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Abstract
The Hamiltonian particle-mesh (HPM) method is generalized to the spherical shallow-water
equations, utilizing constrained particle dynamics on the sphere and Merilees pseudospectral
method (complexity O(J 2 log J ) in the latitudinal gridsize) to approximate the inverse
modified Helmholtz regularization operator. The time step for the explicit, symplectic
integrator depends only on a uniform physical smoothing length. Copyright  2004 Royal
Meteorological Society
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1. Introduction

In this paper, we extend the Hamiltonian particle-mesh
(HPM) method of Frank and Reich (2003) and Frank
et al. (2002) to the shallow-water equations in spher-
ical geometry (Williamson et al. 1992). By working
with a fully Lagrangian description, and embedding
the sphere in �3, one can avoid pole-related step-
size limitations and retain exact conservation of mass,
energy and circulation. Additionally, the method can
be made symplectic, which has even stronger implica-
tions, and in particular implies conservation of poten-
tial vorticity. We take Côte’s (1988) three-dimensional
constrained formulation

d

dt
x = v,

d

dt
v = −2�k × v − g∇x h − λx,

0 = x · x − R2

as a starting point to derive an approximation to the
shallow-water equations in the form of a constrained
system of ordinary differential equations (ODEs) in
the particle positions xk and their velocities vk , k =
1, . . . , K . Here g = 9.80616 m s−2 is the gravitational
constant, � = 7.292 × 10−5 s−1 is the rotation rate
of the earth, R = 6.37122 × 106 m is the radius of
the earth, h is the geopotential layer depth, k =
(0, 0, 1)T , and λ is a Lagrange multiplier to enforce
the position constraint.

A key aspect of the HPM method is the regulariza-
tion or smoothing of the particle-based discrete mass
distribution over a computational grid, which yields
the layer depth. The regularization is a differential
operator: specifically, an inverse modified Helmholtz
operator. In the present paper we approximate the

Helmholtz operator using a directional splitting and
utilize a spectral technique due to Merilees (1973) to
approximate differential operators and their inverses
over the sphere. Merilees method uses FFTs in both
longitudinal and latitudinal directions and requires
O(J 2 log J ) operations per smoothing step as opposed
to O(J 3) operations for the spectral transform method
(see Spotz et al. 1998). Here J denotes the number
of grid points in the latitudinal direction. We note
that for very fine discretizations, or in a parallel com-
puting environment, the FFT-based smoother may be
replaced by a gridpoint-based approximation without
significantly influencing our results.

Another key aspect of the HPM method lies in the
variational or Hamiltonian nature of the spatial trunca-
tion. This property, combined with a symplectic time-
stepping algorithm (Hairer et al. 2002), guarantees
excellent conservation of total energy and circulation
(Frank and Reich, 2003). These desirable properties
also apply to the proposed HPM in spherical geometry
and we demonstrate this for a numerical test problem
from Williamson et al. (1992). Finally, the time steps
achievable for our semi-explicit symplectic integration
method are entirely determined by the uniform physi-
cal smoothing length and not by the longitude–latitude
gridsize near the poles.

2. Description of the spatial truncation

The HPM method utilizes a set of K particles with
coordinates xk ∈ �3 and velocities vk ∈ �3 as well
as a longitude–latitude grid with equal grid spacing
�λ = �θ = π/J . The latitude grid points are offset
a half-grid length from the poles. Hence we obtain
grid points (λm, θn), where λm = m�λ, θn = −π

2 +
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90 J. Frank and S. Reich

(n − 1/2)�θ, m = 1, . . . , 2J , n = 1, . . . , J , and the
grid dimension is 2J × J .

All particle positions satisfy the holonomic con-
straint

xk · xk = R2 (1)

where R > 0 is the radius of the sphere. Differentiating
the constraint (1) with respect to time immediately
implies the velocity constraint

xk · vk = 0 (2)

We convert between Cartesian and spherical coor-
dinates using the formulas

x = R cos λ cos θ, y = R sin λ cos θ, z = R sin θ

and
λ = tan−1

(y

x

)
, θ = sin−1

( z

R

)

Hence we associate with each particle position xk =
(xk , yk , zk )

T a spherical coordinate (λk , θk ).
The implementation of the HPM method is greatly

simplified by making use of the periodicity of the
spherical coordinate system in the following sense.
The periodicity is trivial in the longitudinal direction.
For the latitude, a great circle meridian is formed by
connecting the latitude data separated by an angular
distance π in longitude (or J grid points). See, for
example, the paper by Spotz et al. (1998).

Let ψmn(x) denote the tensor product cubic B-spline
centred at a grid point (λm , θn), ie

ψmn(x) ≡ ψcs

(
λ − λm

�λ

)
· ψcs

(
θ − θn

�θ

)
(3)

where ψcs(r) is the cubic spline

ψcs(r) ≡



2
3 − |r |2 + 1

2 |r |3, |r | ≤ 1,
1
6 (2 − |r |)3, 1 < |r | ≤ 2,
0, |r | > 2

and (λ, θ) are the spherical coordinates of a point x
on the sphere.

In evaluating Equation (3) it is understood that the
distances λ − λm and θ − θn are taken as the minimum
over all periodic images of the arguments. With this
convention the basis functions form a partition of
unity, ie ∑

m,n

ψmn(x) = 1 (4)

hence satisfying a minimum requirement for approxi-
mation from the grid to the rest of the sphere.

The gradient of ψmn(x) in �3 can be computed
using the chain rule and the standard formula

∇x = 1

R
θ̂

∂

∂θ
+ 1

R cos θ
λ̂

∂

∂λ

with unit vectors

θ̂ =
[ − cos λ sin θ

− sin λ sin θ

cos θ

]
, λ̂ =

[ − sin λ
cos λ

0

]

Let us assume for a moment that we have com-
puted a layer depth approximation Ĥmn(t) over the
longitude–latitude grid. Making use of the partition
of unity (4), a continuous layer depth approximation
is obtained:

ĥ(x, t) =
∑
mn

Ĥmnψmn(x) (5)

Computing the gradient of this approximation at
particle positions xk , the Newtonian equations of
motion for each particle on the sphere are given by
the constrained formulation

d

dt
xk = vk , (6)

d

dt
vk = −2�k × vk − g

∑
m,n

∇xk ψ
mn(xk )

× Ĥmn(t) − λk xk , (7)

0 = xk · xk − R2 (8)

To close the equations of motion, we define the
geopotential layer depth Ĥmn(t) as follows. We assign
to each particle a fixed mass mk which represents its
local contribution to the layer depth approximation and
essentially equidistribute the particles (in the physical
metric) over the sphere at the initial time t = 0. First,
we compute

Amn =
∑

k

ψmn(xk ). (9)

We find that Amn is not approximately constant
but rather

Amn ≈ cos(θn) · const

ie, Amn is proportional to the area of the associated
longitude–latitude grid cell on the sphere. Second, we
define the particle masses

mk =
∑
m,n

Hmnψmn(xk ) (10)

and obtain

Hmn ≈ 1

Amn

∑
k

mkψ
mn(xk )

which provides us with the desired layer depth approx-
imation. The area coefficients (9) and the particle
masses (10) are only computed once at the begin-
ning of the simulation. During the simulation the layer
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Hamiltonian particle-mesh method for shallow water equations 91

depth is approximated over the longitude–latitude grid
using the formula

Hmn(t) = 1

Amn

∑
k

mkψ
mn(xk (t)) (11)

A crucial step in the development of an HPM
method is the implementation of an appropriate
smoothing operator S over the longitude–latitude grid.
We will derive such a smoothing operator in the sub-
sequent section. For now we simply assume the exis-
tence of a symmetric linear operator S and define
smoothed grid functions via S : {Amn} → {Ãmn} and
S : {Mmn} → {M̃mn}, respectively, where

Mmn(t) =
∑

k

mkψ
mn(xk (t))

We now replace the definition (11) by

H̃mn(t) = M̃mn(t)

Ãmn

(12)

and finally introduce Ĥmn(t) via S : {H̃mn} → {Ĥmn}.
This approximation is used in Equation (7) and closes
the equations of motion.

2.1. Conservation properties

The HPM method conserves mass, energy, sym-
plectic structure, circulation, potential vorticity and
geostrophic balance.

Trivially, since the mass associated with each par-
ticle is fixed for the entire integration, the HPM
method has local and total mass conservation. Further-
more, Equation (4) implies d/dt

∑
m,n Mm,n = 0, and

the same will hold for M̃mn(t) for appropriate S. This
implies the conservation of

∑
mn H̃mn(t)Ãmn by Equa-

tion (12).
Since the HPM particles are accelerated in the

exact gradient field of Equation (5), one can define an
auxiliary continuum fluid whose particle and velocity
fields initially interpolate the xk (0) and uk (0), evolve
this fluid under the continuous approximate layer depth
(5), and the HPM method will remain embedded in the
auxiliary flow.

In Frank and Reich (2003) we show that the aux-
iliary fluid satisfies a circulation theorem and, via
‘Stokes’ theorem, conserves vorticity. The auxiliary
fluid also conserves potential vorticity, and this per-
mits us to approximate PV by simply assigning the
PV of the auxiliary fluid to the particles, ie qk (0) =
q(xk , 0), and advecting this with the particles. Gener-
alized potential enstrophy conservation follows when
a function f (q) is approximated in a manner analo-
gous to Equations (5) and (11). See Frank and Reich
(2003) for full details.

The equations of motion (6) — (8) define a con-
strained Hamiltonian system that conserves the total
energy (Hamiltonian)

H =
∑

k

mk

2
vk · vk + g

2

∑
m,n

H̃ 2
mnÃmn .

Note that H̃ 2
mnÃmn = M̃ 2

mnÃ−1
mn . The symplectic struc-

ture of phase space is given by

ω =
∑

k

mk dvk ∧ xk + �
∑

k

mk dxk ∧ (k × dxk )

(13)

The symplectic structure may be also be embed-
ded the auxiliary fluid, allowing one to pull back to
label space by writing the particle flow as a function
of the initial conditions. One consequence of this is
another statement of potential vorticity conservation.
See Bridges et al. (2004) for a discussion of symplec-
ticity and PV. See also Cotter and Reich (2004) for a
discussion of the preservation properties of HPM for
adiabatic invariants and the implications of this for
geostrophic and (in vertical or 3D models) hydrostatic
balance relations.

3. The smoothing operator

To complete the description of the HPM method, we
need to find an inexpensive smoothing operator that
averages out fluctuations over the sphere on some
length scale 	. Following Merilees’ pseudospectral
code (Merilees, 1973), we compute derivatives by
employing one-dimensional fast Fourier transforms
(FFTs) along the longitudinal and the latitudinal direc-
tions as summarized, for example, by Fornberg (1995)
and Spotz et al. (1998). This allows us essentially to
follow the HPM smoothing approach of Frank and
Reich (2003) and Frank et al. (2002), which achieves
smoothing by inverting a modified Helmholtz operator
�(	2) = 1 − 	2∇2

x using two-dimensional FFT over
a regular grid in planar geometry. More specifically,
one can easily solve modified Helmholtz equations
separately in the longitudinal and latitudinal direc-
tions and apply an operator-splitting idea to define a
two-dimensional smoothing operator. The key obser-
vation is that such a smoothing operator is cheaper to
implement than the inversion of a modified Helmholtz
operator using spherical harmonics. We would like to
mention that our smoothing operator is different from
the filtering achieved in the pseudospectral method of
Spotz et al. (1998), which is needed to control aliasing
in a pseudospectral method.

We use the following specific technique to achieve
approximately uniform smoothing over the sphere with
a physical smoothing length 	. In the lateral direction
we use the modified Helmholtz operator

�lat(	
2) = 1 − 	2

R2

∂2

∂θ2
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92 J. Frank and S. Reich

Figure 1. Stereographic projection of 500 mb geopotential
height field on day 5, Test case 7. Contours by 50 m from
9050 (blue) to 10 250 (red) A movie is available from the
supplementary materials page

In the longitudinal direction a uniform physical
smoothing length is obtained with

�lon(	
2) = 1 − 	2

R2 cos2 θ

∂2

∂λ2

and, using a second-order operator splitting, the com-
plete smoothing operator can schematically be writ-
ten as

� = �−1
lon(	

2/2) ◦ �−1
lat (	

2) ◦ �−1
lon(	

2/2)

Upon implementing these operators using FFTs, we
obtain a discrete approximation S over the longi-
tude–latitude grid which was used in the previous
section to define the layer depth Ĥmn .

4. Time discretization and numerical
experiments

Since the equations of motion (6)–(8) are Hamilto-
nian, it is desirable to integrate them with a symplectic

(a) J=128

contour from 9050 to 10250 by 50

(b) J=256

contour from 9050 to 10250 by 50

contour from 9050 to 10250 by 50 contour from 9050 to 10250 by 50

(c) J=384 (d)

Figure 2. Comparison of Day 5 solution for (a) J = 128, (b) J = 256, (c) J = 384, (d) T213 reference solution
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Hamiltonian particle-mesh method for shallow water equations 93

method, as this implies long-time approximate conser-
vation of energy, symplectic structure (and hence PV)
and adiabatic invariants such as geostrophic balance.
Therefore, the following modification of the symplec-
tic RATTLE/SHAKE algorithm (Hairer et al. 2002)
suggests itself:

vn+1/2
k = (I + �t�k×)−1

[
vn

k − g�t

2

× ∇xk

∑
m,n

ψmn(xn
k )Ĥmn(tn) − λn

k xn
k

]
,

xn+1
k = xn

k + �tvn+1/2
k

0 = xn+1
k · xn+1

k − R2,

vn+1
k = (I − �t�k×)vn+1/2

k − g�t

2

× ∇xk

∑
m,n

ψmn(xn+1
k )Ĥmn(tn+1),

vn+1
k = vn+1

k − R−2xk (x
n+1
k · vn+1

k )

The first three equations, solved simultaneously,
lead to a scalar quadratic equation in the Lagrange
multiplier λn

k for each k. The roots correspond to pro-
jecting the particle to the near and far sides of the
sphere, so the smallest root is taken. The last two
equations update the velocity field and enforce Equa-
tion (2). Hence the above time-stepping method is
explicit. One can show that the method also conserves
the symplectic two form (13) and hence is symplectic
(Hairer et al. 2002).

To validate the HPM method, we integrated Test
Case 7 (Analyzed 500 mb Height and Wind Field Ini-
tial Conditions) from Williamson et al. (1992) with the
initial data of 21 December 1978 (T213 truncation),
over an interval of 5 days. All calculations were done
in Matlab, using mex extensions in C for particle-mesh
operators. We have observed no significant, long-lived
clustering of particles.

The discretization parameters (number of latitudinal
gridpoints J, total number of particles K, smoothing
length 	, and time step size of �t) for the various

(d)

contour from 9050 to 10250 by 50

(c) J=384

contour from -50 to 50 by 6.25

(b) J=256

contour from -100 to 100 by 12.5

(a) J=128

contour from -200 to 200 by 25

Figure 3. Stereographic projection of error in geopotential on day 5 for (a) J = 128, (b) J = 256 and (c) J = 384. The reference
solution is reproduced in (d)
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runs are listed in the table below:

J K �(m) �t(s)

128 333 758 3.1275 × 105 1728
256 1 335 096 1.5637 × 105 864
384 3 003 976 1.0425 × 105 432

A stereographic projection of the geopotential field
in the Northern Hemisphere is shown in Figure 1 for
the J = 384 simulation, and agrees quite well with
the solution shown in Figure 5.13 of Jakob-Chien
et al. (1995). In Figure 2 we give a comparison of the
solutions obtained for J = 128, J = 256, and J = 384

with the T213 reference solution.1 The error in the
geopotential fields for these same cases is compared in
Figure 3. The reader will note that there is an error in
the geopotential at time t = 0 already. This error is due
to the fact that the geopotential is determined by the
particle masses mk . The mass coefficients are assigned
initially with a certain approximation error. As a result,
small-scale gravity waves may be present in the initial

1 The reference solution was computed using the spectral transform
method and Gaussian quadrature points in the latitudinal direction
(Jakob-Chien et al. 1995). A least squares extrapolation of the 
2

errors reported in Jakob-Chien et al. (1995), assuming just polynomial
convergence of the spectral method, predicts an error of 5 × 10−4 for
the T213 truncation.
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Figure 4. Error growth in the 
2-norm of the geopotential height field
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Figure 5. Variation in total energy over a 30-day simulation
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state, even though these have been filtered out of
the reference data. These unbalanced gravity waves
also account for the fine-scale fluctuations observed in
Figure 1.

Figure 4 shows the growth of error in the 
2-norm
for the geopotential height over the 5-day period, for
J = 128, J = 256 and J = 384. We observe approxi-
mately first-order convergence. (A numerical approxi-
mation of the order exponent based on the given data
gave p ≈ 1.3.) We attribute the low-order convergence
to the complex dynamics of this test case. Higher-order
convergence would be expected for other test cases
from Williamson et al. (1992).

As pointed out in Section 2, mass and potential
enstrophy are preserved to machine precision by the
HPM method. Figure 5 illustrates the energy conser-
vation property of the HPM method. For this simu-
lation, we chose a coarse discretization of J = 128,
and integrated over a long interval of 30 days using
step sizes of �t = 432 sec, �t = 864 sec and �t =
1728 sec. The relative energy errors observed at day
30 were 2.0859 × 10−8, 8.667 × 10−8 and 1.645 ×
10−7, respectively. Note the relatively large errors
right at the beginning of the simulation. These are due
to the imbalance of the numerical initial data and the
rapid subsequent adjustment process.
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