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Symplectic Time-Stepping for Particle Methods

Matthew Dixon∗ and Sebastian Reich∗∗

Department of Mathematics, Imperial College London, London SW7 2AZ, England

This paper surveys some of the fundamental properties of symplectic integration
schemes for classical mechanics and particle methods in particular. The widely
used Störmer-Verlet method is discussed in detail and implications of conservation
of symplecticity on long term simulations are outlined. The second part of the
paper describes the application of a Lagrangian particle method and the Störmer-
Verlet time integrator to numerical weather prediction (NWP). A simple vertical
slice model and non-hydrostatic flow over orography are discussed in detail.
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1 Introduction

This survey is intended to provide an introduction to the concept of symplectic time
integration as applicable to conservative systems of interacting particles. Such parti-
cle systems arise in the context of molecular dynamics [13, 1], astrophysics [26, 16],
plasmaphysics [22], and fluid dynamics [33, 14]. Conservation of important physical
quantities such as energy and momentum are crucial for long time simulations; these
conservation laws are represented by a rich symmetry structure in the symplectic
time-stepping algorithms which is both mathematically elegant and physically intu-
itive [34, 20, 25]. We will demonstrate this for the Störmer-Verlet method [34, 20, 25],
which is the most popular symplectic integration method, in §3.

Throughout the survey, we will consider systems of N particles which interact
through Newton’s 2nd law:

ṙi = pi/mi, (1)

ṗi = Fi, i = 1, . . . , N (2)

where mi is the mass of particle i with position vector ri = (xi, yi, zi)
T ∈ R

3 and
momentum pi = miṙi ∈ R

3. It is also assumed that the force Fi acting on the ith

particle is conservative; i.e., can be derived from a potential energy function.

We begin the survey by introducing the concepts of Hamiltonian dynamics and sym-
plecticity. We continue with the discussion of the symplectic Störmer-Verlet method
and its numerical properties in terms of backward error analysis. The rest of the survey
is then devoted to numerical weather prediction (NWP) as an emerging application
area for particle methods and symplectic time integration.
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2 Matthew Dixon and Sebastian Reich: Symplectic Time-Stepping

2 Hamiltonian Dynamics and the Symplectic Form

For a particle system with conservative forces

Fi = −∇ri
V (r1, . . . , rN )

(where V (r1, . . . , rN ) is some potential energy function) the equations of motion (1)-
(2) conserve total energy

H =
1

2

N
∑

i=1

‖pi‖
2/mi + V (r1, . . . , rN ). (3)

Here ∇ri
V (r) ∈ R

3 represents the column vector of partial derivatives given by

∇ri
V (r) = (∂xi

V (r), ∂yi
V (r), ∂zi

V (r))T , r = (rT
1 , . . . , r

T
N )T .

The conservative nature of the forces has important implications for the design of
practical numerical methods for particle methods. It is easily verified that equations
(1)-(2) are equivalent to the more abstract formulation

ṙi = +∇pi
H, ṗi = −∇ri

H, (4)

i = 1, . . . , N , where the Hamiltonian function H is given by (3). Hence particle
methods fall into the category of Hamiltonian mechanics [3]. This observation has
important implications for the numerical treatment relating to the symplectic structure

of Hamiltonian mechanics [3, 25]. To see this symplectic structure, take a solution
(ri(t),pi(t)), i = 1, . . . , N , of the equations (1)-(2) and linearize (1)-(2) along that
solution to obtain the following time-dependent linear equations

Ṙi = Pi/mi, (5)

Ṗi = −

N
∑

j=1

Aij(t)Rj (6)

in the variables Ri ∈ R
3, Pi ∈ R

3, where

Aij(t) = Drirj
V (r1(t), . . . , rn(t))

is a symmetric, time-dependent 3× 3 matrix of second order partial derivatives of V

with respect to ri and rj . Let (R
(1)
i (t),P

(1)
i (t)) and (R

(2)
i (t),P

(2)
i (t)) denote any two

solutions of (5)-(6). Then it is easy to check that

d

dt

[

N
∑

i=1

R
(1)
i (t) ·P

(2)
i (t)−R

(2)
i (t) ·P

(1)
i (t)

]

= 0.

The expression in the bracket is linear in each of the arguments and defines a two-form
Ω called the symplectic form. Hence the more abstract property of conservation of

symplecticity Ω̇ = 0 is derived. (See the Appendix for a precise definition and more
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details.) A consequence of conservation of symplecticity is conservation of volume in
phase space [3].

Additional conservation properties may apply. For example, consider a particle
system with a pairwise force Fij acting on particle i due to particle j and

Fi =

N
∑

j=1

Fij .

A wide range of the potential energy functions commonly used in particle methods
lead to interactions that furthermore satisfy Newton’s third law:

Fij = −Fji

and the force Fij acts into the direction of rij = ri − rj . The immediate consequence
is that such systems conserve total linear and angular momentum:

P =
N
∑

i=1

pi, L =
N
∑

i=1

ri × pi.

3 The Symplectic Störmer-Verlet Algorithm

Let us rewrite equations (4) in the more compact form

ṙ = +∇pH, ṗ = −∇rH, (7)

with p = (pT
1 , . . . ,p

T
N )T , r = (rT

1 , . . . , r
T
N )T as defined before, the Hamiltonian (3)

equivalent to

H =
1

2
pT M−1p + V (r),

and M a diagonal mass matrix.
The most widely used numerical method for equations of type (7) is the Störmer-

Verlet method, which is written here in the momentum formulation:

pn+1/2 = pn −
∆t

2
∇rV (rn), (8)

rn+1 = rn + ∆tM−1pn+1/2, (9)

pn+1 = pn+1/2 −
∆t

2
∇rV (rn+1), (10)

where ∆t is the step size. There is evidence that the method was already known to
Newton and used in his Principia from 1687 to prove Kepler’s second law (see [21]).

There exist a number of essentially equivalent formulations of the Störmer-Verlet
method. See, for example, Schlick [35]. Introduce the abbreviation kick for the
momentum updates (8) and (10), and the abbreviation drift for the position update
(9). Hence the momentum Störmer-Verlet method may be characterized as kick-drift-

kick.
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4 Matthew Dixon and Sebastian Reich: Symplectic Time-Stepping

Why is the Störmer-Verlet method so successful for conservative particle systems?
Several reasons can be given. The method is easy to implement, it exactly conserves
total linear and angular momentum, it is time-reversible, and the total energy (3) is
very well conserved over long simulation times even for large and complex systems.

In fact, taking a slightly different perspective, these conservation properties be-
come less of a surprise. Recall that the equations of motion can be derived from the
Hamiltonian function (3). Write the Hamiltonian function H as the sum of three parts

H1 =
1

2
V (r), H2 =

1

2
pT M−1p, H3 =

1

2
V (r).

Taking each of these terms separately to be the Hamiltonian function of a Hamiltonian
system gives rise to equations of motion with trivial dynamics. For example, take the
Hamiltonian H1. The associated equations are

ṗ = −
1

2
∇rV (r), ṙ = 0.

These equations can be solved analytically, producing the momentum update (kick):

p(t) = p(0)−
t

2
∇rV (r), r(t) = r(0).

Denote the associated map from time t = 0 to t = τ by Ψτ,H1
: (r(0),p(0)) →

(r(τ),p(τ)). Similarly Ψτ,H3
= Ψτ,H1

and Ψτ,H2
is easily calculated to be the position

update (drift):

p(τ) = p(0), r(τ) = r(0) + τM−1p(0).

Now, if one applies the map Ψτ,H1
with τ = ∆t to the numerical approximation

(rn,pn) and calls the result (rn,pn+1/2), and then applies Ψ∆t,H2
to that approx-

imation followed by an application of Ψ∆t,H3
, then the result (rn+1,pn+1) is ex-

actly equivalent to the outcome from the Störmer-Verlet method (8)-(10). Hence the
Störmer-Verlet method may be written as a map Φ∆t : (rn,pn) → (rn+1,pn+1) which
itself is a concatenation of three maps:

Φ∆t = Ψ∆t,H3
◦Ψ∆t,H2

◦Ψ∆t,H1
.

In other words, each of the three maps corresponds to exactly one step in the kick-

drift-kick sequence of the Störmer-Verlet method (8)-(10). A number of very useful
conclusions can be drawn from this abstract result.

(i) Each map Ψ∆t,Hi
conserves total linear and angular momentum. Hence the com-

position of these maps (i.e. the Störmer-Verlet method) conserves total linear
and angular momentum.

(ii) Each map Ψ∆t,Hi
is the exact solution to a Hamiltonian differential equation

and thus conserves the symplectic two-form Ω introduced in §2 (see also the
Appendix). Hence the Störmer-Verlet method preserves the symplectic two-form
Ω from time step to time step, i.e. Ωn+1 = Ωn. A numerical integrator with this
property is called a symplectic method [34, 20, 25].
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(iii) Time-reversibility of the Störmer-Verlet method follows from the obvious symme-
try property

Ψ∆t,H3
◦Ψ∆t,H2

◦Ψ∆t,H1
= Ψ∆t,H1

◦Ψ∆t,H2
◦Ψ∆t,H3

in the composition of the three flow maps. This symmetry also implies that the
Störmer-Verlet method is second order.

We next describe a truly remarkable observation for the Störmer-Verlet method which
relies on its conservation of the symplectic two-form Ω. Namely, one can find a time-
dependent Hamiltonian function H̃(r,p, 2π t/∆t) which is 2π-periodic in its third ar-
gument such that the solution of

ṙ = +∇pH̃(r,p, 2π t/∆t),

ṗ = −∇rH̃(r,p, 2π t/∆t)

with initial conditions r(0) = rn and p(0) = pn is exactly equivalent to (rn+1,pn+1)
at t = ∆t. (See the paper by Kuksin & Pöschel [24] and Moan [28] for the
mathematical details.) Using a more abstract notation, we can state

Φ∆t = Ψ∆t,H̃.

This result tells us that the solution behaviour of the Störmer-Verlet method is com-
pletely characterized by a time-dependent Hamiltonian problem with Hamiltonian
function H̃.

This statement is not entirely satisfactory as it is well known that energy is not

conserved for time-dependent Hamiltonian problems. However, as first pointed out by
Neishtadt [30], the time-dependence in H̃ averages itself out up to negligible terms
of size O(e−c/∆t) for sufficiently small step-sizes ∆t (here c > 0 is a constant which
depends on the particular problem). Hence we can claim that the Störmer-Verlet
method is the nearly exact solution of a Hamiltonian problem with time-independent

Hamiltonian Ĥ∆t(r,p). This time-independent Hamiltonian possesses an asymptotic
expansion in the step-size ∆t of the form

Ĥ∆t = H+ ∆t2δH2 + ∆t4δH4 + ∆t6H6 + . . . ,

with

H2 =
1

12
pT M−1[DrrV (r)]M−1p +

1

24
[∇rV (r)]T M−1∇rV (r),

where DrrV (r) denotes the 3N × 3N Hessian matrix of the potential energy V . Ex-
pressions for the higher order correction terms δHi, i = 4, 6, . . ., can be found using
the Baker-Campbell-Hausdorff (BCH) formula (see [34], [20], or [25]).

A practical algorithm for assessing energy conservation with respect to a modified
Hamiltonian has been proposed by Skeel & Hardy [36]. See also [29] for an easier
construction particularly suited to the Störmer-Verlet method.
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6 Matthew Dixon and Sebastian Reich: Symplectic Time-Stepping

The fact that the modified energy H̃∆t is essentially preserved exactly under the
Störmer-Verlet method and the fact that

|H − Ĥ∆t| = O(∆t2)

explains the observed approximate conservation of energy under the Störmer-Verlet
method. See Benettin & Giorgilli [4], Hairer & Lubich [19] and Reich [32] for
rigorous results.

In many practical applications, such as molecular dynamics and numerical weather
prediction, the initial state (r0,p0) of a system is not known exactly. In such circum-
stances it makes more sense to consider an initial probability distribution function
(PDF) ρ0(r,p), which is centered about the expected initial state (r0,p0). Hence
one is led to actually consider the time evolution of this initial PDF under the given
Hamiltonian equations of motion. Using flow map notation this can be written as

ρ(t) = ρ0 ◦Ψt,H

for the analytic problem and

ρ̃(tn) = ρ0 ◦Ψtn,H̃

for the Störmer-Verlet method. The ‘observed’ value of an observable A, such as
temperature or pressure, is now defined at any time t as the spatial average of A with
respect to ρ(t):

〈A〉(t) =

∫

Aρ(t) drdp.

This average gets replaced by

〈Ã〉(tn) =

∫

A ρ̃(tn) drdp.

in a numerical computation, where the integral in turn is approximated by a sum over
many trajectories with initial data sampled from the initial PDF ρ0. Provided the
original Hamiltonian H and the modified Hamiltonian H̃ share the same ‘qualitative’
dynamics, one can expect the two expectation values 〈A〉(tn) and 〈Ã〉(tn) to be close
even over long time intervals. This vague and non-rigorous statement is indeed con-
firmed by numerous simulation results. For attempts to put such a statement within
a rigorous mathematical context see Reich [32] and Tupper [40].

Let us summarize the main points of this section. The Störmer-Verlet method can
be written as the concatenation of exact solution maps to a sequence of Hamiltonian
functions Hi, i = 1, 2, 3. This implies that the Störmer-Verlet method is symplectic
and hence is equivalent to the exact solution of a time-dependent modified Hamiltonian
problem. For sufficiently small step-sizes this time-dependence averages itself out and
an excellent long time conservation of energy is thus observed numerically.

These statements apply to all numerical methods that can be derived by a splitting
of a Hamiltonian function H into exactly solvable parts. One of the most interesting
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recent applications of this approach to particle methods is in rigid body dynamics and
we refer the reader to the publications of Touma & Wisdom [38], Reich [31], and
Dullweber, McLachlan & Leimkuhler [8]. Another application is provided by
the symplectic multiple-time-stepping methods suggested by Tuckerman, Berne &

Martyna [39] and Grubmüller, Heller, Windemuth & Schulten [18] as well
as its mollified variants introduced by Garćıa-Archilla, Sanz-Serna & Skeel

[15] and Izaguirre, Reich & Skeel [23].
For a more complete perspective on symplectic integration methods and classical

mechanics, the reader is referred to a text on the subject such as that of Sanz-Serna

& Calvo [34], Hairer, Lubich & Wanner [20], and Leimkuhler & Reich [25].

4 Numerical Weather Prediction (NWP)

We now come to numerical weather prediction (NWP) as an emerging application area
for particle methods and symplectic time-stepping methods. For an introduction to
atmospheric dynamics and its governing equations see Andrews [2]. See also Durran

[9] for a discussion of numerical methods.
Specifically, we will discuss an application of the Hamiltonian particle-mesh (HPM)

method of Frank, Gottwald & Reich [10, 11] to a two-dimensional vertical slice
model. Such simplified models are commonly used to study non-hydrostatic flow over
orography [37, 5].

The HPM method has recently also been applied to the shallow-water equations in
spherical geometry [12] and to a two-layer shallow-water model [6].

The only other two publications on particle methods for NWP that we are aware
of are Salmon [33] and Gadian [14]. Both references use the SPH method of Lucy

[27] and Monaghan & Gingold [17] and apply it to two-dimensional (vertical and
horizontal) atmospheric model systems.

4.1 Euler Equations of Atmospheric Motion

The Euler equations for inviscid isentropic motion of a perfect gas in a rotating refer-
ence frame can be expressed in the form [9]:

dv

dt
= −cpθ∇xπ − gk− fk× v, (11)

dθ

dt
= 0, (12)

dπ

dt
= −

R

cv
π∇x · v, (13)

where pressure p, as used in the standard formulation of Euler’s equations, has been
replaced by Exner’s function

π = (p/p0)
R/cp =

T

θ
,

which gives rise to the relation ρ−1∇xp = cpθ∇xπ.
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8 Matthew Dixon and Sebastian Reich: Symplectic Time-Stepping

In the preceding, g is the gravitational acceleration, f is twice the angular velocity
of the frame of reference 7, k = (0, 0, 1)T is a unit vector pointing in the z-direction for
simplicity, d( )/dt = ∂t( ) + v · ∇x( ) is the material time derivative, v = (u, v, w)T is
the three-dimensional velocity vector, θ = T (p/p0)

−R/cp is the potential temperature,
T is the temperature, ρ is the density, p0 = 105 pa is a constant reference pressure, R
is the gas constant for dry air, cp is the specific heat at constant pressure, cv is the

specific heat at constant volume, cp = R + cv = 1005 JK−1 kg−1, and R/cv ≈ 0.4,
cp/cv ≈ 1.4.

Exner’s function can also be expressed in the form [9]

π =

(

ρθ

ρ0T0

)R/cv

.

where, T0 is the surface reference temperature and ρ0 = p0/(T0R) the reference density
at z = 0. This suggests to introduce a new density µ = ρθ/(ρ0T0) and to replace the
equations (11)-(13) by the modified set

dv

dt
= −cpθ∇xπ − gk− fk× v, (14)

dθ

dt
= 0, (15)

dµ

dt
= −µ∇x · v, (16)

with Exner’s function now taking the form π = µR/cv .

4.2 A Vertical Slice Model

High resolution simulations of atmospheric flows over complex orography pose many
difficult numerical problems. Mesoscale and cloud simulations require the use of non-
hydrostatic equations and sound waves must be either filtered from the equations or
dealt with numerically by the use of implicit or semi-implicit methods [9]. To illustrate
the task at hand, it is sufficient to restrict Euler’s equation to the (x, z)-plane and to
ignore the effect of the Coriolis force [37, 5]. The resulting equations may be written
in the form

du

dt
= −cpθ∇xπ − gk, (17)

dθ

dt
= 0, (18)

dµ

dt
= −µ∇x · u, (19)

where u = (u,w)T is the two-dimensional velocity field, x = (x, z)T denotes the
coordinates in the (x, z)-plane, k = (0, 1)T , and all other quantities are defined as
before. These simplified equations are often referred to as a vertical slice model.

7 The angular velocity is assumed, for simplicity, to be constant. This is often referred to as the

f-plane approximation. A more realistic approximation is provided by the β-plane approximation

f = f0 + βy.
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Large scale atmospheric flow regimes are characterized by the relative smallness of
the vertical acceleration dw/dt compared to the forcing terms on the right hand side
of the vertical momentum equation. Given a typical horizontal scale of 1000 km and
a vertical scale of 10 km, the vertical acceleration can be estimated by [2]

d

dt
w ∼ 10−7 m s−2,

which is much smaller than g ∼ 10 ms−2. The only remaining term is cpθπz , which
then has to be in balance with the gravitational forcing term. Large scale atmospheric
simulations may hence make use of the hydrostatic approximation

cpθ
∂π

∂z
+ g = 0. (20)

The hydrostatic approximation is no longer valid for mesoscale simulations with a
horizontal and vertical length scale resolution between 1 and 10 km, and that is the
flow regime we are interested in.

Let us consider a domain of length L = 80 km and of height H = 20 km. The
bottom orography is given by an ‘Agnesi mountain profile’ of the form [5]:

h(x) =
h0

1 + ((x− x0)/a)2
(21)

with h0 = 1 km, a = 4 km, and x0 = 10 km. For simplicity, we use periodic boundary
conditions in the lateral direction. The implementation of top and bottom vertical
boundary conditions is more complicated and will be discussed in the context of our
numerical method in §4.3 and §4.4.

Even though we wish to solve the non-hydrostatic equations (17)-(19), it is useful
to introduce a time-independent hydrostatic reference state (T̄ (z), θ̄(z), π̄(z)) via the
equations

T̄ = T0 − Γz, cpθ̄
∂π̄

∂z
+ g = 0, T̄ = π̄ θ̄, (22)

where Γ = 1 Kkm−1 is the lapse rate and T0 = 250 K is the surface reference temper-
ature at z = 0. One also defines π̄ = 1 at z = 0. See, e.g., [2] for details.

4.3 Hamiltonian Truncation of the Slice Model

The equations (17)-(19) can be discretized by a natural extension of the Hamiltonian

particle-mesh (HPM) method [10, 11]. In particular, given a computational grid {x̄k =
(x̄k , z̄k)} and N Lagrangian particles {ri(t) = (xi(t), zi(t))}, an approximation to µ
at the grid point x̄k is provided by

µk(t) =
1

γk ρ0T0

∑

i

miθi ψk(ri(t)). (23)

Here ψk(x) are positive basis functions, which form a partition of unity
∑

k ψk(x) = 1,
the constants γk are defined by γk =

∫

ψk(x)dx, mi is the mass of the i-th particle
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10 Matthew Dixon and Sebastian Reich: Symplectic Time-Stepping

and θi its potential temperature. An important identity is the interpolation formula

π(x, t) =
∑

k

ψk(x)πk(t),

which implies, for example,

∇xπ(x, t) =
∑

k

πk(t)∇xψk(x).

Next we define ek = e(µk) such that e′(µk) = cpρ0T0πk and πk = [µk(t)]R/cv . A
simple calculation yields

∇ri

(

∑

k

γkek(t)

)

= cpmiθi

∑

k

πk∇ri
ψk(ri) = cpmiθi∇xπ(x, t)|x=ri

.

Here the gradient w.r.t. ri = (xi, zi)
T stands for the column vector ∇ri

( ) =

(∂xi
( ), ∂zi

( ))
T
.

Using these identities, the momentum equation (17) is now discretized to

d

dt
ui = −cpθi

∑

k

πk∇ri
ψk(ri)− gk, (24)

and particles are advected according to

d

dt
ri = ui, (25)

for i = 1, . . . , N . Upon introducing canonical momenta pi = miui, the discrete
equations of motion become Hamiltonian with conserved energy

H =
1

2

∑

i

m−1
i ‖pi‖

2 + g
∑

i

mik · ri +
∑

k

γke(µk).

A key aspect of the HPM method is the introduction of an appropriate smoothing

operator that filters out numerically induced small scale (sub-grid) disturbances [10,
11]. Smoothing, as used in the original HPM method, can be achieved by introducing

the smoothed/filtered density µ̃ =
(

1− α2∇2
)−1

µ and its corresponding numerical
approximation

µ̃k = aklµl, (26)

where {akl} is a discrete approximation to the inverse modified Helmholtz operator.
The subsequent discussion assumes that simulations start from a hydrostatic refer-

ence state defined by (22). The above smoothing procedure is not optimal under such
circumstances and the following refined implementation is suggested instead. Given
π̄k = π̄(zk), we define the (constant) potential temperature θi of particle ri at the
initial time via the computational reference state:

g + cpθi

∑

k

π̄k
∂

∂zi
ψk(ri) = 0.
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The mass mi of particle ri is defined according to the initial density of the fluid. We
then compute µk(0) as in (23) and set µ̄k = µk(0). The quantities π̄k and µ̄k are kept
constant throughout the simulation.

Now the discrete momentum equation (24) is replaced by

d

dt
ui = −cpθi

∑

k

{

π̄k +
∑

l

akl [π(µ̃l)− π(µ̄l)]

}

∇ri
ψk(ri)− gk,

where

π(µ̃k) = (µ̃k)R/cv , π(µ̄k) = (µ̄k)R/cv ,

with

µ̃k = µ̄k +
∑

l

akl(µl − µ̄l).

We assume that π̄k ≈ π(µ̄k).
The reason for this somewhat complicated looking smoothing procedure is twofold:

(i) The equations of motion can be derived from a Hamiltonian function

H =
1

2

∑

i

m−1
i ‖pi‖

2 + g
∑

i

mik · ri +

∑

k

[

γke(µ̃k) + cp
∑

i

θimiψk(ri)

{

π̄k −
∑

l

aklπ(µ̄l)

}]

.

(ii) Smoothing is applied only to deviations from the reference state.
The physical domain is restricted to 80 km in the horizontal and 20 km in the

vertical. Periodic boundary conditions are applied at the lateral boundaries. To mimic
the atmosphere above 20 km height, we introduce a 2 km layer of ghost particles with
mass mk and potential temperature θk according to the hydrostatic reference state.
These ghost particles do not move but contribute to the Exner function πk and the
density µk near the top boundary. A 2 km layer of ghost particles is also added to the
bottom of the physical domain. Hence the computational domain is (0, 80]× [−2, 22]
(in km).

The bottom orography is modeled by a strongly repulsive potential and a friction
force that acts normal to the boundary, i.e.

V B(ri) = βmi

∑

k

ψk(ri) e−α(z̄k−h(x̄k)) (27)

and

FR
i = −γmi∇ri

g(ri) (∇ri
g(ri) · ui), g(ri) =

∑

k

ψk(ri) e−δ(z̄k−h(x̄k)),

with positive constants β = 0.025 J kg−1, γ = 0.9 s−1, α = 80 km−1, δ = 2 km−1. The
function h is as defined in (21).
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Fig. 1 Contour lines of constant potential temperature θ [K] after one hour displayed over
a domain (x, z) ∈ [0, 40 km]× [0, 15 km].

4.4 Numerical Experiment

We performed a numerical experiment for h0 = 1 km and a = 4 km in (21), wi(0) = 0,
ui(0) = 0, and all particles initially in hydrostatic balance. The horizontal velocities
ui of all particles were incremented by a constant value over a period of 15 min such
that the total increment was u = 72 km/h. The computational domain was discretized
by a 256× 256 grid and 9 particles per cell at time t = 0. The grid corresponds to a
horizontal mesh-size of ∆x ≈ 300 m and a vertical mesh-size of ∆z ≈ 100 m.

All particles with ‖∇ri
V B(ri(0))‖/mi > 10−5 m/s2, zi(0) > 20 km or zi(0) < 0 were

treated as passive ghost particles. A modified inverse Helmholtz operator was used as
the smoothing operator with a smoothing length αx = 750 m in the x-direction and
αz = 500 m in the z-direction. The operator was implemented using a 2D FFT over
the computational domain. The equations of motion were integrated by the Störmer-
Verlet method over a total of one hour using a time-step of ∆t = 2 s. The potential
temperature distribution at the final simulation time is shown in Fig. 1. The final
values of the horizontal velocity field are displayed in Fig. 2.
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Fig. 2 Contour lines of constant horizontal velocity u [km/h] after one hour displayed over
a domain (x, z) ∈ [0, 40 km]× [0, 15 km].

Appendix (Hamiltonian Mechanics)

Let r denote an n-vector of particle positions and p the associated vector of conjugate
momenta. Given a Hamiltonian H the associated canonical Hamiltonian equations of
motion are

ṙ = +∇pH(r,p), ṗ = −∇rH(r,p).

Upon concatenating the positions r and the momenta p into one vector z =
(rT ,pT )T ∈ R

2n, the Hamiltonian equations can be condensed into the compact form

ż = J∇zH(z), J =

[

0n In

−In 0n

]

.

The linearized equations along z(t) are given by

Ż = JA(t)Z, A(t) = DzzH(z(t)).

Let V(t) ∈ R
2n and U(t) ∈ R

2n denote any two solutions of the linearized equations.
Note that the matrix J is skew-symmetric while A(t) is symmetric. Then one can
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easily verify that

d

dt

[

V(t)T J−1U(t)
]

= 0.

The symplectic two-form Ω is now defined by

Ω(U,V) = UT J−1V.

Hence conservation of symplecticness (i.e. Ω̇ = 0) can be concluded along solutions of
the linearized equations.

A similar procedure applies to maps. Given a map Φ the linearization (Jacobian
matrix) can be used to propagate two vectors Un and Vn. The map Φ is called
symplectic if

Ω(Un+1,Vn+1) = Ω(Un,Vn).

For planar maps conservation of sympleticness is equivalent to conservation of area.
For higher dimensional maps this analogy becomes slightly more complex but a con-
sequence is conservation of volume in phase space.

The idea that a numerical method for classical mechanics should preserve the sym-
plectic two-form can first be found in a technical report by Vogelaere [7].
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