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Abstract. Multi-symplectic methods have recently been proposed as a generalization of symplectic ODE
methods to the case of Hamiltonian PDEs. Their excellent long time behavior for a variety of Hamiltonian wave
equations has been demonstrated in a number of numerical studies. A theoretical investigation and justification of
multi-symplectic methods is still largely missing. In this paper, we study linear multi-symplectic PDEs and their
discretization by means of numerical dispersion relations. It is found that multi-symplectic methods in the sense of
Bridges & Reich [7, 19], such as Gauss-Legendre Runge-Kutta methods, possess a number of desirable properties
such as non-existence of spurious roots and conservation of the sign of the group velocity. A certain CFL-type
restriction on ∆t/∆x might be required for methods higher than second-order in time. It is also demonstrated
by means of the explicit midpoint method that multi-step methods may exhibit spurious roots in the numerical
dispersion relation for any value of ∆t/∆x despite being multi-symplectic in the sense of discrete variational
mechanics [15].

1. Introduction. The field of numerical analysis has experienced a recent, as well as growing,
interest in geometric integration. When solving differential equations numerically it is important to
preserve as much of the qualitative solution behavior as possible. In particular, it is advantageous
to numerically preserve the symplectic structure of Hamiltonian systems.

The topic of symplectic integration for Hamiltonian ODEs has been thoroughly analyzed.
The concept of symplectic time integration has also been extended to Hamiltonian PDEs (see,
e.g., [16]). The concept of space-time multi-symplectic integration is however much more recent
and its development is still in the beginning stages. In some respects, even the proper definition
of a multi-symplectic integrator is still not clear. The original approach, presented by Marsden,
Patrick and Shkoller [15], defines a multi-symplectic method as one which can be derived from a
Lagrangian formulation using a discrete variational principle. The original approach was limited
to first-order field theories (see [12] for an extension to second-order field theories). The discrete
variational approach allows the systematic derivation of one-step and multi-step multi-symplectic
methods.

The second approach, which was put forth by Bridges and Reich [7, 19], defines a multi-
symplectic integrator as a method which exactly preserves a multi-symplectic conservation law by
applying a symplectic one-step method such as Störmer-Verlet or implicit midpoint in space and
time.

It is our intent to study multi-symplectic integration methods in the context of linear multi-
symplectic PDEs. Based on a discussion of numerical dispersion relations, we will find that both
conservation of a multi-symplectic conservation law and discretization by one-step methods in
space and time should be considered essential ingredients of a multi-symplectic method.

According to Bridges [2, 3], a PDE of the general form

Kzt + Lzx = ∇zS(z) (1.1)

is called multi-symplectic provided K and L are (constant) d×d skew-symmetric matrices, and S :
R

d → R is a smooth function. Here and throughout, subscripts are used to denote differentiation
in the standard way, and we define z = z(x, t) to be a d-dimensional vector of state variables.
Many Hamiltonian PDEs can be formulated in this way, and the multi-symplectic formulation has
become useful for understanding these problems (cf. [2, 3, 4, 5, 6, 8]).
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As one would expect, however, the nonlinearity of equation (1.1) makes the study of numerical
solutions for the problem more difficult, and there is still much to understand with regard to multi-
symplectic discretization methods. Hence, the aim of this paper is to conduct an extensive analysis
of multi-symplectic discretization methods for the linear equation

Kzt + Lzx = Az (1.2)

where A is symmetric. This allows one to examine solutions and dispersion relations for both
the continuous and discrete versions of this equation, providing a thorough understanding of the
behavior of our numerical methods for linear problems.

We start by making the standard (complex-valued) separation of variables ansatz

z(x, t) = u(t)v(x)a

where u(t) and v(x) are complex-valued functions and a is a d-dimensional complex-valued vector.
Substituting this ansatz into the linear PDE (1.2) leads to the linear system

(

u′

u
K +

v′

v
L−A

)

a = 0.

Solutions are found by setting

λ =
u′

u
and µ =

v′

v

with the complex numbers λ and µ satisfying

det (λK + µL−A) = 0.

Since we are interested in wave-like solutions we furthermore seek (complex-valued) solutions with
λ = iω and µ = iκ, i.e.

z(x, t) = ei(kx+ωt)a. (1.3)

Here, k denotes the wave number and ω denotes the wave frequency, which must satisfy the
dispersion relation [3]

D(ω, k) := det (iωK + ikL−A) = 0. (1.4)

It is important to note that the matrix used in this calculation is self-adjoint, i.e., D(ω, k) =
D(ω, k), from which it is immediate that 0 = D(ω, k) = D(ω, k) for real k. Hence, for any given
real k, solutions ω of the dispersion relation are either real or come in complex-conjugate pairs
meaning there is no diffusion [20, Chapter 11].

With the dispersion relation, one can write the frequency as a function of the wave number,
such that

D(ω, k) = 0 ⇐⇒ ω = ω(k),

at least locally. Then, depending on the function D, there may be multiple frequencies ωi for every
k, corresponding to different modes. One could also pose the reverse question and ask how many
different wave numbers k can give rise to a given frequency ω.

It is worthwhile to note that taking the complex-conjugate in (1.3) also yields a solution and
hence

z(x, t) =
1

2

[

a ei(kx+ωt) + a e−i(kx+ωt)
]

(1.5)
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yields real-valued solutions. The dispersion relation is not restricted to single mode solutions
(1.3). In fact, the most general oscillatory solution of the linear PDE (1.2) can be stated as a
superposition of solutions

z(x, t) =
1

2

∑

i

∫

∞

0

ai(k) ei(kx−ωi(k)t)dk +
1

2

∑

i

∫

∞

0

ai(k) e−i(kx−ωi(k)t)dk, −∞ < x <∞,

which is obtained through Fourier analysis [20, Chapter 11]. Here the index i runs over all solution
branches of the dispersion relation.

An important derived quantity is the group velocity defined by

vg =
d

dk
ω(k) = −∂D

∂k
/
∂D
∂ω

.

The group velocity characterizes the speed of energy transport in wave packets [20, Chapter 11]
and, hence, is fundamental to the understanding of linear waves. Following Whitham [20, Chapter
11], we introduce the Lagrangian density

L =
1

2
aT [iωK + ikL−A] a (1.6)

and define the energy density

E = ω
∂L
∂ω

=
iω

2
aT Ka

and the energy flux

F = −ω
∂L
∂k

= −iω

2
aT La.

It holds that F = vgE since [2]

vg = −∂L
∂k

/
∂L
∂ω

= − aT La

aT Ka
.

We wish to extend the linear dispersion analysis to multi-symplectic integration methods. As
multi-symplectic methods are obtained as a space-time concatenation of symplectic methods, we
start the discussion with a review of results for symplectic ODE methods.

2. Symplectic Integration of Hamiltonian ODEs. We recall some basic properties of
symplectic integration methods for Hamiltonian ODEs of the form

Kzt = ∇zS(z), (2.1)

where K is a (constant) d × d skew-symmetric matrix and S : R
d → R a smooth function. A

numerical one-step method

zn+1 = Ψ∆t(z
n) (2.2)

is called symplectic if

dzn+1 ∧Kdzn+1 = dzn ∧Kdzn. (2.3)

(See [13] for details and use of wedge product notation.) Let us discuss implications for the
linearized equations

Kzt = Az, (2.4)
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where A is symmetric. We assume that the one-step method (2.2) is a Runge-Kutta (RK) method
with stability function R(z) [11]. Then the (complex-valued) numerical solution of (2.4) can be
written in the form

zn =
∑

i

R(λi∆t)nai,

where λi and ai have to satisfy the generalized eigenvalue problem

[λiK−A] ai = 0 (2.5)

associated with (2.4). Note that if λ is an eigenvalue of (2.5) then −λ is also an eigenvalue.
Furthermore, a symplectic RK method satisfies R(λ)R(−λ) = 1. The same property holds for all
(not necessarily symplectic) symmetric RK methods [11].

If we now restrict the analysis to the symplectic Gauss-Legendre Runge-Kutta (GL RK)
methods, then we conclude from R(λ)R(−λ) = 1 and A-stability of the method that R(z) is on
the unit circle for purely imaginary valued λ = iω. We write this in the form

R(iω∆t) = eiφ,

with an appropriate phase function φ(ω∆t) continuous in ω∆t.
Let us explicitly derive the phase function φ for the implicit midpoint rule

K
zn+1 − zn

∆t
= A

zn+1 + zn

2
.

We write φ = Ω∆t and obtain

eiΩ∆t − 1

∆t
Kai =

eiΩ∆t + 1

2
Aai

for each solution mode and, using (2.5) with λi = iωi, this equation implies

eiΩ∆t − 1

∆t
Ka = iωi

eiΩ∆t + 1

2
Ka.

Hence we must have

eiΩ∆t − 1

∆t
= iωi

eiΩ∆t + 1

2
,

which yields the definition for the stability function of the implicit midpoint method, i.e.

eiΩ∆t = R(iω∆t) =
1 + iω∆t/2

1− iω∆t/2
,

and

φ(ω∆t) = 2 tan−1(ω∆t/2) ∈ (−π, +π) (2.6)

is a monotone function in ω∆t.
The fourth-order GL RK method has stability function

R(z) =
1 + z/2 + z2/12

1− z/2 + z2/12
.

Setting z = iω∆t and R(iω∆t) = eiφ results in

tan
φ

2
=

ω∆t

2− ω2∆t2

6
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For positive ω, the function φ(ω∆t) can be chosen to increase monotonically from zero for ω = 0
to φ(ω∆t) = 2π for ω∆t → ∞. A similar statement holds for negative frequencies. Of course,
from a sampling point of view, we have eiΩ∆t = eiφ with

Ω =
1

∆t
[mod (φ(ω∆t) + π, 2π)− π] ∈ (−π/∆t, +π/∆t]. (2.7)

Note that the implicit midpoint method simply yields

Ω =
1

∆t
φ(ω∆t)

with phase function φ defined by (2.6).
For a general s-stage GL RK method of order p = 2s it holds that φ(ω∆t) is monotone with

values in the interval (−sπ, +sπ), φ(−y) = −φ(y), and φ(y) < y for y > 0 [10]. Due to sampling
on a discrete grid, i.e. (2.7), it can nevertheless happen that there are values of ∆t for which
Ωi = Ωj even though ωi 6= ωj . These numerically induced 1-1 resonances can occur for s ≥ 2 and

max
i
|φ(ωi∆t)| > π.

Numerical resonance can lead to instabilities of the scheme under small perturbations [13]. Note
that the implicit midpoint method and higher-order GL RK methods can be subject to other
numerically induced resonance instabilities. See, e.g., Mandziuk and Schlick [14].

Our discussion of GL RK methods applied to (linear) Hamiltonian ODEs may be summarized
as follows:

(i) Oscillatory solutions of (2.4) with frequency ω are represented numerically by an oscilla-
tory solution with frequency Ω.

(ii) There is one-to-one correspondence between numerical and analytic1 solutions modes (no
spurious computational modes as for linear multi-step methods).

(iii) The phase function φ is monotone. However numerical resonances due to (2.7) are possible
for GL RK methods with more than one stage.

It should be noted that the same statements would be true for any symmetric and A-stable
implicit RK method such as Lobatto IIIA and Lobatto IIIB [11]. However the family of Lobatto
IIIA and IIIB methods is not symplectic in the sense of (2.3).

We will now investigate how these properties translate to multi-symplectic discretization meth-
ods. We start with a discussion of the Preissman box scheme.

3. The Preissman box scheme. Applying the implicit midpoint rule to the PDE (1.1) in
both space and time yields,

Kδ+
t zn,m+1/2 + Lδ+

x zn+1/2,m = ∇S
(

zn+1/2,m+1/2
)

, (3.1)

where we define the edge midpoint approximations

zn+1/2,m =
1

2

(

zn+1,m + zn,m
)

, zn,m+1/2 =
1

2

(

zn,m+1 + zn,m
)

,

the cell center approximation

zn+1/2,m+1/2 =
1

4

(

zn+1,m+1 + zn+1,m + zn,m+1 + zn,m
)

,

and the finite difference approximations

δ+
t zn,m+1/2 =

1

∆t

(

zn+1,m+1/2 − zn,m+1/2
)

, δ+
x zn+1/2,m =

1

∆x

(

zn+1/2,m+1 − zn+1/2,m
)

.

1The qualifier analytic will be used throughout the paper to refer to a property of the given continuum equations
(e.g. analytic solutions, analytic dispersion relation, and analytic group velocity) as opposed to properties of the
numerical scheme (e.g. numerical solutions, numerical dispersion relation, and numerical group velocity).
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In addition, define

τ =
∆t

2
and χ =

∆x

2

through the remainder of the text.
Proposition 1. The Preissman box scheme (3.1) exactly preserves a multi-symplectic con-

servation law

δ+
t

(

dzn,m+1/2 ∧Kdzn,m+1/2
)

+ δ+
x

(

dzn+1/2,m ∧ Ldzn+1/2,m
)

= 0

Proof. Proof of this result is due to Bridges and Reich [7].
Applying the Preissman box scheme to the linear PDE (1.2) yields,

Kδ+
t zn,m+1/2 + Lδ+

x zn+1/2,m = Azn+1/2,m+1/2. (3.2)

Based upon the results of [17, 18], the modified equation for the linear PDE (1.2) can be stated
explicitly as

K

(

zt −
τ2

3
zttt +

2τ4

15
zttttt − . . .

)

+ L

(

zx −
χ2

3
zxxx +

2χ4

15
zxxxxx − . . .

)

= Az. (3.3)

This is a higher order linear PDE and we may substitute a standard solution ansatz of the form

z(x, t) = ei(Ωt+Kx)a

into the equation. This yields

(

Ki

(

Ω +
τ2Ω3

3
+

2τ4Ω5

15
+ . . .

)

+ Li

(

K +
χ2K3

3
+

2χ4K5

15
+ . . .

)

−A

)

a = 0.

Then, due to the identity

tan(θ) = θ +
θ3

3
+

2θ5

15
+ . . . ,

we obtain
(

i

τ
tan(τΩ)K +

i

χ
tan(χK)L−A

)

a = 0. (3.4)

The modified equation can also be stated in closed form because the expansions in (3.3) converge
and is given by

1

τ
K tanh(τ∂t)z +

1

χ
L tanh(χ∂x)z = Az.

Furthermore, the following theorem follows immediately from (3.4).
Theorem 1. The Preissman box scheme (3.2) preserves the analytic dispersion relation of

the PDE, such that

D (ω, k) = 0, (3.5)

for D as given in (1.4) with

ω =
tan(τΩ)

τ
and k =

tan(χK)

χ
, (3.6)

6



for −π
2 < τΩ < π

2 and −π
2 < χK < π

2 . In other words, the numerical dispersion relation is given
by

DN (Ω, K) := D
(

tan(τΩ)

τ
,
tan(χK)

χ

)

= 0.

This result was first published by Ascher and McLachlan [1]. See also [17]. Three important
conclusions are to be drawn. (i) The numerical group velocity Vg is defined by

Vg =
d

dK
Ω(K) = −∂D

∂k

∂k

∂K
/
∂D
∂ω

∂ω

∂Ω
= vg

∂k

∂K
/
∂ω

∂Ω
.

Since both

∂ω

∂Ω
> 0 and

∂k

∂K
> 0,

we have derived
Corollary 1. The sign of the analytic group velocity vg is preserved under the Preissman

box scheme.
(ii) The monotonicity and invertibility of (3.6) implies
Corollary 2. The numerical dispersion relation has as many solution branches as the

analytic relation and the multiplicity of solutions for fixed ω and k, respectively, is preserved.
(iii) We consider the Lagrangian density (1.6) with ω and k now functions of Ω and K,

respectively, and define the numerical energy density and flux for a single mode solution by

EN =
iΩ

2

∂ω

∂Ω
aT Ka, FN = −iΩ

2

∂k

∂K
aT La. (3.7)

Corollary 3. The numerical energy density and flux satisfy

FN = VgEN

for a single mode solution, where Vg is the numerical dispersion relation of the Preissman box
scheme.

Proof. The statement follows from the definitions (3.7) and the total derivative of

aT

(

i

τ
tan(τΩ)K +

i

χ
tan(χK)L−A

)

a = 0

with respect to K.

4. Numerical dispersion relation for multi-symplectic GL RK methods. We now
discuss the discretization of a linear multisymplectic PDE (1.2) using GL RK methods (possibly
of different orders) in space and time. We apply an s0-stage GL RK method in time with Butcher
arrays A0 = (a0

ij), b0 = (b0
i ), i, j = 1, . . . , s0, and a similarly denoted s1-stage GL RK method in

space.
Reserve the indices m and n for the spatial and temporal meshes, resp.; the indices i and j for

spatial and temporal stage indices, resp. The index k is a dummy index. Summation is implied
by repeated indices in a product.

Let Z ≈ z at interior stages, ζ, σ ≈ z on horizontal and vertical edges, resp. Let T ≈ zt at
interior stages, τ ≈ zt on edges. Let X ≈ zx at interior stages, ξ ≈ zx on edges. Let U ≈ zxt at
interior stages. (See Figure 4.1.)

KTij + LXij = AZij (4.1)

Xij = ξn
i + ∆t a0

jkUik (4.2)

Tij = τm
j + ∆x a1

ikUkj (4.3)

Zij = ζn
i + ∆t a0

jkTik (4.4)

= σm
j + ∆x a1

ikXkj (4.5)
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U ijTij

X ijZij

ζn

i
ξn

i
space

τmm
jj

tim
e

σ

z z

zn+1,m+1zn+1,m

n,m n,m+1

Fig. 4.1. Arrangement of approximate quantities in (4.1)–(4.11).

ξn+1
i = ξn

i + ∆t b0
jUij (4.6)

ζn+1
i = ζn

i + ∆t b0
jTij (4.7)

τm+1
j = τ m

j + ∆x b1
i Uij (4.8)

σm+1
j = σm

j + ∆x b1
i Xij (4.9)

zn+1,m+1 = zn,m+1 + ∆t b0
jτ

m+1
j (4.10)

= zn+1,m + ∆x b1
i ξ

n+1
i (4.11)

The equations (4.1), (4.4), (4.5), (4.7) and (4.9) form a closed set (same number of equations
as unknowns). To include the grid point data, either {(4.2), (4.6) and (4.11)} or {(4.3), (4.8) and
(4.10)} should be added. The remaining relations are redundant.

We will concentrate on equations (4.1), (4.4), (4.5), (4.7) and (4.9) in the following. Let us
assume that we have ω, k and a satisfying the plane wave solution

[iωK + ikL−A]a = 0.

We look for a (complex-valued) numerical solution of the form

zn,m = anm := eiΩn∆teiKm∆xa.

Let us therefore make the ansatz that all stage vectors are proportional to anm:

Znm
ij = γija

nm, Xnm
ij = xija

nm, Tnm
ij = tija

nm, ζn
i = αia

nm, σm
j = βja

nm

Substituting this solution into (4.1) gives

[tijK + xijL− γijA]anm = 0,

for which the dispersion relation yields

tij
γij

= iω,
xij

γij
= ik,

that is, Tij = iωZij and Xij = ikZij .
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Next, equation (4.4) yields

γija
nm = αia

nm + iω∆t a0
jkγika

nm,

For each i we obtain the solution

(I − iω∆t A0)γi: = αi1 , γi: = (γi1, . . . , γis1 )T

from which it follows that γij = λiµj with

µ = (I − iω∆t A0)−11 , α = λ.

Similarly, equation (4.5) yields

λ = (I − ik∆x A1)−11 , β = µ.

Finally substitution into (4.7) gives

λi(e
iΩ∆t − 1)anm = iω∆tb0

jλiµja
nm,

or,

(eiΩ∆t−1) = iω∆t (b0)T µ, ⇒ eiΩ∆t = 1+iω∆t (b0)T (I−iω∆t A0)−11 = R0(iω∆t). (4.12)

And (4.9) similarly yields

eiK∆x = R1(ik∆x). (4.13)

We have effectively proven the following theorem.
Theorem 2. Let two GL RK methods with stability functions R0(z) and R1(z) be applied to

the temporal and spatial derivatives of the linear PDE (1.2), respectively. Given a (complex) plane
wave solution (1.3) to (1.2), there exists a numerical plane wave solution of the form

zn,m = eiΩn∆teiKm∆xa = R0(iω∆t)n R1(ik∆x)ma

where ω and k satisfy the analytic dispersion relation D(ω, k) = 0. The numerical dispersion
relation

DN (Ω, K) = 0

follows from the analytic one by making use of the relations ω(Ω) and k(K) defined implicitly
through (4.12) and (4.13). The numerical dispersion relation satisfies

DN (Ω, K) = DN (Ω, K).

Since any symmetric and A-stable implicit RK method behaves like a symplectic method on
the linear equation level, Theorem 2 also applies to those RK methods as well and Lobatto IIIA
and IIIB methods in particular.

We may write R0(iy) = eiφ(y) and R1(iy) = eiθ(y), where φ and θ are monotone phase
functions as defined in §2. Hence the practical computation of the numerical dispersion relation is
as follows. Given a computational mode with wave number K ∈ (−π/∆x, +π/∆x], one first finds
the uniquely defined wave number k from eiK∆x = R1(ik∆x). The analytic dispersion relation
D(ω, k) = 0 implies a corresponding frequency ω. One then uses R0(iω∆t) = eiφ to determine
the uniquely defined phase φ(ω∆t). Finally, the modulo operation (2.7) gives the computational
frequency Ω.

A number of important conclusions may be drawn. (i) Monotonicity of φ and θ implies φ′ ≥ 0,
θ′ ≥ 0, and we obtain
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Corollary 4. The numerical group velocity

Vg = −∂DN

∂K
/
∂DN

∂Ω

at (K, Ω) has the same sign as the group velocity

vg = −∂D
∂k

/
∂D
∂ω

for the associated pair (k, ω).
(ii) Monotonicity of φ and θ implies that we can define the inverses of φ and θ and the two

explicit relations

ω =
1

∆t
φ−1(∆tΩ), k =

1

∆x
θ−1(∆xK).

Using these two relations, we find that a numerical single mode solution satisfies

aT (iωK + ikL−A) a = 0.

Definition (3.7) for the energy density and flux implies now
Corollary 5. The energy density and flux, as defined in (3.7), satisfy

FN = VgEN

for a numerical single mode solution, where Vg is the numerical group velocity of the multi-
symplectic scheme.

(iii) Because of (2.7), non-intersecting branches of the analytic dispersion relation may intersect
in the (K, Ω) plane unless either the implicit midpoint method is applied in time or ∆t is chosen
such that

sup
k∈S

|φ(ω(k)∆t)| ≤ π,

where k is to be restricted to the proper domain S determined by the possible numerical wave
numbers −π < K∆x ≤ π. Intersecting branches (resonances) of the numerical dispersion relation
may lead to instabilities of the method under small perturbations (see [2] for a discussion of the
analytic case). Exclusion of intersecting branches leads to a CFL-type step-size restriction (except
for an implicit midpoint time discretization). This will be discussed further in the following section.

5. An example: Fourth-order GL RK method in space and time. The linear wave
equation

utt = uxx

can be reformulated as a multi-symplectic PDE of the form

−vt − wx = 0, ut = v, ux = −w (5.1)

with z = (u, v, w)T ,

K =





0 −1 0
1 0 0
0 0 0



 , L =





0 0 −1
0 0 0
1 0 0



 , A =





0 0 0
0 1 0
0 0 −1



 .

The analytic dispersion relation is ω2 = k2. The application of the fourth-order GL RK method
in space yields

tan
K∆x

2
=

k∆x

2− k2∆x2

6
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Fig. 5.1. The numerical dispersion relations displayed in the left two plots are for a fourth-order GL RK
space and time discretization for different values of β = ∆t/∆x. The intersecting branches can clearly be seen for
β = 2. These intersecting branches are no longer presented in a fourth-order space and time discretization with
the time discretization now being a fourth-order composition method based on the implicit midpoint method. These
results are displayed in the two plots to the right.

and we find that k∆x must be in the range of 0 ≤ k∆x <
√

12 for computational wave numbers
K satisfying 0 ≤ K∆x < π. More specifically, we obtain

k∆x = −3

b
+

√

9

b2
+ 12, b = tan

K∆x

2
.

Let us apply the same fourth-order method as the temporal discretization. Upon introducing
the step-size mesh ratio β = ∆t/∆x, one finds that ω∆t satisfies the inequalities

|ω∆t| < β
√

12.

Branches of the numerical dispersion relation intersect whenever β > 1. However, φ′ ≥ 0 (i.e.
preservation of the sign of the group velocity) is guaranteed for any value of β. See Fig. 5.1 for
both cases β < 1 and β > 1.

Intersecting branches can be avoided altogether by an implicit midpoint discretization in time.
Higher-order temporal discretization based upon the implicit midpoint method can be constructed
using, e.g., Yoshida’s fourth-order composition method [21]. The composed method still gives rise
to a stability function of the form

R(iω∆t) = eiφ, φ(ω∆t) = 2φIM(γω∆t) + φIM((1− 2γ)ω∆t),

where γ = 1/(2− 21/3) and φIM is the phase function for the implicit midpoint method. It can be
verified that |φ(ω∆t)| ≤ π and that φ is a monotone function. See Fig. 5.1 for numerical results.

6. The explicit midpoint scheme. This section discusses the effect of symplectic non-
compact differencing methods by means of the explicit midpoint scheme.
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Applying the explicit midpoint rule in both space and time yields a simple second-order two-
step method. Introducing

δ
1/2
t zn,m =

1

2∆t

(

zn+1,m − zn−1,m
)

and δ1/2
x zn,m =

1

2∆x

(

zn,m+1 − zn,m−1
)

,

in order to simplify notation, we present the explicit midpoint scheme in the following proposition.
Proposition 2. The discretization

Kδ
1/2
t zn,m + Lδ1/2

x zn,m = ∇zS (zn,m) ,

satisfies a discrete multi-symplectic conservation law

δ+
t

(

dzn,m ∧Kdzn−1,m
)

+ δ+
x

(

dzn,m ∧ Ldzn,m−1
)

= 0.

Proof. The associated variational equation is given by

Kδ
1/2
t dzn,m + Lδ1/2

x dzn,m = Szz(z
n,m)dzn,m.

After taking the wedge product with dzn,m, we get

dzn,m ∧Kδ
1/2
t dzn,m + dzn,m ∧ Lδ1/2

x dzn,m = 0,

which is equivalent to

0 =
1

∆t

(

dzn,m ∧K
(

dzn+1,m − dzn−1,m
))

+
1

∆x

(

dzn,m ∧ L
(

dzn,m+1 − dzn,m−1
))

.

Since

dzn,m ∧K
(

dzn+1,m − dzn−1,m
)

= dzn,m ∧Kdzn+1,m − dzn,m ∧Kdzn−1,m

= dzn+1,m ∧Kdzn,m − dzn,m ∧Kdzn−1,m

and a similar result for the spatial discretization part, this gives the desired result.
Applying this discretization to the linear equation yields

Kδ
1/2
t zn,m + Lδ1/2

x zn,m = Azn,m. (6.1)

Lemma 1. Numerical solutions of the method (6.1) satisfy the numerical dispersion relation

DA (ω, k) = 0

for DA as given in (1.4) with

ω =
sin(Ω∆t)

∆t
and k =

sin(K∆x)

∆x
,

for −π < ∆tΩ ≤ π and −π < ∆xK ≤ π.
Proof. Substituting the (complex-valued) numerical solution ansatz

zn,m = ei(Ωn∆t+Km∆x)a

into (6.1) gives

(

K
eiΩ∆t − e−iΩ∆t

2∆t
+ L

eiK∆x − e−iK∆x

2∆x
−A

)

a = 0.
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Now, using the trigonometric identities

eiΩ∆t − e−iΩ∆t = 2i sin(∆tΩ), and eiK∆x − e−iK∆x = 2i sin(∆xK),

the proof is completed.
A first important conclusion is that the relation R(iω∆t) = eiφ implies that φ(ω∆t), defined

by

sin φ = ω∆t,

is no longer monotone and is not defined for |ω∆t| > 1 (instability of the method). Furthermore,
the non-monotonicity implies the existence of spurious roots in the numerical dispersion relation.
A similar observation applies to the midpoint spatial discretization. Non-monotonicity also implies
that the sign of the numerical group velocity can be different from the sign of the analytic value
for the corresponding (ω, k) pair.

We now investigate the behavior of the explicit midpoint space-time discretization for the
linear wave equation (5.1). The discretization can be derived from the discrete Lagrangian

L =
1

2

∑

n,m

[

(

un+1,m − un−1,m

2∆t

)2

+

(

un,m+1 − un,m−1

2∆x

)2
]

following the principle of discrete variational mechanics [15]. The numerical dispersion relation is
given by

sin2(Ω∆t) =
∆t2

∆x2
sin2(K∆x)

and is real-valued provided ∆t/∆x ≤ 1 (CFL condition). However, even for ∆t/∆x ≤ 1, the
numerical dispersion relation has spurious roots for given K and Ω, respectively.

Let us first demonstrate the implication of the non-monotone numerical dispersion relation for
solutions of the linear wave equation (5.1). We solve the wave equation with the explicit midpoint
method in space and time over a spatial domain x ∈ [0, 1) with periodic boundary conditions and
initial data

u(x, 0) = f(x), v(x, 0) = −f ′(x), f(x) = exp(−302(x− 1/2)2) sin(50πx).

The analytic solution consists of a wave packet moving to the right. The numerical solution for
∆x = 1/450 and ∆t = 0.9∆x is displayed in Fig. 6.1. The small perturbation moving towards the
left is due to the non-monotone numerical dispersion relation and would be absent for a GL RK
discretization in space and time.

The spurious roots for K and/or Ω in the numerical dispersion relation of the space-time
explicit midpoint discretization can be partially eliminated by substituting a symplectic one-step
method in space or in time. As an example we consider the symplectic leapfrog/Störmer-Verlet
(LF/SV) method. Applying the LF/SV method in space yields the numerical dispersion relation

sin2(Ω∆t) =
4∆t2

∆x2
sin2(K∆x/2),

while application in time implies

sin2(Ω∆t/2) =
∆t2

4∆x2
sin2(K∆x).

As shown in Fig. 6.2 both combinations still imply spurious roots in their numerical dispersion
relations. The same statement is true if the Störmer-Verlet method is replace in time by the
implicit midpoint method. The only difference is that there is no longer a stability restriction on
β. See Fig. 6.3.

It should be noted that there are spatial multi-step discretizations with monotone phase
function [9]. However those methods do not seem to satisfy a discrete variational principle and,
hence, do not give rise to multi-symplectic discretization methods.
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Fig. 6.1. Numerical propagation of a wave packet under the space-time explicit midpoint (EMP) method. The
analytic solution consists of a wave packet moving entirely to the right. The displayed small perturbation moving
towards the left is a numerical artifact due to the non-monotone numerical dispersion relation of the EMP method.
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Fig. 6.2. The numerical dispersion relations displayed on the left is for an explicit midpoint (EMP) dis-
cretization in time and a Störmer-Verlet (LF/SV) discretization in space. The spurious branches (roots) in the
numerical dispersion relation are due to the multi-step EMP method. On the contrary, an LV/SV discretization
in time combined with a EMP discretization in space yields a non-monotone dispersion relation implying spurious
roots.

7. Summary: Towards a characterization of multi-symplectic integration meth-

ods. There are a variety of numerical discretizations that satisfy a discrete multi-symplectic con-
servation law. When applied to linear multi-symplectic PDEs with wave-like solutions, all these
methods yield real-valued numerical dispersion relations

DN (Ω, K) = 0
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Fig. 6.3. The displayed numerical dispersion relations are for an explicit midpoint (EMP) discretization in
space and an implicit midpoint (IMP) discretization in time. Results are shown for β < 1 and β > 1.

provided the ratio ∆t/∆x satisfies a CFL-type condition ∆t/∆x ≤ C, where C is a positive
number. This follows from the fact that R(z), i.e. zn+1 = R(z)zn, of a (stable and consistent)
symplectic (one-step or multi-step) method has to satisfy

|R(iσ)| = 1

for sufficiently small σ ≥ 0 because of conservation of volume.
One-step multi-symplectic discretizations in space and time, such as GL RK, lead to (complex-

valued) numerical approximations of the form

zn,m = R0(iω∆t)n R1(ik∆x)m a,

where R0(z) and R1(z) are the stability functions for the temporal and spatial discretization,
respectively. It follows that multi-symplectic GL RK discretizations in space and time are uncon-
ditionally stable, i.e. C =∞.

Another key aspect of numerical methods is the existence or non-existence of spurious roots
in the numerical dispersion relation. The existence of spurious modes can be excluded provided
(i)

R0(iy) = eiφ(y), R1(iy) = eiθ(y)

for monotone phase functions φ, θ and (ii) ∆t/∆x satisfies a CFL-type condition ∆t/∆x ≤ c.
While all GL RK methods have monotone phase functions [10], the implicit midpoint time dis-
cretization is the only GL RK method for which c = ∞. Monotonicity of the phase function
φ(σ) alone implies conservation of the sign of the group velocity under numerical discretization.
Hence wave packets propagate numerically at a perturbed speed but in the correct direction. A
multi-symplectic discretization with

c <
∆t

∆x
≤ C

will, in general, lead to numerically induced 1-1 resonances (intersections of solution branches of
the dispersion relation). Those spurious resonances can lead to instabilities of the method under
small perturbations in the same manner as analytic resonances can give rise to instabilities [2]. It
was found that higher-order time discretizations with c = ∞ can be constructed by proper com-
position of the implicit midpoint method. It should be noted that multi-symplectic methods can
be subject to additional numerically induced resonances. (Compare, e.g., Mandziuk and Schlick
[14] for the case of Hamiltonian ODEs.) This issue will be investigated in detail in a forthcoming
publication.
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