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x1 Introduction

This survey is intended to provide an introduction to the special time integration techniques

which are used in classical molecular dynamics (MD). Conservation of important physical quan-

tities such as energy and momentum are crucial for long time simulations; these conservation laws
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are represented by a rich symmetry structure in the numerical algorithms which is both mathemat-

ically elegant and physically intuitive.

The survey is primarily devoted to time stepping algorithms for systems of N particles which

interact through both long and short range forces through Newton’s 2nd law:

ṙi = pi/mi, (1)

ṗi = Fc
i +Fs

i , i = 1, . . . ,N (2)

where mi is the mass of particle i with position vector ri = (xi,yi,zi)
T ∈ R

3 and momentum pi =

miṙi ∈ R
3. It is also assumed that the force acting on the ith particle can be split into a conservative

contribution Fc
i and a non-conservative contribution Fs

i .

The survey begins by recalling a number of specific deterministic and stochastic MD formula-

tions that fit into the general form (1)-(2). The rest of the survey is devoted to numerical algorithms

for these formulations. Special focus will be put on methods that can be used for long time simula-

tions. For a more complete perspective on molecular simulations, the reader is referred to a text on

the subject such that of SCHLICK [1], ALLEN & TILDESLEY [2], RAPPAPORT [3], or FRENKEL

& SMIT [4]. Finally an application of the particle algorithms to continuum modelling is discussed.

x1.1 Constant Energy Molecular Dynamics

For a particle system with forces Fs
i = 0 and

Fc
i =−∇riV (r1, . . . ,rN)

(where V (r1, . . . ,rN) is some potential energy function) the equations of motion (1)-(2) conserve

total energy

E =
1
2

N

∑
i=1
‖pi‖2/mi +V (r1, . . . ,rN). (3)

Here ∇riV (r) ∈ R
3 represents the column vector of partial derivatives given by

∇riV (r) = (∂xiV (r),∂yiV (r),∂ziV (r))T .

Hence conservative MD (i.e. Fs
i = 0) allows one to model a molecular system under the as-

sumption of constant particle number N, volume V , and energy E. The resulting ensemble is

commonly termed the microcanonical or constant NV E ensemble.
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The mathematical structure of this conservative case has important implications for the design

of practical numerical methods for MD. It is easily verified that equations (1)-(2) with Fs
i = 0 are

equivalent to the more abstract formulation

ṙi = +∇piH , ṗi =−∇ri H ,

i = 1, . . . ,N, where the Hamiltonian function H is identical to the total energy (3)

H =
1
2

N

∑
i=1
‖pi‖2/mi +V (r1, . . . ,rN). (4)

Hence classical molecular dynamics falls into the category of Hamiltonian mechanics. This obser-

vation has important implications for the numerical treatment relating to the symplectic structure

of Hamiltonian mechanics [5, 6]. To see this symplectic structure, take a solution (ri(t),pi(t)),

i = 1, . . . ,N, of the equations (1)-(2) and linearize (1)-(2) along that solution to obtain the follow-

ing time-dependent linear equations

Ṙi = Pi/mi, (5)

Ṗi = −
N

∑
j=1

Ai j(t)R j (6)

in the variables Ri ∈ R
3, Pi ∈ R

3, where

Ai j(t) = Drir jV (r1(t), . . .,rn(t))

is a symmetric, time-dependent 3× 3 matrix of second order partial derivatives of V with respect

to ri and r j. Let (R(1)
i (t),P(1)

i (t)) and (R(2)
i (t),P(2)

i (t)) denote any two solutions of (5)-(6). Then

it is easy to check that

d
dt

[

N

∑
i=1

R(1)
i (t) ·P(2)

i (t)−R(2)
i (t) ·P(1)

i (t)

]

= 0.

The expression in the bracket is linear in each of the arguments and defines a two-form Ω called

the symplectic form. Hence the more abstract property of conservation of symplecticity Ω̇ = 0 is

derived. An immediate consequence of conservation of symplecticity is conservation of volume

in phase space. See Appendix A for a precise definition and more details.

Additional conservation properties may apply. For example, consider the force Fc
i j acting of

particle i due to particle j, where

Fc
i =

N

∑
j=1

Fc
i j.
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A wide range of the potential energy functions commonly used in MD lead to particle interactions

that satisfy Newton’s third law:

Fc
i j =−Fc

ji

and the force Fi j acts into the direction of ri j = ri− r j. The immediate consequence is that such

systems conserve total linear and angular momentum:

P =
N

∑
i=1

pi, L =
N

∑
i=1

ri×pi.

x1.2 Stochastic Molecular Dynamics

Often one wishes to perform a simulation at constant temperature rather than constant NV E.

The associated ensemble is then called the constant NV T or macrocanonical ensemble. There are

several techniques available to perform a constant NV T ensemble simulation. In this survey we

focus on stochastic methods and consider the extended dynamics models of NOSÉ [7], HOOVER

[8], and BOND, LAIRD & LEIMKUHLER [9] only briefly in §4. Throughout the text, we will also

point out a few relevant details concerning hybrid Monte-Carlo (HMC) simulations [10].

The most widely used stochastic MD model fitting into the framework (1)-(2) is provided by

the Langevin dynamics (LD) equations

ṙi = pi/mi, (7)

ṗi = Fc
i − γṙi +σẆi(t), (8)

where Wi(t) ∈ R
3 is a vector of independent Wiener (Brownian) processes [11, 12], γ is a friction

coefficient, σ =
√

2γkBT , kB is Boltzmann’s constant, and T is the temperature. It is useful to

define a velocity reaction time τ∗i = mi/γ. τ∗i is the time it takes the ith particle velocity to be

reduced by a factor of 1/e in the absence of any forcing.

Another stochastic model is provided by conventional Brownian dynamics (see ALLEN &

TILDESLEY [2] and SCHLICK [1]). Algorithms for Brownian dynamics are, for example, dis-

cussed in [1, 2, 13] and will not be covered by this survey.

Mathematically, one has to be somewhat careful with the interpretation of (7)-(8) as a stochastic

differential equation (SDE). In particular, the time derivative Ẇ(t) of a Wiener process is not

rigorously defined and equation (8) should be replaced by the formulation

dpi = Fc
i dt− γṙi dt +σdWi(t).
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See the text [11, 12] and Appendix C for more details. Throughout this survey we will work for

simplicity with the less stringent formulation (8).

The Langevin model takes the form of equations (1)-(2) with

Fs
i =−γṙi +σẆi(t).

Under fairly general assumptions one can show that the solutions of (7)-(8) indeed sample from a

constant NV T ensemble.

There are two important generalizations of (7)-(8) available in the literature. The first one is

the generalized Langevin dynamics (GLD) model:

ṙi(t) = pi(t)/mi, (9)

ṗi(t) = Fc
i (t)−

Z t

0
K (t− s) ṙi(s)ds+Ui(t), (10)

where K (τ) is a memory kernel and Ui(t) = (Ui,1,Ui,2,Ui,3)
T ∈ R

3 is a vector of independent

and stationary zero-mean Gaussian processes. See the text by ALLEN & TILDESLEY [2] and the

original papers by MORI [14, 15] for more details. The auto-covariance function has to satisfy the

fluctuation-dissipation relation

E[Ui,k(t)Ui,k(s)] = kBT K (t− s),

for all k = 1,2,3, i = 1, . . . ,N. Here E[z] denotes the expectation value of a stochastic variable z.

The memory term in (10) consists of an integral over the history of the particle paths and

makes the generalized Langevin equations very adaptable to various model situations. However it

is also difficult to implement numerically. It is therefore convenient to approximate the generalized

Langevin equations by higher-dimensional SDEs as suggested by MORI [15].

In this survey we only consider the special but very relevant case of an exponentially decaying

kernel

K (τ) = λe−α|τ|, (11)

where α is the decay rate and λ is a scaling (coupling) parameter. The associated SDE will be

stated below in a slightly more general setting. See also ERMAK & BUCKHOLTZ [16].

The second generalization of (7)-(8) allows for a more specific coupling of the noise terms to

the conservative part of the model and is called dissipative particle dynamics (DPD). The basic
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equations due to HOOGERBRUGGE & KOELMAN [17] are

ṙi = pi/mi, (12)

ṗi = Fc
i − γ ∑

j 6=i

ω(ri j)
2(ei j · ṙi j)ei j +σ ∑

j 6=i

ω(ri j)ei jẆi j, (13)

where ri j = ri− r j, ri j = |ri− r j|, ei j = ri j/ri j, ṙi j = ṙi− ṙ j. There is a freedom in the choice

of the dimensionless weight function ω(r) which depends on the particular model in question.

However, as pointed out by ESPAÑOL & WARREN [18], to reproduce the constant temperature

macro-canonical ensemble the friction coefficient γ and the noise amplitude σ have to satisfy the

fluctuation-dissipation relation σ =
√

2kBT γ as before. Finally, Wi j(t) = Wji(t) are independent

Wiener processes.

An important aspect of DPD is that the non-conservative forcing term

Fs
i =

N

∑
j=1

Fs
i j, Fs

i j =−γω(ri j)
2(ei j · ṙi j)ei j +σ ∑

j 6=i

ω(ri j)ei jẆi j,

satisfies Fs
i j = −Fs

ji and the force acts in the direction of ri j. Hence, Newton’s third law applies

and total angular and linear momenta are conserved. Note, however, that there is no longer a

conserved energy.

For later reference, write the equations (12)-(13) in a generalized form [19]:

ṙ = M−1p, (14)

ṗ = −∇rV (r)−
K

∑
k=1

∇rhk(r)
[

γḣk(r)+σẆk
]

, (15)

where r is the collection of the N particle position vectors ri, p = Mṙ is the associated momentum

vector, M is the diagonal mass matrix, V (r) is the potential energy,

ḣk(r) = ∇rhk(r) · ṙ,

and the functions hk(r), k = 1, . . . ,K, can be chosen quite arbitrarily. The particular choice

hk(r) = φ(ri j), ω(r) = φ′(r),

k = 1, . . . ,(N−1)N/2, in (15) leads back to the standard DPD model (12)-(14). However, one can

also set K = 3N and

hi(r) = xi, hi+N(r) = yi, hi+2N(r) = zi,
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i = 1, . . . ,N, in (15), which leads to the standard Langevin model (7)-(8).

As suggested by COTTER & REICH [19], one can combine the idea of DPD and that of the

generalized Langevin model (9)-(10). Under the assumption of an exponentially decaying memory

kernel (11), the following equivalent SDE can be derived:

ṙ = M−1p, (16)

ṗ = −∇rV (r)−
K

∑
k=1

∇rhk(r)sk, (17)

ṡk = −αsk +λḣk(r)+
√

2kBT λαẆk, k = 1, . . . ,K, (18)

where Wk(t) is a Wiener process for each k. We call (16)-(17) the extended DPD (EDPD) model

[19]. Note that the variable sk constitutes an Ornstein-Uhlenbeck process for ḣk = 0 [11].

The standard DPD model (14)-(15) can be recovered in the limit of α � 1 subject to λ/α =

const., in which case equation (18) reduces to

0≈−sk +
λ
α

ḣk(r)+

√

2kBT λ
α

Ẇk

and we identify γ = λ/α and σ =
√

2kBT λ/α. We shall return to this limiting behaviour in the

section on numerical methods.

The appropriate choice of a stochastic model should be determined by the physical system

which it is to model. Most often the fluctuation-dissipation terms are introduced to represent

unresolved degrees of freedom (see, for example, [14, 15, 20–22]). While it is desirable to derive

such a stochastic parametrization on strict mathematical grounds, more often heuristic arguments

need to be applied due to the complexity of the underlying physical processes. An example will

be briefly discussed in §5.

x2 Numerical Methods for Constant Energy Molecular Dynamics

x2.1 The Störmer-Verlet Algorithm

The most widely used numerical method for MD is the Störmer-Verlet method, which is written

here in the velocity/momentum formulation:

pn+1/2 = pn− ∆t
2

∇rV (rn), (19)

rn+1 = rn +∆tM−1pn+1/2, (20)

pn+1 = pn+1/2− ∆t
2

∇rV (rn+1), (21)
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where ∆t is the step size. The method was first used in the context of MD by VERLET [23] and

has been very popular with the MD community since. However there is indication that the method

was already known the Newton and used in his Principia from 1687 to prove Kepler’s second law

(see [24]).

There exist a number of essentially equivalent formulations of the Störmer-Verlet method. See,

for example, SCHLICK [1]. Introduce the abbreviation kick for the velocity updates (19) and (21),

and the abbreviation drift for the position update (20). Hence the velocity Störmer-Verlet method

may be characterized as kick-drift-kick.

Why is the Störmer-Verlet method so successful for constant energy MD simulations? Several

reasons can be given. The method is easy to implement, it exactly conserves total linear and

angular momentum, it is time-reversible, and the total energy (3) is very well conserved over long

simulation times even for large and complex systems.

In fact, taking a slightly different perspective, these conservation properties become less of a

surprise. Recall that the conservative MD equations can be derived from a Hamiltonian function

(4). Write the Hamiltonian function H as the sum of three parts

H1 =
1
2

V (r), H2 =
1
2

pT M−1p, H3 =
1
2

V (r).

Each of these terms gives rise to Hamiltonian equations of motion. For example, take the Hamil-

tonian H1. The associated equations are

ṗ =−1
2

∇rV (r), ṙ = 0.

These equations can be solved analytically, producing the momentum update (kick):

p(t) = p(0)− t
2

∇rV (r), r(t) = r(0).

Denote the associated map from time t = 0 to t = τ by Ψτ,H1
: (r(0),p(0))→ (r(τ),p(τ)). Of

course Ψτ,H3
= Ψτ,H1

and it remains to find Ψτ,H2
. A simple calculation yields the position update

(drift):

p(τ) = p(0), r(τ) = r(0)+ τM−1p(0).

Not much has been gained yet. However, if one applies the map Ψτ,H1
with τ = ∆t to the

numerical approximation (rn,pn) and calls the result (rn,pn+1/2), and then applies Ψ∆t,H2
to that

approximation followed by an application of Ψ∆t,H3
, then the result (rn+1,pn+1) is exactly equiv-

alent to the outcome from the Störmer-Verlet method (19)-(21). Hence the Störmer-Verlet method
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may be written as a map Φ∆t : (rn,pn) → (rn+1,pn+1) which itself is a concatenation of three

maps:

Φ∆t = Ψ∆t,H3
◦Ψ∆t,H2

◦Ψ∆t,H1
.

In other words, each of the three maps corresponds to exactly one step in the kick-drift-kick se-

quence of the Störmer-Verlet method (19)-(21). A number of very useful conclusions can be drawn

from this abstract result.

(i) Each map Ψ∆t,Hi
conserves total linear and angular momentum. Hence the composition of

these maps (i.e. the Störmer-Verlet method) conserves total linear and angular momentum.

(ii) Each map Ψ∆t,Hi
is the exact solution to a Hamiltonian differential equation and so it con-

serves the symplectic two-form Ω introduced in §1.1. Hence the Störmer-Verlet method

preserves the symplectic two-form Ω from time step to time step, i.e. Ωn+1 = Ωn. A numer-

ical integrator with this property is called a symplectic method [6, 25, 26].

(iii) Time-reversibility of the Störmer-Verlet method follows from the obvious symmetry prop-

erty

Ψ∆t,H3
◦Ψ∆t,H2

◦Ψ∆t,H1
= Ψ∆t,H1

◦Ψ∆t,H2
◦Ψ∆t,H3

in the composition of the three flow maps. This symmetry also implies that the Störmer-

Verlet method is second order.

We next describe a truly remarkable observation for the Störmer-Verlet method which relies on its

conservation of the symplectic two-form Ω. Namely, one can find a time-dependent Hamiltonian

function H̃ (r,p,2π t/∆t) which is 2π-periodic in its third argument such that the solution of

ṙ = +∇pH̃ (r,p,2π t/∆t),

ṗ = −∇rH̃ (r,p,2π t/∆t)

with initial conditions r(0) = rn and p(0) = pn is exactly equivalent to (rn+1,pn+1) at t = ∆t. (See

the paper by KUKSIN & PÖSCHEL [27] and MOAN [28] for the mathematical details.) Using a

more abstract notation, we can state

Φ∆t = Ψ∆t,H̃ .

This result tells us that the solution behaviour of the Störmer-Verlet method is completely charac-

terized by a time-dependent Hamiltonian problem with Hamiltonian function H̃ .
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This statement is not entirely satisfactory as it is well known that energy is not conserved for

time-dependent Hamiltonian problems. However, as first pointed out by NEISHTADT [29], the

time-dependence in H̃ averages itself out up to negligible terms of size O(e−c/∆t) for sufficiently

small step-sizes ∆t (here c > 0 is a constant which depends on the particular problem). Hence we

can claim that the Störmer-Verlet method is the nearly exact solution of a Hamiltonian problem

with time-independent Hamiltonian Ĥ∆t(r,p). This time-independent Hamiltonian possesses an

asymptotic expansion in the step-size ∆t of the form

Ĥ∆t = H +∆t2δH2 +∆t4δH4 +∆t6H6 + . . . ,

with

H2 =
1
12

pT M−1[DrrV (r)]M−1p+
1

24
[∇rV (r)]T M−1∇rV (r),

where DrrV (r) denotes the Hessian matrix of the potential energy V . Expressions for the higher

order correction terms δHi, i = 4,6, . . ., can be found using the Baker-Campbell-Hausdorff (BCH)

formula (see [25], [26], or [6]).

A practical algorithm for assessing energy conservation with respect to a modified Hamiltonian

has been proposed by SKEEL & HARDY [30]. See also [31].

The fact that the modified energy H̃∆t is essentially preserved exactly under the Störmer-Verlet

method and the fact that

|H − Ĥ∆t |= O(∆t2)

explains the observed approximate conservation of energy under the Störmer-Verlet method. See

BENETTIN & GIORGILLI [32], HAIRER & LUBICH [33] and REICH [34] for rigorous results. On

a less rigorous mathematical basis one can even claim that the Störmer-Verlet method samples

from a constant NV Ê ensemble with modified energy Ê = Ĥ∆t .

Let us summarize this section. The Störmer-Verlet method can be written as the concatenation

of exact solution maps to a sequence of Hamiltonian functions Hi, i = 1,2,3. This implies that

the Störmer-Verlet method is symplectic and hence is equivalent to the exact solution of a time-

dependent modified Hamiltonian problem. For sufficiently small step-sizes this time-dependence

averages itself out and an excellent long time conservation of energy is thus observed numerically.

Time averages computed along numerical trajectories will follow a constant NV Ê ensemble under

the assumption of ergodicity (see [34] for a precise result).

This result has also implications for hybrid Monte-Carlo (HMC) simulations [10, 35] (see also

the text [1]). Detailed balance requires that the underlying MD algorithm is time-reversible and
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volume conserving (see MEHLIG, HERMANN & FOREST [36]). These properties are satisfied

by the Störmer-Verlet method. Furthermore, if one accepts the point of view that it is sufficient to

sample from the macrocanonical ensemble associated with the modified Hamiltonian Ĥ∆t , then the

quasi-exact conservation of Ĥ∆t under the Störmer-Verlet method allows one to accept virtually

all candidate moves (see HAMPTON & IZAGUIRRE [37]).

The above arguments apply to all numerical methods that can be derived by a splitting of a

Hamiltonian function H into exactly solvable parts. The most interesting recent application of this

approach to MD is provided by rigid body dynamics and we refer the reader to the publications

TOUMA & WISDOM [38], REICH [39], and DULLWEBER, MCLACHLAN & LEIMKUHLER [40].

See also Appendix B for a summary of the basic ideas. Another application of the splitting idea

will be discussed below in the context of multiple-time-stepping (MTS) methods, which will also

point to some pitfalls of symplectic integration methods.

For a more complete perspective on symplectic integration methods and classical mechanics,

the reader is referred to a text on the subject such as that of SANZ-SERNA & CALVO [25], HAIRER,

LUBICH & WANNER [26], and LEIMKUHLER & REICH [6].

x2.2 Constraints and the SHAKE/RATTLE Algorithm

Along with the benefits of the Störmer-Verlet method there is one crucial problem with the

method. The step-size ∆t has to be smaller than the period of the fastest oscillations present in

the molecular system [41]. Since these oscillations can be of the order of femtoseconds, this

step-size is very short compared to the timescale showing dynamical behaviour of interest such as

protein folding and conformational changes. Since bond vibrations are the source of the fastest

vibrational modes, it was recognized early on that an explicit removal of these vibrations via rigid

length constraints

‖ri− r j‖= L (22)

would allow for an increase in step-size. Mathematically such an approach leads to constrained

Hamiltonian dynamics of the form

ṙ = M−1p, (23)

ṗ = −∇rV (r)−∇rg(r)λ, (24)

0 = g(r), (25)
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where the function g(r) = ‖ri−r j‖−L represents the length constraint (22) and where λ is the as-

sociated Lagrange multiplier. For simplicity, the discussion here is restricted to a single constraint

but it is easy to generalize the results to a set of constraints g(q) = 0.

Differentiate (25) twice with respect to time to obtain first

0 =
d
dt

g(r) = ∇rg(r) ·M−1p (26)

and then

0 =
d2

dt2 g(r) =−∇rg(r) ·M−1 [∇qV (q)+∇rg(r)λ]+pT M−1 Drrg(r)M−1p.

Here Drrg(r) ∈ R
3N×3N denotes the Hessian matrix of g. The last equation can be solved for the

Lagrange multiplier λ which is then substituted back into equation (25) to yield an explicit ODE

system (23)-(24) with (25) as an invariant. The hidden constraint (26) places a restriction on the

momenta p.

While differentiation of (25) is a useful analytical approach it is not well suited to numerical

integration. Instead a direct discretization of the constrained formulation (23)-(25) is required.

The following modification of the Störmer-Verlet method (19)-(21), called RATTLE, has proven

successful in practice:

1.

pn+1/2 = pn− ∆t
2

∇rV (rn)−∇rg(rn)λn, (27)

rn+1 = rn +∆tM−1pn+1/2, (28)

0 = g(rn+1). (29)

2.

pn+1 = pn+1/2− ∆t
2

∇rV (rn+1)−∇rg(rn+1)µn+1, (30)

0 = ∇rg(rn+1) ·M−1pn+1. (31)

RATTLE was introduced by ANDERSEN [42] based on an earlier method called SHAKE [43].

Both methods are essentially equivalent and have been shown to be symplectic by LEIMKUHLER

& SKEEL [44]. In fact, RATTLE can be understood as yet another application of the splitting

idea described in the previous section [45]. Hence the method also conserves linear and angular

momentum and is time-reversible.
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Let us briefly discuss the implementation of RATTLE. Step 1 requires the solution of a non-

linear equation in λn to satisfy the position constraint (29). A fast way to achieve this is to apply

Newton’s method to

g
(

r̄−∆tM−1∇rg(rn)λn) = 0, r̄ = rn +∆tM−1
(

pn− ∆t
2

∇rV (rn)

)

.

Step 2 requires the computation of another Lagrange multiplier µn+1, which has to be chosen such

that the linear momentum constraint (31) holds. This leads to a linear equation which may be

solved explicitly to give

µn+1 =
1

∇rg(rn+1) ·M−1∇rg(rn+1)
∇rg(rn+1) ·M−1

[

pn+1/2− ∆t
2

∇rV (rn+1)

]

.

Clearly these two steps easily generalize to larger sets of constraints and we point the reader to

the publication [46] for an explicit discussion.

The elimination of fast bond stretching and possibly also bond bending modes certainly allows

for larger time steps ∆t but it is not without effect on the ensemble behaviour of the molecular

system. This has first been pointed out by FIXMAN [47]. There are also other problems which

relate to the fact that the molecular system might become too “rigid” [45]. Artifacts which are

introduced by constraints have been demonstrated by VAN GUNSTEREN & KARPLUS through

simulations of the protein BPTI in vacuum [48]. Nevertheless constraint dynamics formulations

have become standard for water molecules and other small, essentially rigid molecular units. In

fact, rigid body motion is best described in terms of rotation matrices and efficient numerical

implementations can be given using RATTLE. This has been demonstrated by KOL, LAIRD &

LEIMKUHLER [49] based on earlier work by MCLACHLAN & SCOVEL [50] and REICH [39].

To be able to treat polarization and other essentially quantum dynamical effects within classi-

cal MD, there have been attempts to develop algorithms for flexible or soft constraints. See the

work by ZHOU, REICH & BROOKS [51] and HESS, SAINT-MARTIN & BERENDSEN [52]. These

methods replace, for example, a rigid length constraint ‖ri − r j‖ = L by a variable length con-

straint ‖ri−r j‖= L(t), where L(t) is determined self-consistently by minimizing the total energy

along the bond stretching mode ri− r j. This procedure is more expensive than rigid constraints,

but it reintroduces flexibility into the molecular system without having to resolve the fast bond

vibrations. In certain cases it provides also a more realistic model for chemical bonds.

A detailed account on constraint and rigid body dynamics and their numerical implementation

can be found in the text by LEIMKUHLER & REICH [6].
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x2.3 Multiple-Time-Stepping (MTS)

MTS methods were introduced in 1970s by STREETT, TILDESLEY & SAVILLE [53] and

FINNEY [54] in an effort to reduce computation costs. More recently symplectic MTS methods

based on the idea of Hamiltonian splitting were suggested by TUCKERMAN, BERNE & MARTYNA

[55] (r-RESPA) and GRUBMÜLLER, HELLER, WINDEMUTH & SCHULTEN [56] (Verlet-I).

MTS methods may be used for systems with Hamiltonian functions of the form

H = T (p)+Vslow(r)+Vfast(r),

where T represents the kinetic energy of the system (i.e. T = pT M−1p/2), Vslow represents for

slow and long-range interactions such as electrostatics, and Vfast collects all the short-range and

stiff potential energy contributions such as bond stretching and bending. The aim is to minimize

the number of computationally expensive evaluations of the long-range force field while simulta-

neously maximizing the step size ∆t. The definition of Vslow and Vfast often involves the usage of

cut-off functions [1, 2]. To maintain the good energy conservation property of the Störmer-Verlet

method these cut-off functions should be sufficiently smooth (see [57] and [6])

The formulation again proceeds by splitting the Hamiltonian into exactly solvable problems.

However this time it is also necessary to take into account the relative strength of the forces. For

that reason an inner time step δt = ∆t/M is introduced, where M � 1 is an appropriate integer.

Next write

H = H1 +H2 +H3 + · · ·HM+3

with

H1 =
1
2

Vslow(r),

H2 =
1

2M
T (p),

H2i+1 =
1
M

Vfast(r), (i = 1, . . . ,M),

H2i+2 =
1
M

T (p), (i = 1, . . . ,M−1),

H2M+2 =
1

2M
T (p),

H2M+3 =
1
2

Vslow(r).

Each of the Hamiltonian functions Hi, i = 1, . . . ,M+3, gives rise to equations of motion that can be

trivially solved along the lines discussed for the Störmer-Verlet method. Denote the corresponding
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solution maps by Ψ∆t,Hi
. A symplectic MTS method then can be written as a composition of these

elementary maps:

Φ∆t = Ψ∆t,HM+3
◦Ψ∆t,HM+2

◦ · · ·◦Ψ∆t,H3
◦Ψ∆t,H2

◦Ψ∆t,H1
. (32)

A numerical implementation would proceed by writing several subroutines performing updates

according to Ψ∆t,Hi
which are called sequentially. Note that only three different subroutines are

required and that the slow forces are evaluated only once per time step.

A list of applications of r-RESPA to various molecular systems with multiple time scales can

be found in a survey by BERNE [58].

The method (32) conserves linear and angular momentum, is symplectic, and, because of sym-

metry, is also time-reversible. Hence it shares all these desirable properties with the Störmer-Verlet

method. One might also expect the method to be able to take much larger outer time steps. How-

ever this is not in fact the case.

Where do things go wrong? Following the discussion from Section §2.1, there exists a time-

dependent Hamiltonian H̃ (r,p,2π t/∆t) such that

Φ∆t = Ψ∆t,H̃ .

Now recall why we were able to remove the time-dependence in H̃ in case of the Störmer-Verlet

method. Since H̃ is 2π-periodic in its third argument, the period of H̃ with respect to time t is T =

∆t. For ∆t → 0 this period becomes much shorter than any natural period of the molecular system

and that allows the time-dependence in H̃ to be transformed away up to terms exponentially small

in ∆t.

For the MTS method the situation is quite different. The aim is to use the method with an outer

step-size ∆t that is comparable or even larger than the period of the fastest molecular oscillations.

Hence there is a very good chance that Tstep = ∆t will be close to some natural period Tosc of the

molecular system and that coincidence can give rise to numerically induced resonance instabilities.

The situation is very similar to sitting in a swing. What one normally attempts to do there is to

adjust one’s own movements to the natural period of the swing. If that happens the swing will

start swinging higher and higher and in case of an MTS method the numerical trajectory will

start gaining energy and will eventually blow up. The danger of resonances for symplectic MTS

methods such as Verlet-I/r-RESPA has been discussed in detail by BIESIADECKI & SKEEL [59].

To get a clearer picture of what is going on, consider the following linear problem.
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Example. Consider a harmonic oscillator subject to a “perturbation” ṗ =−r, e.g.

ṙ = ωp, ṗ =−ωr− r.

The solutions in z(t) = (r(t), p(t))T are oscillatory and the eigenvalues of the matrix-valued solu-

tion operator

S(t) = etA, A =





0 ω

−ω−1 0



 ,

are on the unit circle for all ω ≥ 0, i.e., the eigenvalues have modulus equal to one.

Assume now that ω � 1. From a numerical point of view, one could be tempted to split the

equations of motion into the highly oscillatory contribution

ṙ = ωp, ṗ =−ωr

and the perturbation

ṙ = 0, ṗ =−r.

Denoting the associated matrix-valued solution operators by S1(t) and S2(t) respectively, a second-

order numerical propagator is obtained, for example, via the matrix product

M∆t = S2(∆t/2)S1(∆t)S2(∆t/2).

The modulus of the eigenvalues of M∆t for ω = 50 was computed as a function of the step-size

∆t ≤ 0.2. Regions of instabilities can be clearly seen in Fig. §1 for ω∆t ≈ kπ, k = 1,2,3. A similar

behaviour would be observed for the MTS splitting method (32) with T = ωp2/2, Vfast = ωr2/2,

Vslow = r2/2, and ωδt � 1. �

The rather disappointing outcome from this linear model problem is that the symplectic MTS

method (32) is limited to a step-size ∆t < π/ω, ω the fastest frequency of the system. Even worse,

nonlinear 3:1 resonances between fast and slow modes potentially limit the step-size further to

∆t < 2π/(3ω) and for flexible water this limit corresponds to 3.3 fs (see MA, IZAGUIRRE &

SKEEL [60]). Compared to the Störmer-Verlet method, which has to satisfy the linear stability

bound ∆t < 2/ω, the small improvement is hardly worth the effort. One should of course try to

avoid the resonance zones by a careful choice of the step-size. However, such an approach seems

impossible for the almost continuous frequency spectrum of densely packed molecular systems.
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x2.4 Mollified Multiple-Time-Stepping

To explain the instabilities of the MTS method (32), the method can be usefully paraphrased as

kick-drift/oscillate-kick. Clearly, if there is no slow force then the method reduces to drift/oscillate

and as such is stable for δt small enough. On the other hand, if there is no fast force, then the MTS

method reduces to the standard Störmer-Verlet sequence of kick-drift-kick. So the problem must

arise from the interaction of the kick with the oscillate steps. Indeed the kick

pn +
∆t
2

Fslow(rn)→ pn (33)

should rather be replaced by an integral of the form

pn +
1
2

Z +∆t/2

−∆t/2
Fslow(r(tn + τ))dτ→ pn, (34)

where r(tn + τ) comes from the drift/oscillate step and r(tn) = rn. There are two fundamental

obstacles to a numerical implementation of this idea:

1. The integral should be easy to evaluate and, in particular, only one evaluation of the long

range force Fslow should be necessary.

2. The overall method should remain symplectic.

These requirements sound almost impossible to fulfill. But GARCÍA-ARCHILLA, SANZ-SERNA

& SKEEL [61] showed that the impossible is possible for molecular systems. The basic idea is

relatively simple. First note that the amplitude of the fast oscillations will be very small, allowing

the integral in (34) to be replaced by a simple average

r̄n =
Z +∆t/2

∆t/2
r(tn + τ)dτ (35)

which may be combined with the approximation

Z ∆t/2

−∆t/2
Fslow(r(tn + τ))dτ≈ ∆tFslow(r̄n).

That addresses item 1. The second observation is that (35) actually defines a map from the current

value of rn = r(tn) to its local time average r̄n; denote this map by

r̄n = A(rn).
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The averaged (or mollified) slow force is now defined as the gradient of a mollified potential

Vmolly(r) = Vslow(A(r)).

Finally the kick (33) gets replaced by

pn− ∆t
2

∇rVmolly(rn)→ pn.

The resulting mollified MTS method is symplectic. See the paper by IZAGUIRRE, REICH & SKEEL

[62] for implementation details and test results.

There now follows a detailed description of a variant of the method that is particularly easy to

implement in the context of bond stretching and bending modes. The method is called EQUILIB-

RIUM. For simplicity, consider a single bond stretch

g(r) = ‖ri− r j‖

with associated potential energy entry

Vfast =
κ
2

[g(r)−L]2 ,

where L is the equilibrium length of the bond and κ is a force constant. Assume also that this bond

is the only fast vibrational mode and that all other entries in the potential energy function V go

into Vslow. How is Vmolly calculated? The fundamental observation is that the average r̄ will (to

very good approximation) satisfy g(r̄) = 0 i.e.

‖r̄i− r̄ j‖= L.

Hence A may defined as a simple projection step:

r̄ = r+M−1∇rg(r)λ, (36)

L = g(r̄). (37)

More explicitly, the single bond leads to an update

r̄i = ri +
1
mi

(ri− r j)λ, (38)

r̄ j = r j +
1

m j
(r j− ri)λ, (39)

L2 = ‖r̄i− r̄ j‖2, (40)
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and r̄k = rk for all k 6= i, j, which can be solved for the Lagrange multiplier λ using Newton’s

method (compare Section §2.2). There is only one difficulty left. To be able to compute the

gradient ∇qVmolly(r) , the Jacobian matrix Ar = Drr̄ of A needs to be calculated since

∇rVmolly(r) = AT
r Fslow(A(r)).

The Jacobian matrix Ar is identical to the identity matrix except for the 3×3 block entries related

to the position vectors ri, r j. Ignore the identity part for a moment and write

Ar =





Dri r̄i Dri r̄ j

Dr j r̄i Dr j r̄ j



 .

The requested partial derivatives can be computed from (38)-(40) via implicit differentiation.

On a more abstract level equations (36)-(37) give:

Ar = I+λM−1Drrg(r)+M−1∇rg(r)Drλ,

0 = Drg(r̄)Ar

and, after elimination of Drλ,

Ar =

[

I− 1
∇rg(r) ·M−1∇rg(r̄)

∇rg(r)Drg(r̄)
]

[

I+λM−1Drrg(r)
]

.

A slightly more stable projection is to use

r̄ = r+M−1∇rg(r̄)λ

instead of (36). The resulting method is called EQUILIBRIUM∗ in [63] and is somewhat more

expensive to implement than EQUILIBRIUM.

EQUILIBRIUM has been implemented in [62] and combined with a weak stochastic stabiliza-

tion (see the paper by IZAGUIRRE, CATARELLO, WOZNIAK & SKEEL [63]) leading to signifi-

cantly longer time steps of 14 fs up to 25 fs for explicitly modelled flexible water molecules (as

compared to step sizes of 0.5-1 fs for the Störmer-Verlet method and 4 fs for Verlet-I/r-RESPA).

Note that EQUILIBRIUM is conceptionally very different from RATTLE/SHAKE as it still re-

solves all the high frequency bond vibrations.

The described mollified MTS methods are ideally suited for hybrid Monte-Carlo simulations

(see GROMOV & DE PABLO [64] for an implementation of r-RESPA into HMC). They are time-

reversible and volume conserving. There is also a modified Hamiltonian Ĥ∆t that in many circum-

stances is quasi-exactly conserved which implies a high acceptance rate of candidate moves.
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Other related attempts on mollified/averaged long time step methods have been made by by

LEIMKUHLER & REICH (see [65] and [6]) as well as HAIRER, HOCHBRUCK & LUBICH (see the

monograph [26] for a summary).

x3 Numerical Methods for Stochastic Constant Temperature Simulations

x3.1 Langevin Dynamics

While there is common agreement that Störmer-Verlet provides the gold standard for constant

energy MD simulations, the situation is less clear for Langevin dynamics. This survey will focus

on two popular approaches. The first one is the well-known BBK method due to BRÜNGER,

BROOKS & KARPLUS [66]. The second method is more recent and is based on a splitting idea

originally suggested by SKEEL [57] and implemented in [63]. An elementary introduction to

general numerical methods for SDEs can be found in [67].

A slightly modified BBK discretization for (7)-(8) is provided by

pn+1/2 = pn− ∆t
2

∇rV (rn)− γ
2

(

rn+1− rn)+σ
√

∆t
2

Rn, (41)

rn+1 = rn +∆tM−1pn+1/2, (42)

pn+1 = pn+1/2− ∆t
2

∇rV (rn)− γ
2

(

rn+1− rn)+σ
√

∆t
2

Rn+1 (43)

where Rn is a vector of independent Gaussian random variables with mean zero and variance one.

The BBK scheme reduces to the Störmer-Verlet method for γ = 0 and is second order accurate in

the deterministic part (i.e. for σ = 0). The stochastic scheme is however only weakly first order

convergent. For a further discussion of the BBK scheme see [68].

It turns out that the BBK scheme becomes unstable in the Brownian dynamics limit of vanishing

inertia, i.e. M → 0, under the assumption of a constant step size ∆t. This instability and the

limited accuracy of the BBK can be overcome by more advanced integration techniques such as

the schemes suggested by VAN GUNSTEREN & BERENDSEN [69] and ALLEN [70]. A variant of

these methods, that fits nicely into the framework of splitting, has been recently been suggested

by SKEEL [57] and implemented by IZAGUIRRE, CATARELLO, WOZNIAK & SKEEL [63]. The

basic splitting idea is simple and can be phrased as kick-drift/fluctuate-kick. The new ingredient is
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the drift/fluctuate step which consists of the exact solution to the SDE

ṗ = −γM−1p+σẆ(t),

ṙ = M−1p.

The essential steps to derive the exact solution of this linear SDE are provided in Appendix C.

The method Langevin Impulse (LI) [63] can be stated as follows:

1. (kick)

p̄n = pn− ∆t
2

∇rV (rn).

2. (drift/fluctuate)

rn+1 = rn +
1− e−γ∆tM−1

γ
p̄n +

√

2kBT ∆t
γ

Rn
2, (44)

p̄n+1 = e−γ∆tM−1
p̄n +

√

kBT M1/2 Rn
1, (45)

where Rn
1 and Rn

2 are bivariant Gaussian random variables of zero mean and covariance

matrix C given in Appendix C.

3. (kick)

pn+1 = p̄n+1− ∆t
2

∇rV (rn+1).

If mi → 0 for finite step size ∆t, then the LI scheme reduces to the Euler-Maruyama method

rn+1 = rn− ∆t
γ

∇rV (rn)+

√

2kBT ∆t
γ

Rn
2,

which is a popular method for Brownian dynamics (see [1]).

As shown by SKEEL & IZAGUIRRE [71] the evaluation of two sets of random variables per

time step can be reduced to one set if one reformulates the LI algorithm in position variables only.

A quite detailed comparison of various algorithms for Langevin dynamics has recently been

provided by WANG & SKEEL [72].

x3.2 Extended Dissipative Particle Dynamics (EDPD)

It turns out that it is easier to derive numerical schemes for the extended DPD model (16)-

(18) than for the original DPD equations (14)-(15). Furthermore, we will later see that one of the
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popular DPD schemes can be derived as the limiting case of an extended DPD algorithm. This

situation is similar to the Brownian dynamics limit of the LI scheme for Langevin dynamics. For

that reason we first discuss the extended DPD equations before coming back to the standard DPD

model.

The following modification (see COTTER & REICH [19]) of the Störmer-Verlet method sug-

gests itself naturally for the extended DPD equations (16)-(18):

pn+1/2 = pn− ∆t
2

[

∇rV (rn)+
K

∑
k=1

∇rhk(r
n)sn

k

]

, (46)

rn+1 = rn +∆tM−1pn+1/2, (47)

(1+α∆t)sn+1
k = sn

k +λ
[

hk(r
n+1)−hk(r

n)
]

+
√

2kBT λα∆t Rn+1
k , (48)

pn+1 = pn+1/2− ∆t
2

[

∇rV (rn+1)+
K

∑
k=1

∇rhk(r
n+1)sn+1

k

]

, (49)

where Rn+1
k are independent Gaussian random variables with zero mean and variance one.

The scheme (46)-(49) requires only one force field evaluation per time step, conserves linear

and angular momentum within the standard DPD setting, but it not symmetric (or self-consistent in

the sense of PAGONABARRAGA, HAGEN & FRENKEL [73]). Hence, replace (48) by the implicit

midpoint approximation
(

1+
α∆t

2

)

sn+1
k =

(

1− α∆t
2

)

sn
k +λ

[

hk(r
n+1)−hk(r

n)
]

+
√

2kBT λα∆t Rn+1/2
k , (50)

where Rn+1/2
k are again independent Gaussian random variables with zero mean and variance one.

The resulting scheme can be viewed as a generalization of the BBK scheme to the extended DPD

model (16)-(18). In fact the scheme shares the advantages and disadvantages of the BBK scheme.

It is possible to derive a more accurate discretization based on a generalization of the LI scheme

described in the previous section. The following implementation suggests itself:

1.

p̄n = pn− ∆t
2

∇rV (rn),

rn+1/2 = rn +
∆t
2

M−1p̄n,

s̄nk = sn
k +λ

(

hk(rn+1/2)−hk(rn)
)

.
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2.

p̄n+1 = p̄n +
K

∑
k=1

∇rhk(r
n+1/2)

[

1− e−α∆t

α
s̄nk +

√

2kBT λ∆t
α

Rn
2

]

,

s̄n+1
k = e−α∆t s̄nk +

√

kBT λRn
1,

where Rn
1 and Rn

2 are joint Gaussian random variables of zero mean and covariance matrix

C given in Appendix C.

3.

rn+1 = rn+1/2 +
∆t
2

M−1p̄n+1,

pn+1 = p̄n+1− ∆t
2

∇rV (rn+1),

sn+1
k = s̄n+1

k +λ
(

hk(r
n+1)−hk(r

n+1/2)
)

.

x3.3 Dissipative Particle Dynamics (DPD)

In this section a few popular algorithms for DPD are outlined, starting with an algorithm that

can be obtained as the limit of the extended DPD algorithm (46)-(49). More precisely, one can

formally consider the limit α→ ∞ subject to λ/α = γ = const. and ∆t = const. A straightforward

calculation yields the limiting scheme

pn+1/2 = pn− ∆t
2

[

∇rV (rn)+
K

∑
k=1

∇rhk(r
n)sn

k

]

, (51)

rn+1 = rn +∆tM−1pn+1/2, (52)

sn+1
k =

γ
∆t

[

hk(r
n+1)−hk(r

n)
]

+
√

2kBT γ/∆t wn+1
k , (53)

pn+1 = pn+1/2− ∆t
2

[

∇rV (rn+1)+
K

∑
k=1

∇rhk(rn+1)sn+1
k

]

, (54)

which becomes identical to a scheme suggested for DPD by GROOT & WARREN [74] once
[

hk(rn+1)−hk(rn)
]

/∆t has been replaced by ∇rhk(rn+1) ·M−1pn+1/2.

The situation changes if (48) is replaced by the implicit midpoint approximation (50). Let

us again investigate the limit αk∆t � 1. After a few straightforward calculations the limiting

equations (51)-(54) with (53) replaced by

sn+1
k − sn−1

k

2∆t
= γ

hk(rn+1)−2hk(rn)+hk(rn−1)

∆t2 +
√

2kBT γ/∆t
wn+1/2

k −wn−1/2
k

∆t
. (55)
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are derived. Ignoring the noise term for a moment, (55) corresponds to an explicit midpoint

discretization in sk of
d
dt

sk = γ
d2

dt2 hk(r).

The explicit midpoint method is known to be unconditionally unstable. This has the implication

that the symmetric variant of (46)-(49) cannot be used with a step-size ∆t � 1/α and does not lead

to a applicable standard DPD scheme.

Return now to the DPD equations (14)-(15). PAGONABARRAGA, HAGEN & FRENKEL [73]

suggested a symmetric (or self-consistent) discretization. Here is the variant of the scheme intro-

duced by BESOLD, VATTULAINEN, KARTTUNEN & POLSON [75]:

pn+1/2 = pn− ∆t
2

{

∇rV (rn)+
K

∑
k=1

∇rhk(rn)×
[

γ∇rhk(r
n) ·M−1pn− σ√

∆t
Rn

k

]}

, (56)

rn+1 = rn +∆tM−1pn+1/2, (57)

pn+1 = pn+1/2− ∆t
2

{

∇rV (rn+1)+
K

∑
k=1

∇rhk(r
n+1)×

[

γ∇rhk(r
n+1) ·M−1pn+1− σ√

∆t
Rn+1

k

]}

, (58)

where Rn
k are independent standard Gaussian random variables with mean zero and variance one.

The self-consistent scheme is essentially a generalization of the BBK scheme [66]. However it

is significantly more expensive to implement since the linear system of equations in pn+1 arising

from (58) is not diagonal. For a comparison of several numerical algorithms for DPD see BESOLD,

VATTULAINEN, KARTTUNEN & POLSON [75].

We finally mention that the complexity of the self-consistent DPD scheme (56)-(58) can be

reduced by applying the idea of splitting to the sum of the K dissipation-fluctuation terms. See

SHARDLOW [76] for details.

x3.4 A Numerical Example

In this section the stiff spring pendulum equations

ṙ = p,

ṗ = g−κ
r
‖r‖(‖r‖−L)

25



are used as a model to demonstrate the difference between standard Langevin dynamics, the DPD

model, and the extended version of DPD. Here r,p ∈ R
3, g = (0,0,1)T , κ = 1000 is the spring

constant, and L = 1 is the equilibrium length of the pendulum. The stiff pendulum equations are

Hamiltonian with conserved energy

E =
1
2

pT p+
κ
2
(r−L)2− rT g, r = ‖r‖.

Furthermore, because of the relatively large spring constant κ = 1000, the (oscillatory) energy in

the spring is an adiabatic invariant, i.e., J given by

J =
1
2

p2
r +

κ
2
(r−L)2, pr = rT p/r,

is approximately conserved over long intervals of time [5, 6, 29]. This is demonstrated by using

initial conditions r = (1,0,0)T and p = (1,1,1)T and simulating the system with the Störmer-

Verlet method over a time period t ∈ [0,100] with a step-size of ∆t = 0.01. In Fig. §2, plots of

E(t), J(t), and the “slow” rotational energy

Es(t) = E(t)− J(t)

are given.

Next, replace the Hamiltonian equations of motion by the Langevin model

ṙ = p,

ṗ = g−κ
r
r
(r−L)− γp+σẆ(t),

with γ = 0.1 and σ = 0.2. It is apparent from Fig. §3 that none of the energy contributions are

(even approximately) conserved any longer. Note that, by definition, J ≥ 0, E ≥ −r ≈ −1, and

Es ≥−r ≈−1.

The DPD model, in contrast, leads to a stochastic coupling only in the direction of the stiff

spring force and the equations of motion become

ṙ = p,

ṗ = g− r
r

[

κ(r−L)+ γpr−σẆ (t)
]

,

with parameters values as before. Indeed, the simulation results, displayed in Fig. §4, reveal that

the slow energy is now approximately conserved while both the total energy and the oscillatory
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energy drift in time. This demonstrates the capability of the DPD model to thermostat degrees of

freedom in a rather targeted manner. An application of this property will be encountered in the

subsequent section.

Finally, replace the DPD model by the extended DPD model

ṙ = p,

ṗ = g− r
r
[κ(r−L)+ s] ,

εṡ = −s+ γpr−σẆ (t)

for various values of the parameter ε = 1/α. Note that the extended model reduces to the standard

DPD model for ε→ 0. The rapid change in energy behaviour shown in Fig. §5 for parameter values

from an interval 1 ≥ ε ≥ 0.01 is quite striking and indicates that the model’s response to added

fluctuation-dissipation can depend crucially on the decay rate α of the auto-covariance matrix.

x3.5 Stochastic Multiple-Time-Stepping Methods

An obvious way to further improve the performance of the stochastic algorithms presented

so far is to combine them with the idea of multiple time stepping (MTS). This combination has

been investigated in detail by BARTH & SCHLICK [77] and SANDU & SCHLICK [78]. They

use an MTS procedure that is different from Verlet-I/r-RESPA and relies instead on the idea of

extrapolation. Extrapolation based MTS methods were first considered by STREETT, TILDESLEY

& SAVILLE [53]. These MTS methods exhibit a systematic energy drift, a result of not being

symplectic. However, this is not such a severe problem if used in combination with friction and

stochastic forcing as present in the Langevin or DPD equations. In fact, the LN method of BARTH

& SCHLICK [77] alleviates resonance effects of standard MTS methods and outer time steps of 50

fs are reported in [63] for explicit water simulations.

Stochastic formulations alter the dynamics of molecular systems. If the dissipation-fluctuation

terms are included to model unresolved degrees of freedom, or to sample from a constant tem-

perature ensemble, that effect is clearly desired. On the other hand, if Langevin dynamics is

used to stabilize numerical methods then the impact of the dissipation-fluctuation terms on the

otherwise Newtonian description should be minimized. This issue has been addressed by IZA-

GUIRRE, CATARELLO, WOZNIAK & SKEEL [63]. The essential idea is to combine the molli-

fied MTS method with Langevin dynamics. The resulting methods can be summarized as kick-
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drift/fluctuate/oscillate-kick. The kick step uses a mollified slow energy function as described in

Section §2.4 with an outer time step ∆t. The drift/fluctuate/oscillate step integrates

ṙ = M−1p,

ṗ = −∇rVfast(r)− γṙ+σẆ(t),

over M time steps with an inner step size δt = ∆t/M. The resulting method is called Langevin-

Molly (LM).

The LM method applies fluctuation-dissipation terms to all degrees of freedom. As noted by

MA & IZAGUIRRE [79] this is not necessary and the Langevin part of the dynamics can be replaced

by DPD. To explain the basic procedure, again consider the simple case of a single bond stretching

mode

Vfast =
κ
2

(

‖ri− r j‖−L
)2

and an otherwise arbitrary slow potential energy function Vslow. Denote the mollified slow potential

energy by Vmolly (see Section §2.4). The method Targeted MOLLY (TM) [79] consists now of a

kick

pn− ∆t
2

∇rVmolly(r
n)→ pn.

followed by M integration steps of

ṙ = M−1p, (59)

ṗ = −∇rg(r)
[

κg(r)+ γġ(r)−σẆ (t)
]

, g(r) = ‖ri− r j‖, (60)

with step size δt = ∆t/M. This step replaces the drift/fluctuate/oscillate step of the method LM.

Finally another kick is performed. The method TM is stable with an outer step size of 16 fs and an

inner step size of 2 fs when simulating flexible TIP3P water [79].

The function g in (60) can be replaced by a bond angle φ, i.e. g(r) = φ(r) or even a torsion

angle θ, i.e. g(r) = θ(r). For a tri-atomic molecule such as water, one could also set

g(r) = ‖rO− rH1‖+‖rO− rH2‖+‖rH1− rH2‖

to simultaneously stabalize/thermostate all three vibrational modes with one stochastic variable

W (t).

Another option is to replace the DPD equations (59)-(60) by the corresponding extended DPD

equations. However this method has not yet been implemented for flexible water.
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We finally mention the idea of replacing bond stretching and bending modes by constraints as

outlines in Section §2.2. In the context of stochastic MD algorithms one might want to substitute

the symplectic SHAKE/RATTLE algorithm by a cheaper (non-symplectic) method. A wide vari-

ety of suitable candidate methods can be found in the multi-body dynamics literature. See the text

by EICH-SOELLNER & FÜHRER [80] and the survey by ASCHER, CHIN, PETZOLD & REICH

[81] on constraint stabilization techniques. The method LINCS by HESS, BEKKER, BEREND-

SEN & FRAAIJE [82] represents one such stabilized constraint algorithm applied to molecular

dynamics.

x4 Numerical Methods for Nosé-Hoover Constant Temperature Dynamics

The NOSÉ-HOOVER [7, 8] thermostat is a deterministic molecular dynamics simulation method

that allows one to sample from the canonical distribution for a given temperature T . The derivation

of the thermostat model starts with the virtual variable formulation due to NOSÉ [7]. Postulate a

Hamiltonian

HNosé =
1
2

N

∑
i=1
‖p̃i‖2/(mis

2)+V (r)+ p2
s/(2Q)+ g̃kBT lns, (61)

where ps is the variable conjugate to s, Q is a fixed constant of dimension energy·(times)2, and

g̃ = 3N +1. The equations of motion derived from the Hamiltonian are

d
dτ

r = s−2M−1p̃, (62)

d
dτ

p̃ = −∇rV (r), (63)

d
dτ

s =
ps

Q
, (64)

d
dτ

ps = s−3p̃T M−1p̃− s−1g̃kBT. (65)

NOSÉ [7] has shown that the dynamics associated with this system generates canonically dis-

tributed configurations in the variables p = p̃/s, r provided the equations of motion are ergodic.

However, time is sampled at a virtual time scale τ with real time t related by the differential trans-

formation

dt = s−1dτ.

29



The most popular reformulation of (62)-(65) in terms of real time t and real momenta p is due to

HOOVER [8] and has the appealing form

d
dt

r = M−1p, (66)

d
dt

p = −∇rV (r)−ξp, (67)

d
dt

ξ =
[

pT M−1p−gkBT
]

/Q, (68)

with g = 3N and ξ = ps/Q. The Nosé-Hoover equations (66)-(68) resemble Langevin dynamics

except that there is no noise term and the damping factor has become a dynamic variable.

However, even though equations (62)-(65) were derived from a Hamiltonian HNosé, the Nosé-

Hoover equations (66)-(68) are no longer Hamiltonian due to the non-symplectic nature of the

intermediate transformations. This problem was rectified by BOND, LEIMKUHLER & LAIRD [9]

who suggested applying a Poincaré time transformation. The transformation leads to the new

extended Hamiltonian

HNVT = s(HNosé−H0) ,

where H0 is the initial value of HNosé at time zero. The associated Hamiltonian equations of motion

in real time t are

d
dt

r = s−1M−1p̃, (69)

d
dt

p̃ = −s∇rV (r), (70)

d
dt

s = s
ps

Q
, (71)

d
dt

ps =
1

2s2 p̃T M−1p̃−V (r)− p2
s

2Q
−gkBT (1+ lns)+H0. (72)

Symplectic integration in time implies an excellent long-time stability of the simulation and

that has been demonstrated by BOND, LEIMKUHLER & LAIRD in [9]. A particularly elegant

implementation of such a symplectic method has been proposed by NOSÉ [83]. His idea is based

on a splitting of the Hamiltonian HNV T into integrable sub-problems, i.e.

HNVT = H1 +H2 +H3 +H4 +H5

with H1 = H5 = sp2
s/(4Q), H2 = H4 = sV (r)/2 and

H3 = s

[

1
2s2 p̃T M−1p̃+gkBT lns−H0

]

.
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The numerical method is then given by the concatenation of flow-maps

Φ∆t = Ψ∆t,H1
◦Ψ∆t,H2

◦Ψ∆t,H3
◦Ψ∆t,H4

◦Ψ∆t,H5
.

The exact solution operator Ψ∆t,H2
= Ψ∆t,H4

is easily found. It also turns out that the system of

equations

d
dt

r = s−1M−1p̃,

d
dt

p̃ = 0,

d
dt

s = 0,

d
dt

ps =
1

2s2 p̃T M−1p̃−gkBT (1+ lns)+H0.

corresponding to H3 is straightforward to integrate. It remains to solve the coupled system

d
dt

s = s
ps

2Q
,

d
dt

ps =− p2
s

4Q

arising from the Hamiltonian H1 = H5. The analytic solutions are given by

1
ps(t)

=
1

ps(0)
+

t
4Q

and

s(t) = s(0)+
s(0)ps(0)

2Q
t +

s(0)ps(0)2

16Q
t2 = s(0)

(

1+
ps(0)

4Q
t

)2

.

After a few manipulations, the following numerical scheme in terms of the real momentum
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approximations pn = p̃n/sn, pn+1/2 = p̃n+1/2/sn+1/2, and pn+1 = p̃n+1/sn+1 is obtained:

sn+1/2 = sn
(

1+
pn

s

2Q
∆t
2

)2

,

p∗s = pn
s /

(

1+
pn

s

2Q
∆t
2

)

,

pn+1/2 =

(

1− p∗s
2Q

∆t
2

)2

pn− ∆t
2

∇rV (rn),

rn+1 = rn +∆tM−1pn+1/2,

p∗∗s = p∗s +∆t

[

1
2
(pn+1/2)T M−1pn+1/2−

− 1
2
(V (rn+1)+V (rn))−gkBT (1+ lnsn+1/2)+H0

]

,

sn+1 = sn+1/2
(

1+
p∗∗s

2Q
∆t
2

)2

,

pn+1
s = p∗∗s /

(

1+
p∗∗s

2Q
∆t
2

)

,

pn+1 =

(

1− pn+1
s

2Q
∆t
2

)2 (

pn− ∆t
2

∇rV (rn)

)

.

Time averages for an observable A computed along a numerical trajectory will converge to the

macro-canonical ensemble average value of A under the assumption of micro-canonical ergodicity

of the equations of motion (which we assume to carry over to the numerical scheme). However,

one has to be careful when giving a dynamic interpretation of trajectories since artificial forces

were introduced to generate a constant temperature ensemble simulation. On the other hand,

Nosé-Hoover constant molecular dynamics algorithms lead to less expensive implementations than

constant temperature stochastic algorithms. This is due to the fact that the generation of a large

set of random numbers at each time step can take up a significant amount of computer time. There

is also the danger that the introduction of stochastic terms could perturb the classical molecular

dynamics picture in a more significant manner than NOSÉ’s reformulation.

x5 Another Application. Particle Methods for Ideal Fluids

Throughout this survey we have so far considered algorithms suitable for constant energy or

constant temperature molecular dynamics (MD) simulations. On the other hand, dissipative par-

ticle dynamics was introduced in an attempt to model coarse-grained molecular dynamics with

an essentially hydrodynamic behavior [84]. More recently the original DPD algorithm has been
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extended by several groups (see, for example, TROFIMOV, NIES & MICHELS [85], ESPAÑOL &

REVENGA, [86] and the survey by ESPAÑOL [87]) to allow for a more accurate description of the

thermodynamics of real systems. These results have led to an interesting link between DPD and

the Smoothed Particle Hydrodynamics (SPH) method of LUCY [88], GINGOLD & MONAGHAN

[89], and SALMON [90]. As proposed originally SPH is a Lagrangian particle method for ideal

hydrodynamics that leads to a large conservative system of interacting particles.

Newtonian equations of motion describing ideal fluid dynamics can also be derived within the

classical particle-mesh methodology [91–93] and that is the approach focused on in this section.

Below we will outline how dissipative particle dynamics naturally enters into the particle-mesh

model equations.

First the basic ideas for the two-dimensional shallow-water equations (SWEs) describing a

shallow layer of fluid subject to gravity [94] are explained. The Lagrangian formulation of the

SWEs is

Ẍ =−c2
0∇Xh(X),

where X = (X ,Y )T are the particle positions (a continuous function of both space and time),

c0 =
√

gH, g is the gravitational constant, and H is the mean layer-depth. The normalized layer-

depth h is given by the convolution

h(x, t) =

Z

h0(a)δ(x−X(a, t))da,

where a = X(a,0) are the initial particle positions and h0(a) is the initial layer-depth at position a.

See [95, 96] for more details.

FRANK, GOTTWALD & REICH [95, 96] suggested a particle-mesh method, called the Hamil-

tonian particle-mesh (HPM) method, for the solution of the two-dimensional shallow-water equa-

tions. The HPM method may be viewed as an accurate numerical discretisation of the regularised

fluid equations:

Ẍ =−c2
0∇X [A ∗h(X)]

where A is a smoothing operator with some smoothing length Λ. This smoothing length is of

course much larger than any molecular length scale but shorter than the desired resolution of

the discrete model. Hence one can think of the HPM method as a Newtonian particle system

representing mesoscale fluid dynamics. For later reference, denote the numerically unresolved

part of the layer-depth by

η = h−A ∗h. (73)
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The HPM method uses a regular grid xkl = (k ∆x, l ∆y)T , particles Xi = (Xi,Yi)
T , grid-centred

basis functions ψkl(X), and the layer-depth approximation

h̃kl(t) =
N

∑
i=1

miψkl(Xi)

at xkl . The basis functions form a partition of unity, i.e. ∑k,l ψkl(X) = 1. The smoothing operator

A is now defined as the discretization of the inverse modified Helmholtz operator with smoothing

length Λ = 4∆x over the grid xkl . The discrete approximation is denoted by {amn
kl }. Consequently,

the finite-dimensional Hamiltonian equations of motion are given by

Ẋi = Vi, (74)

V̇i = −c2
0 ∑

k,l

∇Xiψkl(Xi)ĥkl, ĥkl = ∑
m,n

amn
kl h̃mn. (75)

For further implementation details see again [95, 96].

Within this setting the numerical issues of propagating (74)-(75) in time are now very similar to

what has been discussed for constant energy molecular dynamics. However, there is also a close

link to stochastic molecular dynamics algorithms. Namely, the numerically unresolved gravity

waves in the layer-depth (73) can be modelled by a generalized Langevin process. This idea can

be mathematically motivated by representing η as the solution of a linear wave equation coupled to

the particle system and subsequent reduction following the Kac-Zwanzig approach (see ESPAÑOL

[20], REY-BELLET & THOMAS [21], and KUPFERMAN, STUART, TERRY & TUPPER [22] for

related approaches). The assumption of exponentially decaying kernel (which can be obtained by

assuming that the waves are ‘localised’) leads to the EDPD extension of the HPM equations given

by COTTER & REICH [19] as

Ẋi = Vi, (76)

V̇i = −c2
0 ∑

k,l

[

ĥkl +ηkl
]

∇Xiψkl(Xi), (77)

η̇kl = −αηkl +λdkl + c−1
0 (2kBT αλ)1/2Ẇkl, (78)

where dkl is defined by

dkl =
d
dt

ĥkl = ∑
i

mi∇Xiψkl(Xi) ·Vi.

The only necessary modification is a scaling of the term multiplying Ẇkl by c−1
0 . The scaling is

necessary because c2
0 multiplies the force term in (77). It should be noted that hkl = ĥkl + ηkl is
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ment to be a better approximation to the “true” layer-depth h than ĥkl alone. See the PhD thesis of

COTTER [97] for further details.

The extended model still preserves circulation (see FRANK AND REICH [96]).

Lattice Boltzmann hydrodynamics simulations provide another very interesting link between

molecular statistical mechanics and macroscopic continuum descriptions. See SUCCI, KARLIN

& CHEN [98] for a survey. However the numerical issues involved are quite different from those

discussed in this survey.

As demonstrated by FRANK & REICH [99], particle methods can also be used for the shallow

water equations on a rotating sphere. These equations then provide a simple model for large scale

atmospheric circulation and can easily be generalized to multi-layer primitive equation models

[94, 100]. Hence it transpires from these discussions that some of the basic algorithmic challenges

addressed in this survey not only concern molecular and nano-scale modelling but carry over

to the modelling of large scale atmospheric circulation patterns and all the way to climate research.

Acknowledgments. We would like to thank David Heyes, Jesus Izaguirre, Mark Ma and An-

drew Stuart for carefully reading the paper and for providing us with plenty of feedback.

Appendix A (Hamiltonian Mechanics)

Let r denote an n-vector of particle positions and p the associated vector of conjugate momenta.

Given a Hamiltonian H the associated canonical Hamiltonian equations of motion are

ṙ = +∇pH (r,p), ṗ =−∇rH (r,p).

Upon concatenating the positions r and the momenta p into one vector z = (rT ,pT )T ∈ R
2n, the

Hamiltonian equations can be condensed into the compact form

ż = J∇zH (z), J =





0n In

−In 0n



 .

The linearized equations along z(t) are given by

Ż = JA(t)Z, A(t) = DzzH(z(t)).
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Let V(t) ∈ R
2n and U(t) ∈ R

2n denote any two solutions of the linearized equations. Note that the

matrix J is skew-symmetric while A(t) is symmetric. Then one can easily verify that

d
dt

[

V(t)T J−1U(t)
]

= 0.

The symplectic two-form Ω is now defined by

Ω(U,V) = UT J−1V.

Hence conservation of symplecticness (i.e. Ω̇ = 0) can be concluded along solutions of the lin-

earized equations.

A similar procedure applies to maps. Given a map Φ the linearization (Jacobian matrix) can be

used to propagate two vectors Un and Vn. The map Φ is called symplectic if

Ω(Un+1,Vn+1) = Ω(Un,Vn).

For planar maps conservation of sympleticness is equivalent to conservation of area. For higher

dimensional maps this analogy becomes slightly more complex but a consequence is conservation

of volume in phase space.

The idea that a numerical method for classical mechanics should preserve the symplectic two-

form can first be found in a technical report by VOGELAERE [101].

Appendix B (Rigid Body Dynamics)

In this appendix a symplectic splitting method for rigid body motion is briefly outlined. The

algorithm can be used to simulated (small) molecular units that may be modelled as a rigid body

(such as water). Only a single rigid body consisting of N rigidly linked particles is considered for

simplicity. Each particle has a mass mi, coordinates ri, and an applied force Fi acting on. The total

mass of the rigid body is then M = ∑i mi and the center of mass is given by

rc =
1
M

N

∑
i=1

miri.

Also define the relative position vectors ξi = ri− rc.

Next, introduce a body coordinate system with its three orthogonal basis vectors denoted by êα,

α = 1,2,3. This coordinate system is chosen such that its origin coincides with the center of mass
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rc of the rigid body and the three basis vectors point in the direction of the principle moments of

intertia, i.e., the intertia tensor I ∈ R
3×3 with entries

Iαβ =
N

∑
i=1

mi(êα×ξi) · (êβ×ξi)

is diagonal.

Assume also a fixed spatial coordinate system with its basis vectors denoted by eα, α = 1,2,3.

There is an orthogonal matrix Q that link the two sets of basis vectors, i.e.

eα = Qêα, α = 1,2,3.

As the rigid body changes position as a function of time the body coordinate system also moves

and the following time-dependent relation is derived:

eα = Q(t)êα(t), α = 1,2,3.

Differention of this relation with respect to time yields the equation

0 =

(

d
dt

Q
)

êα +Q
(

d
dt

êα

)

=

(

d
dt

Q
)

êα−Q(ω× êα)

=

[

d
dt

Q−QΩ
]

êα, (79)

where ω is the body angular velocity vector and

Ω =











0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0











, ω = (ω1,ω2,ω3)
T

is the associated skew-symmetric matrix which satisfies

d
dt

êα =−ω× êα =−Ωêα.

Equation (79) provides the differential equation used to update the rotation matrix Q:

d
dt

Q = QΩ.

The Euler equation (see ARNOLD [5] or LEIMKUHLER & REICH [6]) for the body angular

momentum vector π = Iω is

d
dt

π = π× I−1π+QT
N

∑
i=1

(Fi×ξi).
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Finally, the spatial position of the ith particle is given by

ri(t) = rc(t)+Q(t)QT(0)(ri(0)− rc(0)),

where the center of mass moves according to the system of equations

d
dt

rc = pc/M,

d
dt

pc =
N

∑
i=1

Fi.

This closes the equations of motion for the rigid body.

The rigid body equations of motion are Hamiltonian with a non-canonical Lie-Poisson structure

[5, 6]. The Hamiltonian is given by

H =
1

2M
pT

c pc +
1
2

πT I−1π+V (r1, . . . ,rN),

which can be split into kinetic and potential energy. Hence a symplectic splitting scheme can

follow the kick-drift-kick methodology of the Störmer-Verlet method with the important difference

that the drift step gets replaced by drift/rotate. The drift/rotate step itself gets decomposed into

three sub-step. More specifically, decompose the inverse of the (diagonal) inertia tensor as follows:

I−1 =











1/I1 0 0

0 1/I2 0

0 0 1/I3











=
1
I1











1 0 0

0 1 0

0 0 1











+











0 0 0

0 I1−I2
I1I2

0

0 0 0











+











0 0 0

0 0 0

0 0 I1−I3
I1I3











= T1 +T2 +T3.

It is easy to verify that each associated system of equations

d
dt

π = π×Tiπ,

d
dt

Q = QΩ, ω = Tiπ (= const.),

i = 1,2,3, can be integrated exactly. Hence, a splitting method can be implemented as follows:

Φ∆t = Ψ∆t,H1
◦Ψ∆t,H2

◦Ψ∆t,H3
◦Ψ∆t,H4

◦Ψ∆t,H5
◦Ψ∆t,H6
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with

H1 = H6 =
1
2

V (r1, . . . ,rN),

H2 =
1

2M
pT

c pc +
1

2I1
πT π,

H3 = H5 =
1
4

πT T2π,

H4 =
1
4

πT T3π.

The equations of motion for H1 = H6 are given by

d
dt

π =
1
2

QT
N

∑
i=1

(Fi×ξi),

d
dt

Q = 0,

d
dt

pc =
1
2

N

∑
i=1

Fi,

d
dt

qc = 0.

It turns out that the splitting scheme is also time-reversible because some of the flow maps

commute.

Appendix C (Stochastic Differential Equations)

First review the explicit solution of a scalar (for simplicity) stochastic differential equation

dy =−aydt +bdW (t),

where W (t) is a Wiener process, a and b are constants. The Wiener process can be defined by

W (t + τ)−W (t) =
√

τZ(t),

where W (0) = 0 and Z(t) are independent standard Gaussian random variables (with mean zero

and variance one).

The integrating factor formulation

d
[

eaty
]

= eatbdW

gives

y(τ) = e−aτy(0)+

Z τ

0
be−a(τ−t)dW (t).
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The last integral represents a Gaussian process r1(τ) with zero mean and variance

E
[

r1(τ)2] =
Z τ

0
b2e−2a(τ−t)dt =

b2

2a

(

1− e−2aτ)

Often the integral of the Ornstein-Uhlenbeck process y(τ) is also required:

∆I(τ) =
Z τ

0
y(t)dt =

1− e−aτ

a
y(0)+

Z τ

0

Z s

0
be−a(s−t)dW (t)ds

Using integration by parts, the double integral again defines a Gaussian process

r2(τ) =
b
a

Z τ

0

[

1− e−a(τ−t)
]

dW (t)

with zero mean and variance

E
[

r2(τ)2] =
b2

a2

Z τ

0

[

1− e−a(τ−t)
]2

dt =
τb2

a2

(

1+
4e−aτ−3− e−2aτ

2aτ

)

.

The two processes r1(τ) and r2(τ) are also cross correlated according to

E [r1(τ)r2(τ)] =
b2

a

Z τ

0
e−a(τ−t)

[

1− e−a(τ−t)
]

dt =
b2

2a2

(

1−2e−aτ + e−2aτ) .

Hence the covariance matrix

C(τ) =





E [r1(τ)r1(τ)] E [r1(τ)r2(τ)]

E [r1(τ)r2(τ)] E [r2(τ)r2(τ)]





=





b/
√

2a 0

0
√

τb/a









c11 c12

c21 c22









b/
√

2a 0

0
√

τb/a



 ,

is obtained where

c11 = 1− e−2aτ, c12 = c21 =
1−2e−aτ + e−2aτ

√
2aτ

, c22 = 1+
4e−aτ−3− e−2aτ

2aτ
.

Applying a Cholesky factorization to the covariance matrix, a numerical scheme now reads as

follows

yn+1 = e−a∆tyn +
b√
2a

Rn
1,

∆In =
1− e−aτ

a
yn +

√
∆tb
a

Rn
2,

where




Rn
1

Rn
2



 =





√
c11 0

c21√
c11

√

c22− c2
21

c11









Zn
1

Zn
2




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and Zn+1
i , i = 1,2, are independent Gaussian random numbers with mean zero and variance one.

As an application, consider the Langevin equation for a single particle with mass m and friction

coefficient γ. One finds that a = γ/m, b =
√

2kBT γ and the numerical scheme becomes

pn+1 = e−γ∆t/mpn +

√

kBT
m

Rn
1,

rn+1 = rn +
1− e−γ∆t/m

γ
pn +

√

2kBT ∆t
γ

Rn
2

where




Rn
1

Rn
2



 =





√
c11 I 0

c21√
c11

I
√

c22− c2
21

c11
I









Zn
1

Zn
2



 .

The result easily generalizes to systems of particles. For further details see also [57, 63].

The corresponding numerical method for a system of type

ṙ = 0,

ṗ = −∇rh(r)s,

ṡ = −αs+
√

2kBT αλẆ ,

as needed for the EDPD splitting method, is now straightforward, using a = α and b =
√

2kBT λα.
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[18] P. Español and P. Warren, Europhys. Lett. 30, 191 (1995).

[19] C. Cotter and S. Reich, Europhys. Lett. 64, 723 (2003).
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Fig. x1 (should go into Example of Section §2.3)
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FIG. 1: Modulus of eigenvalues of numerical propagator M∆t as a function of ω∆t.
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Fig. x2 (should go into Section §3.4)
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FIG. 2: Total energy E(t), fast oscillatory energy J(t), and slow rotational energy Es(t) = E(t)− J(t) as a

function of time for the conserative stiff pendulum system.
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Fig. x3 (should go into Section §3.4)
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FIG. 3: Total energy E(t), fast oscillatory energy J(t), and slow rotational energy Es(t) = E(t)− J(t) as a

function of time for the Langevin model of the stiff pendulum system.
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Fig. x4 (should go into Section §3.4)
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FIG. 4: Total energy E(t), fast oscillatory energy J(t), and slow rotational energy Es(t) = E(t)− J(t) as a

function of time for the DPD stiff spring pendulum model. Note the approximate conservation of the slow

(rotational) energy Es.
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Fig. x5 (should go into Section §3.4)
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FIG. 5: Total energy E(t), fast oscillatory energy J(t), and slow rotational energy Es(t) = E(t)− J(t) as

a function of time for several different decay rates α = 1/ε of the auto-covariance matrix in the extended

DPD model.
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