method for MD of type (1)-(2) is the Störmer-
Verlet/leapfrog method, which is written here in the velocity/momentum formula-
tion:

pn+1/2 = pn − ∆t

2
∇rV (rn), (4)

rn+1 = rn + ∆tM−1pn+1/2, (5)

pn+1 = pn+1/2 − ∆t

2
∇rV (rn+1), (6)

where ∆t is the step-size.
The popularity of the Störmer-Verlet method is due to its simplicity and its re-

markable conservation properties. We next outline a particular implication of its con-
servation of symplecticity [9, 18]. Namely, one can find a time-dependent Hamil-
tonian function H̃(r,p, 2π t/∆t), which is 2π-periodic in its third argument such
that the solution of

ṙ = +∇pH̃(r,p, 2π t/∆t),

ṗ = −∇rH̃(r,p, 2π t/∆t),

with initial conditions r(0) = rn and p(0) = pn is exactly equivalent to (rn+1,pn+1)
at t = ∆t. (See the papers by KUKSIN & PÖSCHEL [17] and MOAN [22] for the
mathematical details.)

This statement is not entirely satisfactory as it is well known that energy is not
conserved for time-dependent Hamiltonian problems. However, as first pointed out
by NEISHTADT [24], the time-dependence in H̃ averages itself out up to negligible
terms of size O(e−c/∆t) for sufficiently small step-sizes ∆t (here c > 0 is a constant
which depends on the particular problem). Hence the Störmer-Verlet method is the
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nearly exact solution [2] of a Hamiltonian problem with time-independent Hamil-
tonian Ĥ∆t(r,p). This time-independent Hamiltonian possesses an asymptotic ex-
pansion in the step-size ∆t of the form

Ĥ∆t = H + ∆t2δH2 + ∆t4δH4 + ∆t6δH6 + . . . , (7)

with

H2 =
1
12

pT M−1[DrrV (r)]M−1p +
1
24

[∇rV (r)]T M−1∇rV (r),

where DrrV (r) denotes the Hessian matrix of the potential energy V . Expressions
for the higher-order correction terms δHi, i = 4, 6, . . ., can be found using the Baker-
Campbell-Hausdorff (BCH) formula (see, e.g., [9, 18]).

A practical algorithm for assessing energy conservation with respect to a modi-
fied Hamiltonian has been proposed by SKEEL & HARDY [27]. We will follow the
modified equation approach of MOORE & REICH [23], which is particularly suited
to the Störmer-Verlet method.

The fact that the modified energy Ĥ∆t is essentially preserved exactly under the
Störmer-Verlet method has implications for HMC simulations. Namely, the quasi-
exact conservation of Ĥ∆t under the Störmer-Verlet method allows one to accept
almost all candidate moves with regard to a modified canonical ensemble (see IZA-
GUIRRE & HAMPTON [14]). We outline the details in the following section.

4 A New Method: Targeted Shadowing Hybrid Monte Carlo
(TSHMC)

A high acceptance rate is a desirable property of any Monte Carlo scheme. In fact,
one of the reasons for the introduction of the HMC method was its vastly superior
acceptance rate over standard Monte Carlo methods. However the acceptance rate
of HMC degrades with the size of the simulated molecular system. Furthermore,
in light of the modified Hamiltonian, it would appear that essentially no rejections
are necessary at all for a symplectic integration method such as Störmer-Verlet. In
fact, that is indeed the case up to a small rejection rate caused by the truncation
of (7) after a finite number of terms. A practical HMC algorithm based on modified
Hamiltonians was first proposed by IZAGUIRRE & HAMPTON [14]. We will describe
below a variant of their SHMC method with two important modifications:

(i) a simplified evaluation of the modified energy (Hamiltonian),
(ii) a modified and more flexible momentum update.

Note that time averages need to include the factor

wm = eβ(Êm
∆t−Em), (8)

where Em is the value of the given energy after completion of the mth SHMC/TSHMC
step and Êm is the modified energy, respectively, i.e., averages of an observable A
are computed according to the formula:
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〈A〉 =
1
M

∑M
m=1 A(rm,pm)wm

1
M

∑M
m=1 w

m
.

This is a standard re-weighting procedure for simulations in modified ensembles.
It is essential for the SHMC/TSHMC method that the modified energy can be

evaluated inexpensively. This rules out a direct evaluation according to the asymp-
totic expansion (7), since it would require the evaluation of higher-order derivatives
of the potential energy function V . However, it turns out that one can approximate
the modified energy to any order without any evaluation of higher-order derivatives
of V . We will outline the basic idea in the following subsection.

4.1 Evaluation of the Modified Energy

We now describe the approach of MOORE & REICH [23] for approximating modi-
fied Hamiltonians. The Störmer-Verlet method is first expressed in its positions only
leapfrog formulation

M
rn+1 − 2rn + rn−1

∆t2
= −∇rV (rn).

We next assume that there is a smooth function r(t) such that r(tn) = rn for all time-
steps tn of interest. Taylor expansion of r(t) about tn readily yields the following
well-known expression for the local truncation error formula for the second-order
central difference approximation:

rn+1 − 2rn + rn−1

∆t2
= r̈(tn) +

∆t2

12
r(4)(tn) + O(∆t4).

Since, by assumption, r(tn) = rn, we find that the smooth function r(t) has to
satisfy the (in second-order) modified equation

Mr̈ +
∆t2

12
Mr(4) = −∇rV (r) (9)

up to terms of order ∆t4. Higher-order modified equations can be easily found. We
restrict the discussion to the second-order modification for simplicity.

We now multiply the whole equation (9) by ṙT from the left to obtain, after a
rearrangement of term, the scalar equation

d

dt

[
1
2
ṙT Mṙ + V (r)

]
= −∆t2

12
ṙT Mr(4).

A remarkable observation is that the term on the right hand side of the last equation
can also be written as a total time derivative, i.e.

∆t2

12
ṙT Mr(4) =

∆t2

12
d

dt

[
ṙT Mr(3) − 1

2
r̈T Mr̈

]
.
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We may conclude that the modified energy

Ê∆t =
1
2
ṙT Mṙ + V (r) +

∆t2

12

[
ṙT Mr(3) − 1

2
r̈T Mr̈

]
(10)

is preserved to fourth-order in the step-size ∆t along numerical solutions computed
by the Störmer-Verlet/leapfrog method.

For a numerical verification of the modified energy Ê∆t, we need to approx-
imate the time derivatives by finite difference approximations of sufficiently high
order. For the given modified energy (10), this requires that the first-order time deriv-
ative in ṙT Mṙ/2 needs to be discretized to fourth-order in ∆t while the remaining
time derivatives need only be approximated to second-order (due to the prefactor of
∆t2/12). We use the fourth-order finite difference formula

ṙ(tn) ≈ rn+1 − rn−1

2∆t
− rn+2 − 2rn+1 + rn−1 − rn−2

12∆t

as well as the second-order formulas

r̈(tn) ≈ rn+1 − 2rn + rn−1

∆t2

and

r(3)(tn) ≈ rn+2 − 2rn+1 + rn−1 − rn−2

12∆t3
.

It follows that we require the five coordinate approximations {rn+i}i=−2,−1,0,1,2 to
evaluate the modified energy (10) at time tn to the desired fourth-order accuracy.
Given r0 and ṙ0 at the start of a MD simulation, this implies the additional com-
putation of “past” positions r−1 and r−2. Making use of the time-reversibility of
the Newtonian equations of motion, those positions can be computed by integrating
the equations forward in time over two time-steps with initial values r0 and −ṙ0. In
summary, given any pair of initial conditions (r0, ṙ0), the Störmer-Verlet/leapfrog
method assigns a modified energy Ê0

∆t by the procedure just described. For all later
times tn, the modified energy Ên

∆t is computed “on the fly”. (At the end of the sim-
ulation interval we have to take two additional time-steps.)

The standard Metropolis criterion (3) is now replaced by

min
(
1, exp

[
−β{Ê∆t(r′,v′) − Ê∆t(r,v)}

])
, (11)

where (r,v) = (r0,v0) and (r′,v′) is the numerical solution obtained at a given
time tN (i.e., after N Störmer-Verlet integration steps with step-size ∆t). Here we
used the notation v = ṙ = M−1p, v′ = ṙ′ = M−1p′. If the proposed move is
rejected, then the simulation is continued with r and negated momenta −p [13].

Following the HMC analysis of MEHLIG, HEERMANN & FORREST and HOROWITZ

[13, 21], it follows that the Störmer-Verlet method combined with the Metropolis
criterion (11) satisfies detailed balance and preserves the canonical ensemble for the
modified energy Ê∆t.
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The negation of the momenta in case of rejection is needed to satisfy detailed
balance. Contrary to the guided Monte Carlo method [13] such a reversal of mo-
menta is very infrequent under the TSHMC method and should not impact on the
sampling efficiency of the method. At the same time, the same argument leads to the
expectation that ignoring momentum negation after a rejected step will not alter the
simulation results significantly. In fact, the simulations carried out in §5 used no such
momentum negation.

4.2 Alternative Momentum Updates

HOROWITZ pointed out in [13] that it is not necessary to completely re-sample the
momenta under Step 1 of a standard HMC scheme. Instead one takes the set of given
momenta p and modifies it by a vector ξ ∈ R

3N to obtain a new set given by

p′ = p + σξ. (12)

Here σ > 0 is a free parameter and ξ is sampled from the Boltzmann distribution
ρBoltzmann, i.e., ξ is a vector of independent Gaussian random variables with mean
zero and variance kBT . Smaller values of σ lead to smaller perturbations in the
momenta. The new set of momentum vectors p′ is accepted with a probability of

min
(
1, exp

[
−β
{
(p′)T M−1p′/2 − pT M−1p/2

}])
.

This momentum update replaces the above Step 1 in a standard HMC method. Step 2
is then started from the given position vector q and the accepted momentum vector,
which we denote again by p.

Following COTTER & REICH [4], we suggest a further generalization of the up-
date (12):

p′ = p + σ

K∑

k=1

∇rhk(r)ξk, (13)

where σ and ξ = (ξ1, . . . , ξK)T ∈ R
K are defined as before, and the functions

hk(r), k = 1, . . . ,K, can be chosen quite arbitrarily. The particular choice

hk(r) = φ(rij), rij = ‖ri − rj‖,

k = 1, . . . , (N−1)N/2, φ a given function of inter-particle distances rij , transforms
(13) into an update very similar to what is used in dissipative particle dynamics
(DPD) [7, 11] (see also MA & IZAGUIRRE [20] for another application to MD). One
attractive feature of such an update is its conservation of linear and angular momenta:

N∑

i=1

pi =
N∑

i=1

p′
i,

N∑

i=1

ri × pi =
N∑

i=1

r′i × p′
i.

One can also set K = 3N and
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hi(r) = xi, hi+N (r) = yi, hi+2N (r) = zi,

i = 1, . . . , N , in (13), which leads back to (12). Many more choices are feasible and
of potential use. For example, one could apply the update only to particles near the
boundary of the simulation domain or to certain subunits of the molecular system.
Again, the strength of the coupling is controlled by the parameter σ.

Given a new set of momenta p′, we need to evaluate the corresponding modified
energy Ê∆t(r,v′), v′ = M−1p′. This step requires time-stepping the equations of
motion two steps forward and backward in time and, hence, two additional force field
evaluations are needed. We then apply (11) in its slightly modified form:

min
(
1, exp

[
−β{Ê∆t(r,v′) − Ê∆t(r,v)}

])
. (14)

It is again easily verified that the momentum update (13) combined with the
Metropolis criterion (14) satisfies detailed balance and preserves the canonical den-
sity corresponding to Ê∆t. Hence we may conclude that the TSHMC method (with-
out reweighting) constitutes a Markov chain Monte Carlo method which samples
from the canonical density ρcanonical ∼ exp(−βÊ∆t).

The targeted shadowing hybrid Monte Carlo (TSHMC) method may now be sum-
marized as follows. One alternates between constant energy MD steps, which are
accepted according to the Metropolis criterion (11) with modified energy (10), and
a partial DPD-type velocity resampling according to (13) and Metropolis criterion
(14). The concatenation of two Markov processes with identical invariant probability
density functions produces another Markov process with the same invariant proba-
bility density function. It should be noted that the computation of averages in the
original ensemble requires the weight factors (8).

5 Computer Experiment

The suggested approach was implemented and tested on a Linux cluster for an alanin
side chain analog. This system contains 900 water molecules with a total of 2705
atoms. We apply the OPLS-AA [16] forcefield parameters for alanin and the orig-
inal TIP3P model [15] for water molecules. Electrostatic interactions were treated
using a particle-mesh Ewald summation (PME) method [5, 8] and periodic boundary
conditions for a truncated octahedron box were applied.

We performed the simulation using three different techniques: TSHMC, standard
HMC and traditional MD. All three approaches used GROMACS 3.2.1 [19] to per-
form the necessary molecular dynamics simulation steps. The system was initially
equilibrated for 200 ps and then run for 1 ns at a temperature of 298 K. In the tra-
ditional MD approach the temperature was coupled to a heat bath of 298 K with a
coupling time constant of 0.1 ps using the Nosé-Hoover procedure [12, 25]. Integra-
tion of the equations of motion was performed using the Störmer-Verlet algorithm
and all bonds were constrained using the LINCS [10] algorithm with a distance con-
straint of 10e-6 Å. We used a step-size of ∆t = 2 fs in the traditional MD method.
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Figure 1. Total and potential energies for MD, HMC, and TSHMC

To investigate the effect of step-size and length of MD simulations per HMC step
on sampling efficiency of HMC and TSHMC, we ran both algorithms using three
different step-sizes (∆t = 1 fs, 2 fs, 2.5 fs) and two different MD simulation lengths
(150 and 1000 time steps, respectively). The fourth-order modified Hamiltonian was
used in the TSHMC approach. The parameter σ in (12) was set to 0.1, which led
to a rejection rate of about 40% in the momentum update within the TSHMC sim-
ulation. Total and potential energies for the three simulation approaches are com-
pared in Fig. 1. The average energies are in good agreement within the simulation



150 E. Akhmatskaya and S. Reich

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 1.5 2 2.5 3

HMC

TSHMC

Sampling Efficiency, 1000 MD steps

R
ej

ec
tio

n 
R

at
io

 (
%

)

timestep (fs)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 1.5 2 2.5 3

HMC

TSHMC

Sampling Efficiency, 150 MD steps

R
ej

ec
tio

n 
R

at
io

 (
%

)

timestep (fs)

Figure 2. Sampling efficiency of HMC and TSHMC as a function of step-size and number of
MD steps (per HMC step)

accuracy. As expected, TSHMC demonstrates much smoother energy profiles than
the other two simulation methods due to higher-order energy conservation in the
modified Hamiltonian. The magnitudes of energy fluctuations in both HMC ap-
proaches are significantly smaller than those observed for the standard constant tem-
perature MD simulations. The sampling efficiency of HMC and TSHMC as a func-
tion of step-size and number of MD steps (per HMC step) is presented in Fig. 2.
Observed rejection rates are almost identical for both choices of the MD simulation
length, which suggests that the MD simulation length per HMC step does not affect
much the acceptance/rejection rate at least for this particular model problem. On the
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contrary, the step size ∆t has a pronounced impact on the number of accepted config-
urations in HMC and TSHMC. The number of rejected configurations increases with
increasing time steps in both HMC methods. However, the increase is visibly faster
in standard HMC. In TSHMC the rejection rate is still rather low, around 2% for the
largest tested step-size ∆t. This is 20 times less than the rejection rate observed in
the corresponding standard HMC simulation.

6 Conclusion

We have suggested and implemented a modified HMC algorithm, which, in its most
general form, can be viewed as a thermodynamically consistent implementation of
dissipative particle dynamics (DPD). (See, for example, [3] for inconsistency prob-
lems with known time-stepping method for DPD.) In addtion, we have also inves-
tigated the effect of modified energies to increase the acceptance rate of standard
HMC. The results for our particular formulation of the modified energies are in line
with the observations of IZAGUIRRE & HAMPTON [14] for the SHMC method. We
re-emphasize that the TSHMC method is different from SHMC in two regards:

(i) a simplified evaluation of modified energies for the Störmer-Verlet method,
(ii) a thermodynamically consistent DPD-type (partial) momentum update.
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