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Summary. A useful method for understanding discretization error in the nu-
merical solution of ODEs is to compare the system of ODEs with the modified
equations obtained through backward error analysis, and using symplectic
integration for Hamiltonian ODEs provides more incite into the modified
equations. In this paper, the ideas of symplectic integration are extended to
Hamiltonian PDEs, and this paves the way for the development of a local
modified equation analysis solely as a useful diagnostic tool for the study
of these types of discretizations. In particular, local conservation laws of en-
ergy and momentum are not preserved exactly when symplectic integrators
are used to discretize, but the modified equations are used to derive modi-
fied conservation laws that are preserved to higher order along the numerical
solution. These results are also applied to the nonlinear wave equation.

Mathematics Subject Classification (1991):

1 Introduction

A method known as backward error analysis (BEA), in which a system of dif-
ferential equations is compared with the modified equations that are satisfied
by the numerical solution, is one of the best ways to analyze the effects of
discretization error in a numerical solution. The modified equations are found
by truncating an asymptotic expansion about the approximated solution. Cur-
rently, there are many results concerning the BEA of numerical methods for
ODEs. In particular, the modified equations of a Hamiltonian system are also

Correspondence to: S. Reich
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Hamiltonian if and only if the integrator used is symplectic, meaning the
numerical method preserves the symplectic structure of the ODE, and these
types of integrators have proved to give accurate and efficient results for the
long-time numerical integration of these systems (cf. [1,6,12,19]). There are
fewer results concerning BEA in relation to PDEs, but the idea of a modified
PDE has been presented as a means of determining the accuracy and stability
of numerical integrators for PDEs (cf. [24]).

The idea of symplectic integration has more recently been extended to the
multi-symplectic structure of Hamiltonian PDEs in a first paper by Marsden et
al. [15], who use the multi-symplectic structure of wave equations. Their ap-
proach derives a numerical scheme from the Lagrangian formulation in first-
order field theory using a discrete variational principle. We use an approach
based on the multi-symplectic structure, which was suggested by Bridges and
Reich [5]. This approach uses the application of a symplectic method to each
independent variable, and defines multi-symplectic integrators as methods
that preserve a discrete version of the symplectic conservation law (CL). We
make a first step toward understanding multi-symplectic integrators by way
of BEA. In particular, we formally derive modified equations that will be
used as a diagnostic tool to verify energy and momentum conservation.

The following model problem is used throughout this text. Assuming the
spatial domain [0, l] and the time domain [t0, tF ], consider the Lagrangian
functional

L =
∫ tF

t0

∫ l

0
L dxdt(1.1)

with the Lagrangian density

L = L(ut , ux, u) = 1

2
u2
t − σ(ux)− f (u),

where σ and f are smooth functions, u = u(x, t) and v = v(x, t) for
x, t ∈ R, and ut = ∂u/∂t , ux = ∂u/∂x. Then, using the variational princi-
ple, we derive the nonlinear wave equation

utt = ∂xσ ′(ux)− f ′(u),(1.2)

from the Euler-Lagrange equation

∂tLut + ∂xLux − Lu = 0,

where ∂t and ∂x denote partial differentiation with respect to t and x respec-
tively.

Equation (1.2) can also be stated as a system of first-order equations such
that

−vt − px = f ′(u), ut = v, 0 = p + σ ′(w), ux = w,(1.3)
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and this is equivalent to a multi-symplectic PDE, which is given in abstract
form by

Kzt + Lzx = ∇zS(z),(1.4)

where z is the d-dimensional vector of state variables, K,L ∈ R
d×d are con-

stant and skew-symmetric, and S : R
d → R is a smooth function. For the

specific case of the nonlinear wave equation we have taken

K =




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 and L =




0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


 ,

with z = [u, v,w, p]T , and

S(z) = v2

2
+ pw + σ(w)+ f (u).

This multi-symplectic formulation is a natural generalization of Hamiltonian
ODEs to PDEs. Examples of PDEs that have been formulated this way can
be found in [2–4].

Now we are concerned with numerical schemes that conserve a mul-
ti-symplectic CL. There is numerical evidence that these schemes locally
conserve energy and momentum remarkably well, though not exactly (cf.
[20]). Note that local conservation of these properties is a much stronger
result than the global conservation achieved in past results (cf. [16]). The
multi-symplectic formalism can be used to understand the CLs of energy and
momentum for equations of the form (1.4) by way of BEA, and we present
an extensive analysis for doing so in the following text. We emphasize that
we do not intend in this paper to use BEA to interpret the complete solu-
tion behavior in light of the modified equations. Such an undertaking would
strongly depend on the PDE as well as its initial and boundary conditions.

The outline of the paper is as follows. First, in §2, we discuss the common
CLs of symplecticity, energy, and momentum, that are associated with multi-
symplectic PDEs, and show the existence of these laws for the nonlinear wave
equation. In §3 a multi-symplectic discretization, referred to as the Euler box
scheme, is presented. It is shown that a spatial discretization, resulting in a
Hamiltonian system of ODEs, implies a spatially discrete energy CL, and the
same is shown for the conservation of momentum using a time discretiza-
tion. After a complete discretization, the CLs of energy and momentum are
no longer conserved exactly. However, under sufficient smoothness assump-
tions, we show that standard BEA can be used to formally derive a modified
CL that is preserved to higher order in one independent variable. These results
are derived in §4. While this approach to BEA has its advantages, a different
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method of BEA can be used to derive modified equations for the PDE and
these are used to get CLs that are preserved to higher order in both space and
time. This is the subject of §5. In §6, we consider numerical simulations that
demonstrate our main results, and make concluding remarks in §7.

2 Conservation laws

To begin, we introduce the CLs of symplecticity, energy, and momentum, that
are discussed throughout this text. Each of these CLs can be derived from the
equation (1.4), and in the following sections we discuss these laws in light
of multi-symplectic integration.

Following [2,3], a multi-symplectic CL

∂tω + ∂xκ = 0,(2.1)

where

ω = dz ∧ Kdz and κ = dz ∧ Ldz,

is derived directly from (1.4). Here, we use wedge product notation such that
dz denotes the vector of differentials.

This can be simplified by taking a (non-unique) splitting of the matrices
K and L such that

K = K+ + K− and L = L+ + L−,

with

KT
+ = −K− and LT+ = −L−.(2.2)

A splitting of this form immediately implies

dz ∧ K+dz = dz ∧ K−dz and dz ∧ L+dz = dz ∧ L−dz,

hence (2.1) holds with

ω = dz ∧ K+dz and κ = dz ∧ L+dz.

This splitting also becomes helpful as we study a multi-symplectic discreti-
zation of (1.4), and this will become evident in the next section.

Similar to the analysis in [2,3], we can also derive the CLs of energy and
momentum. Using the time invariance of (1.4), an energy CL can easily be
derived by taking the inner product (denoted on R

d by 〈·, ·〉) of (1.4) with zt .
Then

〈zt ,Lzx〉 = 〈zt ,∇zS(z)〉 = ∂tS(z),
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since the skew-symmetry of K implies 〈zt ,Kzt〉 = 0. Noting that

〈zt ,Lzx〉 = 〈zt ,L+zx〉 + 〈zt ,L−zx〉
= 〈zt ,L+zx〉 − 〈zx,L+zt〉
= ∂x〈zt ,L+z〉 − ∂t〈zx,L+z〉,

we obtain the energy CL

∂tE + ∂xF = 0,(2.3)

where

E = S(z)+ 〈zx,L+z〉 and F = −〈zt ,L+z〉(2.4)

are known respectively as the energy density and the energy flux. Similarly,
the spatial invariance of (1.4) can be used to take the inner product of (1.4)
with zx , which gives

∂xS(z) = 〈zx,Kzt〉 = ∂t〈zx,K+z〉 − ∂x〈zt ,K+z〉.
Thus, the momentum CL is given by

∂xG+ ∂tI = 0,(2.5)

where

G = S(z)+ 〈zt ,K+z〉 and I = −〈zx,K+z〉.
Notice that the momentum CL is achieved by reversing the roles of space

and time (the inner product is taken with zx rather than zt ), and using the
same steps used to get the energy CL. Thus, it is not necessary to derive
each CL separately, and in order to avoid this redundancy in the remainder
of the text, we shall consider only the energy CL in the general derivations
with the understanding that the same holds for momentum, while both will
be considered for specific case of the nonlinear wave equation.

For the system (1.3), take a splitting of the matrices K and L defined by

K+ =




0 −1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 and L+ =




0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0


 ,

and define K− and L− such that (2.2) is satisfied. Using this splitting, the CL
of symplecticity automatically becomes (2.1) for

ω = du ∧ dv and κ = du ∧ dp.

Using (2.4), it is also easy to show that (2.3) is satisfied with

E = 1

2
v2 + σ(w)+ f (u) = 1

2
u2
t + σ(ux)+ f (u)
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and

F = vp = −utσ ′(ux).

Under periodic boundary conditions, conservation of total energy

H(t) =
∫ l

0
E(t, x)dx

holds since

d

dt
H =

∫ l

0
∂tEdx = −

∫ l

0
∂xFdx,

but the energy CL is valid independent of the boundary conditions. Similarly,
(2.5) holds for

G = σ(w)+ pw − 1

2
v2 + f (u) = σ(ux)− σ ′(ux)ux − 1

2
u2
t + f (u)

and

I = wv = uxut .

3 Multi-Symplectic discretizations

Here and throughout the remainder of the paper, we use the notation zn,i to
denote a numerical approximation of z(xn, ti), for n = 0, 1, 2, . . . , J and
i = 0, 1, 2, . . . , τ , where J is the number of grid points and τ is the number
of time steps. We also define l/J =  x = xn−xn−1 and (tF −t0)/τ =  t =
ti − ti−1. Then, using both forward and backward differences, we define a
discrete approximation to zx by

δ+x z
n := zn+1 − zn

 x
and δ−x z

n := zn − zn−1

 x
,

where δ±x has been introduced for the sake of compact notation. Furthermore,
we define the central difference approximation for second order derivatives
with respect to x by

δ2
xz
n := zn+1 − 2zn + zn−1

 x2
= δ+x δ−x zn,

and the same can be done for discretizations in time.
It was briefly discussed in the introduction that a multi-symplectic PDE

given by (1.4) exploits the symplectic structure for each independent variable
x and t . Now, as we consider a discretization of (1.4), we use a similar idea
and apply a symplectic Euler discretization to each independent variable.
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This yields a first-order explicit one-step numerical method that preserves a
discrete version of the CL of symplecticity. We refer to this method as the
Euler box scheme, given by

K+δ+t z
n,i + K−δ−t z

n,i + L+δ+x z
n,i + L−δ−x z

n,i = ∇zS(zn,i).(3.1)

Proposition 1 The Euler box scheme (3.1) satisfies a discrete multi-symplec-
tic conservation law

δ+t ω
n,i + δ+x κn,i = 0(3.2)

where

ωn,i = dzn,i−1 ∧ K+dzn,i and κn,i = dzn−1,i ∧ L+dzn,i .

Proof. Consider the discrete variational equation

K+δ+t dzn,i + K−δ−t dzn,i + L+δ+x dzn,i + L−δ−x dzn,i = Szz(zn,i)dzn,i .
Now take the wedge product of this equation with dzn,i , and notice that we
have

dzn,i ∧ Szz(zn,i)dzn,i = 0,

because Szz is symmetric. Then, for the terms containing δ±t , we get

dzn,i ∧ K+δ+t dzn,i + dzn,i ∧ K−δ−t dzn,i

= dzn,i ∧ K+δ+t dzn,i + δ−t dzn,i ∧ K+dzn,i

= δ+t
(
dzn,i−1 ∧ K+dzn,i

)
.

Doing the same for the terms containing δ±x yields (3.2). ��

Example. Discretizing (1.3) first in space gives

−vnt − δ+x pn = f ′(un), unt = vn, pn = −σ ′(wn), δ−x u
n = wn,

(3.3)

which is equivalent to

vnt = δ+x σ ′(δ−x u
n)− f ′(un), unt = vn.(3.4)

Notice that, for  x = 1, σ(w) = w2/2 + w3/3, and f ′(u) = 0, these
equations become the Fermi-Pasta-Ulam problem (cf. [9]). With periodic
boundary conditions, the system of ordinary differential equations (3.4) is
also Hamiltonian in the classical sense where

H =
J∑
n=1

En, and En = 1

2
(vn)2 + σ(δ−x un)+ f (un)(3.5)
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is the approximated energy density. Applying a symplectic Euler discretiza-
tion in time, (3.4) becomes

δ+t v
n,i = δ+x σ ′(δ−x u

n,i)− f ′(un,i), δ−t u
n,i = vn,i .

Then a short calculation shows that (3.2) is satisfied with

ωn,i = dun,i−1 ∧ dvn,i, and κn,i = dun−1,i ∧ dpn,i,

such that

dpn,i = −σ ′′(wn,i)δ−x dun,i .

Alternatively, to use the approach based on the Lagrangian formulation
in [15], we approximate the Lagrangian functional (1.1) with

L ≈
τ∑
i=1

J∑
n=1

Ln,i,

for the discrete Lagrangian density

Ln,i = L (
δ−t u

n,i, δ−x u
n,i, un,i

) = 1

2

(
δ−t u

n,i
)2 − σ (

δ−x u
n,i

) − f (un,i).

Now, using the associated discrete form of the variational principle, we derive
a discrete form of the Euler-Lagrange equation given by

δ+t Lδ−t un,i + δ+x Lδ−x un,i + Lun,i = 0,

and this yields the discretization

δ2
t u
n,i = δ+x σ ′ (δ−x un,i) − f ′(un,i),

which is equivalent to the Euler box scheme. For a comparison of these two
approaches, see [17].

4 Discrete conservation laws and backward error analysis

Certain semi-discrete CLs can be found for multi-symplectic equations. Then,
using standard BEA, we can formally derive a modified Hamiltonian system
of ODEs, which in turn gives modified semi-discrete CLs.
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4.1 Standard backward error for the wave equation

Consider the Hamiltonian ODE (3.4) with periodic boundary conditions, and
for the sake of simplicity let σ(w) = w2/2, which yields the well-known
nonlinear Klein-Gordon equation. Then re-scaling the velocities vn = v̂n/ x
and discretizing in time by a symplectic Euler method yields the equivalent
equations

v̂n,i+1 − v̂n,i = ε(un+1,i − 2un,i + un−1,i)− ε x2f ′(un,i),
un,i+1 − un,i = εv̂n,i+1,

where ε =  t/ x. Now if we let yi = [ui , v̂i], where ui and v̂i are defined
to be the vectors containing un,i and v̂n,i respectively for all n, then these
equations define a map denoted by

yi+1 = $ε(yi ).
This symplectic map is ε-close to the identity. Thus, one can find an approxi-
mate Hamiltonian flow map according to the results in [1,19]. The difference
between these maps can be made exponentially small in terms of the parame-
ter ε which implies near conservation of total energy over exponentially long
time intervals. The validity of this statement depends crucially upon letting
ε → 0, and this is obviously a much stronger requirement than the usual
CFL stability condition ε ≤ 1, which often implies excellent conservation of
energy even for nonlinear problems.

On the other hand, one could formally apply standard BEA to (3.4) based
on the fact that the time discretization is a simple splitting method. This widely
used formal method of BEA, which we refer to as BEA-1, is well understood
for ODEs, and is described by Sanz-Serna and Calvo [21][pages 129–131].
More specifically, for separable Hamiltonians, such that H = T + V is the
sum of potential and kinetic terms, the modified Hamiltonian for the sym-
plectic Euler method is given by

H̄ρ = H +  t

2
{T , V } +  t2

12
({T , {T , V }} + {V, {V, T }})+ . . . ,(4.1)

where ρ is the number of modifications. This formula is obtained using the
BCH formula, where {·, ·} denotes the canonical bracket (cf. [21][Chapter
12]).

A spatial discretization of a Hamiltonian PDE, using a symplectic inte-
grator, yields a Hamiltonian system of ODEs. Thus, BEA-1 can be used to
formally derive the modified equations. Choose a splitting of the Hamiltonian
(3.5) such that H = T + V with

T = 1

2

J∑
n=1

(vn)2 and V =
J∑
n=1

(
δ−x u

n
)2

2
+ f (un).
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This implies, for example,

{T , V } =
J∑
n=1

(
vnδ2

xu
n − vnf ′(un)

)
.(4.2)

To get a second modification, one would need the additional terms

{T , {T , V }} =
J∑
n=1

(
(vn)2f ′′(un)+ vnδ2

xv
n
)

and

{V, {V, T }} =
J∑
n=1

(
(δ2
xu
n)2 − (f ′(un))2

)
.

Higher order modifications are found in a similar manner.
Upon first observation we see that the modification terms also depend on

powers of 1/ x, which are all hidden in finite difference approximations.
Hence, we must make the following necessary but reasonable assumptions,
in order to guarantee that the associated modified Hamiltonian (4.1) indeed
depends only on  t .

A1: The solutions of the given PDE remain smooth over the time interval of
interest.

A2: For  x sufficiently small and  t satisfying a CFL stability condition,
all necessary finite difference approximations can be bounded by a con-
stant that does not depend on  x and  t (numerical smoothness).

This implies, for example, the estimate

|δ2
xu
n| ≤ K,

for some constantK , which implies {T , V } = O(1) and the first modification
term is O( t). Naturally, A1 and A2 imply that the j th modification term in
(4.1) is indeed O( tj ). Unfortunately, the rigorous proof of A2 is strongly
problem dependent for nonlinear PDEs, and it is a proof beyond the scope
of this paper. Clearly, a CFL stability argument is a necessary condition to
ensure that A2 holds, but it is not sufficient. Some nonlinear stability argu-
ment is needed. However, these assumptions do allow a formal application
of BEA-1 to these types of problems with ε =  t . Hence, we assume A1
and A2 hold throughout the text.



Backward error analysis 11

4.2 Semi-discrete conservation laws

For multi-symplectic equations that have been semi-discretized to yield a
system of ODEs, a spatially discrete energy CL is preserved exactly, and
similarly a semi-discretization in time leads to a momentum CL that is pre-
served exactly.

Proposition 2 Applying a symplectic Euler discretization in space to (1.4)
yields an exact semi-discrete energy CL

∂tE
n + δ+x F n = 0,(4.3)

with

En = S(zn)+ 〈δ−x zn,L+zn〉, and Fn = −〈zn−1
t ,L+zn〉,(4.4)

and a symplectic Euler discretization in time yields an exact semi-discrete
momentum CL

∂xG
i + δ+t I i = 0,(4.5)

with

Gi = S(zn)+ 〈δ−t zi,K+zi〉, and I i = −〈zi−1
x ,K+zi〉.

Proof. First apply a symplectic Euler discretization to (1.4) in space to get
the semi-discrete equation

Kznt + L+δ+x z
n + L−δ−x z

n = ∇zS(zn).
Taking the inner product with znt yields

〈znt ,L+δ+x z
n〉 + 〈znt ,L−δ−x z

n〉 = 〈znt ,∇zS(zn)〉 = ∂tS(zn),
then adding and subtracting like terms and using properties of the inner prod-
uct gives

∂tS(z
n)+ ∂t〈δ−x zn,L+zn〉 = 〈znt ,L+δ+x z

n〉 + 〈δ−x znt ,L+zn〉
= δ+x 〈zn−1

t ,L+zn〉.
Thus, we have proved (4.3). To continue our formal analysis and find a semi-
discrete momentum CL, simply discretize (1.4) in time (leaving space con-
tinuous and disregarding stability issues) with a symplectic Euler scheme,
then take the inner product with zix to get (4.5). ��

We emphasize here that this result is independent of the boundary condi-
tions.
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4.3 Modified equations and conservation laws

Returning to the nonlinear wave equation, we consider the semi-discrete CLs
and use BEA-1 to get semi-discrete modified CLs. Apply Proposition 2 to
the spatially discrete system (3.3) to obtain

∂tE
n = δ+x

(
vn−1σ ′(δ−x u

n)
)
.

Therefore, the semi-discrete CL (4.3) is satisfied with the obvious substitution
for Fn.

Applying BEA-1 and using (4.1) with (4.2), implies the modified energy
density

Ēn1 = 1

2

(
(vn)2 + (

δ−x u
n
)2 + t (vnδ2

xu
n − vnf ′(un)

)) + f (un).(4.6)

In fact, the modified Hamiltonian can be written

H̄ρ =
J∑
n=1

Ēnρ,(4.7)

for any number of modificationsρ. (Once again we assume periodic boundary
conditions, but §5 will provide a completely local picture that is independent
of boundary conditions.) Thus, the modified Hamiltonian system of ODEs
becomes

−vnt + δ2
xu
n −  t

2 δ
2
xv
n = f ′(un)−  t

2 f
′′(un)vn,

unt −  t
2 δ

2
xu
n = vn −  t

2 f
′(un).

(4.8)

This modified system of equations can also be written in the form of the
multi-symplectic PDE (1.4) with z = [u, v,w, φ,ψ]T and

S = v2 − w2

2
+ f (u)−  t

2
(f ′(u)v − φψ),

for w = ψ = ux and φ = vx . Now (4.9) can be found using the analog of
(4.4) for this modified multi-symplectic PDE.

A higher order semi-discrete modified energy CL

∂t Ē
n
ρ + δ+x F̄ nρ = 0(4.9)

can be found in the obvious way. However, this can become quite cumber-
some as higher order derivatives are involved for higher order modifications
and the phase space of the modified multi-symplectic PDE becomes very
large. Furthermore, finding a canonical way to get a modified multi-sym-
plectic PDE using BEA-1 is not straightforward.

Based on a more classical approach, we can obtain the semi-discrete CLs
of energy and momentum using only the modified Hamiltonian (4.7) and its
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corresponding equations of motion. For example, the modified energy density
(4.6) can be differentiated with respect to t to give

∂t Ē
n
1 = δ+x

[
δ−x u

n

(
vn−1 +  t

2

(
δ2
xu
n−1 − f ′(un−1)

))

+ t
2
vn

(
δ−x v

n +  t

2

(
δ−x δ

2
xu
n − δ−x f ′(un)

))

− t
2
δ−x v

n

(
vn +  t

2

(
δ2
xu
n − f ′(un)

))]
.

Then the system of equations (4.8) implies

∂t Ē
n
1 = δ+x

[
un−1
t δ−x u

n +  t

2

(
vnδ−x u

n
t − unt δ−x vn

)]
,(4.10)

which is of the form (4.9). This is a very simple and specific case, and the
fully general problem is more complex. However, it can be shown that given a
modified Hamiltonian (4.1) with any number of modifications using BEA-1,
a modified CL can be found using a recursion relation, and a detailed proof
of this result is found in [17].

Similar results can be formally derived concerning a momentum CL. We
now make use of A2 with respect to the discrete time derivatives. First notice
that the time discrete Klein-Gordon equation can formally be written

wix = δ2
t u
i + f ′(ui), uix = wi,(4.11)

which, with the index i ranging form minus to plus infinity, is also a Hamil-
tonian system in space where the Hamiltonian is given by

Ĥ =
∞∑

i=−∞
Gi, where Gi = 1

2

(
(wi)2 + (

δ−t u
i
)2

)
− f (ui)(4.12)

We can differentiate the momentum flux given by Gi to get

∂xG
i = wiwix + δ−t uiδ−t wi − f ′(ui)wi = δ+t

(
wi−1δ−t u

i
)

where we have used (4.11), and this is just the semi-discrete momentum CL
(4.5).

Consider a splitting of (4.12) such that Ĥ = T̂ + V̂ for

T̂ = 1

2

∞∑
i=−∞

(wi)2 and V̂ =
∞∑

i=−∞

1

2
(δ−t u

i)2 − f (ui).

Then the first modification can be found by evaluating

{T̂ , V̂ } =
∞∑

i=−∞

(
wiδ2

t u
i + wif ′(ui)

)
,
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which implies the modified momentum flux

Ḡi1 = 1

2

(
(wi)2 + (δ−t ui)2 + x (

wiδ2
t u
i + wif ′(ui)

)) − f (ui).(4.13)

Thus, the modified semi-discrete equations of motion are given by

wix = δ2
t u
i + f ′(ui)−  x

2

(
δ2
t w

i + wif ′′(ui)
)

uix = wi +  x

2

(
δ2
t u
i + f ′(ui)

)
.

Following a similar procedure used to get (4.10), the semi-discrete modified
momentum CL is obtained by differentiating Ḡi1, given in (4.13), with respect
to x to get

∂xḠ
i
1 = δ−t uiδ−t uix + wiwix − f ′(ui)uix

+ x
2

(
wixδ

2
t u
i + wiδ2

t u
i
x + wixf ′(ui)+ wif ′′(ui)uix

)
.

Then substituting

wiwix = uixδ2
t u
i + f ′(ui)uix

− x
2

(
uixδ

2
t w

i + wixδ2
t u
i + wif ′′(ui)uix + wixf ′(ui)

)
,

gives

∂xḠ
i
1 = δ−t uiδ−t uix + uixδ2

t u
i +  x

2

(
wiδ2

t u
i
x − uixδ2

t w
i
)

= δ+t
(
ui−1
x δ−t u

i
) +  x

2
δ+t

(
wiδ−t u

i
x − uixδ−t wi

)
,

and this is a semi-discrete modified momentum CL.
It is important to notice that there are two sets of modified equations here,

depending on how we do the BEA. In fact, the modified equations here are
only for the systems of ODEs that result from a semi-discretization of the
PDE. The advantage is that we can obtain semi-discrete CLs, but the price
paid for these is an incomplete picture of the modified equations for the PDE.
However, this problem is addressed in §5.

4.4 Numerical verification of discrete conservation laws

Conservation of total energy can be monitored by checking that the Hamilto-
nian converges to a constant value as  t → 0. For the semi-discrete energy
density Ēnρ , conservation of total energy can be checked directly because
the modification terms contain no time derivatives, meaning no additional
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discretization error is introduced. Thus, the discrete Hamiltonian H̄ iρ , which
is just the Hamiltonian evaluated at the numerical solution that is obtained
using the symplectic Euler scheme, satisfies

H̄ iρ = H̄ρ(ti)+ O( tρ+1)(4.14)

where H̄ρ(ti) is the semi-discrete Hamiltonian given in (4.7) evaluated along
the exact solution of the modified equation.

In contrast, the local energy CL does contain time derivatives, and in order
to maintain the order of convergence of the modified CL, we must use an ap-
proximation of the appropriate order for each time derivative. In general, we
can derive a semi-discrete energy CL (4.9) for any number of modifications
ρ, and we know that this conservation law is satisfied along the numerical
solution up to an O( tρ+1) error. Hence, to check the order of convergence
numerically, this CL must be discretized using no less than an O( tρ+1)

method. As we consider the fully discrete CL, let

δ
(ρ+1)
t zn,i = ∂tzn(ti)+ O( tρ+1)

be any discretization of order ρ + 1. Then, we have the residual

rn,ie = δ(ρ+1)
t Ēn,iρ + δ+x F̄ n,iρ = O( tρ+1)(4.15)

provided each time derivative of F̄ nρ is also discretized to the appropriate
order. These higher order discretizations can be achieved in many ways, but
one of the simplest and most practical is to use symmetric differencing (cf.
[8][page 16]). The same analysis holds for discrete momentum CLs, where
the spatial derivatives in (4.5) with ρ modifications must be approximated by
an O( xρ+1) method.

For the nonlinear wave equation, (4.14) is immediately satisfied for both
the modified and unmodified equations. Moreover, (4.15) with ρ = 0 and
ρ = 1 is satisfied for

Fn,i = −(δ(1)t un−1,i)δ−x u
n,i

and

F̄
n,i
1 = −(δ(2)t un−1,i)δ−x u

n,i −  t

2

(
vn,iδ

(1)
t δ

−
x u

n,i − (δ(1)t un,i)δ−x vn,i
)
,

respectively, where one can use, for example, δ(1)x = δ+x and δ(2)t = (δ+t +
δ−t )/2.

5 Revised backward error analysis

A second method of BEA, which we refer to as the revised method or BEA-2
, can also be considered, and though it may be somewhat less practical for
ODEs, it becomes more useful in the context of PDEs.
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5.1 Backward error analysis for ODEs

First consider the Hamiltonian ODE

Jyt = ∇yH(y), J =
[

0 −1
1 0

]
,(5.1)

for y ∈ R
2, and the symplectic Euler scheme

J+δ+t y
i + J−δ−t y

i = ∇yH(yi).
Under the stated smoothness assumptions, a standard Taylor series expansion
of an interpolating function y(t) gives

δ+t y(ti) = yt (ti)+  t

2
ytt (ti)+  t2

6
yttt (ti)+ . . . ,(5.2)

and we also have

δ−t y(ti) = yt (ti)−  t

2
ytt (ti)+  t2

6
yttt (ti)− . . . .(5.3)

Thus, we can replace δ+t yi and δ−t yi by (5.2) and (5.3) respectively and obtain
the modified system of equations

Jyt +  t

2
Aytt = ∇yH(y),(5.4)

where A = (J+ − J−) is symmetric. This is a first modification because we
have ignored all terms of order higher than  t . In general, we obtain the
modified system of equations

Jyt +  t

2
Aytt +  t2

6
Jyttt + . . .+  tρ

(ρ + 1)!
Sρ∂

ρ+1
t y = ∇yH(y)(5.5)

for ρ modifications, where

Sρ =
{

J, ∀ ρ even

A, ∀ ρ odd
.

Note that the equation obtained by differentiation of (5.1) with respect to t
can be used to recursively eliminate the higher order derivatives, and yield
the modified equations obtained from BEA-1, but this becomes increasingly
more complicated for higher order modifications.

Now take the inner product of the modified equations (5.5) with yt to
obtain

0 = 〈yt , Jyt〉 = 〈yt ,∇yH(y)〉 −  t

2
〈yt ,Aytt〉 − . . .−  tρ

(ρ + 1)!
〈yt ,Sρ∂ρ+1

t y〉

= d

dt
H̃ρ(y, yt , . . . , ∂

ρ
t y),
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where

H̃ρ = H(y)−  t

4
〈yt ,Ayt〉 −  t2

6
〈yt , Jytt〉 + . . .

is now a conserved quantity. In fact, the modified equations (5.5) can be writ-
ten as a Hamiltonian ODE over an enlarged phase space with Hamiltonian
function H̃ρ . This is the subject of the following.

Theorem 1 The modified system of equations (5.5) with ρ modifications is
equivalent to the Hamiltonian system

J̃ỹt = ∇ỹ H̃ρ(ỹ).(5.6)

Here, ỹ stands for

ỹ = ỹρ = [y0, y1, y2, . . . , yρ]T where yk = [y(1)k , y
(2)
k , . . . , y

(k)
k ]T ,

with y0 = y and y(j)k = ∂jt y for all k = 1, 2, . . . , ρ. Defining

k− =
{
k
2 , ∀ k even
k−1

2 , ∀ k odd and k+ =
{
k
2 , ∀ k even
k+1

2 , ∀ k odd ,(5.7)

we have

H̃ρ = H +
ρ∑
k=1

(−1)k
 tk

(k + 1)!


 k+∑
j=1

α(−1)j+1
(
y
(k+1−j)
k

)T
Sky

(j)

k




with

α =
{

1
2 , f or j = (k + 1)/2

1, otherwise
.

In addition, let Ji,j ∈ R
2×2 denote the matrix elements of the block matrix

J̃ = J̃ρ , such that

J1,k3 = −Jk3−(k−1),k3−1 = . . . = (−1)k−Jk3−k+,k3−k− =  tk

(k + 1)!
Sk,

(5.8)

where

k3 = 1 +
k∑
j=1

j, f or k = 1, 2, . . . , ρ,

and since J̃ is skew-symmetric we only need to list the diagonal and upper
triangular nonzero elements for any given k.
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Proof. In the case ρ = 1, we have

H̃1(ỹ) = H(y)−  t

4

(
y
(1)
1

)T
Ay(1)1 = H(y)−  t

4
yTt Ayt

and

ỹ =
[
y

y
(1)
1

]
=

[
y

yt

]
, J̃ =

[
J  t

2 A
− t

2 A 0

]

which is clearly equivalent to (5.4). Note, the elements of J̃ are given by

J1,1 = J and J1,2 = −J2,1 =  t

2
A

with all remaining elements zero.
The phase space becomes more enlarged with each modification, and the

modified system for ρ modifications is built upon the modified system for
ρ − 1 modifications. Assume the theorem holds for ρ = m, and consider the
system (5.6) for ρ = m+1. Clearly, the modified Hamiltonian can be written

H̃m+1 = H̃m +Hm+1,

and we can write

J̃m+1 (ỹm+1)t =
[

J̃m B
−BT Jm+1

] [
ỹm
ym+1

]
t

= ∇H̃m+1,

where

J̃m ∈ R
2m3×2m3, B ∈ R

2m3×2(m+1), Jm+1 ∈ R
2(m+1)×2(m+1),

ỹm ∈ R
2m3, and ym+1 ∈ R

2(m+1).

Replacing k by m+ 1 in (5.8) shows that the only nonzero element of B is

B1,(m+1) = J1,(m+1)3 =  tm+1

(m+ 2)!
Sm+1,

and the remaining terms in (5.8) make up the matrix Jm+1. Thus, the equation

J̃m(ỹm)t + B(ym+1)t = ∇H̃m
is just

Jyt +  t

2
Aytt +  t2

6
Jyttt + . . .+  tm+1

(m+ 2)!
Sm+1∂ty

(m+1)
m+1 = ∇yH(y).

Now the equation

−BT (ỹm)t + Jm+1(ym+1)t = ∇Hm+1

is used successively to give the additional equations

∂ty0 = y(1)m+1, and ∂ty
(i)
m+1 = y(i+1)

m+1 for i = 1, 2, . . . , m,

which implies (5.5), and by induction this proves the theorem. ��
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This modified Hamiltonian H̃ρ is equivalent to the modified Hamiltonian
derived using standard BEA up to O( tρ+1). The only difference here is that
the modification terms contain explicit time derivatives, and this has impli-
cations for checking the conservation of total energy numerically. To make
this clear, notice that the discrete modified Hamiltonian must satisfy

H̃ iρ = H̃ρ(ti)+ O( tρ+1),

similar to (4.14). Thus, it is a necessary condition that each time derivative
of Ẽρ is approximated to the appropriate order to ensure the desired order
of convergence, and this is easily done using symmetric differencing (cf.
[8][page 16]).

Notice also that the modified equations are equivalent to an Euler-Lag-
range equation which is derived from the appropriate Lagrangian. For ex-
ample, if ρ = 1 the modified equations can be derived from the Lagrangian
density

L̃1 = H(y)+ 1

2
yTt Jy +  t

4
yTt Ayt .

In general, the modified Lagrangian can be written

L̃ρ = H(y)+
ρ−∑
j=0

(−1)j
 t2j

2(2j + 1)!

(
∂
j+1
t y

)T
J∂jt y

+
ρ+∑
j=1

(−1)j−1 t
2j−1

2(2j)!

(
∂
j
t y

)T
A∂jt y,

where ρ− and ρ+ are defined by replacing k with ρ in (5.7).
We strictly consider the ODE case here, but we can apply these ideas to

Hamiltonian PDEs in the following way. First, we can use the semi-discret-
ized Hamiltonian system of PDEs then apply the revised BEA to the resulting
system of ODEs to obtain a modified Hamiltonian system similar to (5.6).
We refer to this method as BEA-2, and note that the results are similar to
the application of BEA-1. However, these ideas can be applied to PDEs in a
more complete manner.

5.2 Backward error analysis for PDEs

The revised BEA can also be applied to a multi-symplectic PDE in both space
and time, and we call this BEA-3. Now consider (3.1). Using (5.2)-(5.3), one
can derive the modified PDE

Kzt +  t

2
(K+ − K−) ztt + Lzx +  x

2
(L+ − L−) zxx = ∇zS(z),(5.9)
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which can also be written as a multi-symplectic PDE. First let

M = (K+ − K−) , and N = (L+ − L−) ,

and note that these are both symmetric. Then for r = zt and s = zx , we have

Kzt +  t

2
Mrt + Lzx +  x

2
Nsx = ∇zS(z),

but this is equivalent to

K̃z̃t + L̃z̃x = ∇z̃S̃ρ(z̃),(5.10)

where z̃ = [z, r, s]T ,

K̃ =

 K  t

2 M 0
− t

2 M 0 0
0 0 0


 , L̃ =


 L 0  x

2 N
0 0 0

− x
2 N 0 0




and

S̃1(z̃) = S −  t

2
rTMr −  x

2
sTNs.

Higher order modifications are found in the same way as the ODE case, and
the general formulation for ρ modifications is derived in the obvious way.

A modified local energy CL can be derived from this new multi-symplec-
tic formulation or, more directly, by taking the inner product of (5.9) with
zt and rearranging terms. This approach is completely independent of the
boundary conditions because it provides us with a modified energy densi-
ty Ẽ and a modified energy flux F̃ without referring to a globally defined
Hamiltonian. Now, evaluation of this conservation law along the numerical
solution is accomplished using

rn,ie = δ(ρ+1)
t Ẽn,iρ + δ(ρ+1)

x F̃ n,iρ = O( xρ+1 + tρ+1),(5.11)

where each derivative of both Ẽρ and F̃ρ is approximated to the appropriate
order.
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The modified equations in this case can also be obtained from a Lagran-
gian formulation. In fact, we have

L̃ρ = S(z) +
ρ−∑
j=0

(−1)j
 t2j

2(2j + 1)!

(
∂
j+1
t z

)T
K∂jt z

+
ρ+∑
j=1

(−1)j−1 t
2j−1

2(2j)!

(
∂
j
t z

)T
M∂jt z

+
ρ−∑
j=0

(−1)j
 x2j

2(2j + 1)!

(
∂j+1
x z

)T
L∂jx z

+
ρ+∑
j=1

(−1)j−1 x
2j−1

2(2j)!

(
∂jx z

)T
N∂jx z

for any number of modifications ρ, and this implies a variational principle
which leads to higher order field theories.

5.3 The nonlinear wave equation

First we concern ourselves with the ODE case and discuss conservation of
total energy using the Hamiltonian ODEs that result from a semi-discreti-
zation of the nonlinear wave equation. After applying BEA-2 to (3.4), the
modified equations of motion become

vnt +  t

2
vntt = δ+x σ ′(δ−x u

n)− f ′(un), unt −  t

2
untt = vn,(5.12)

and this implies the modified energy density

Ēn1 = (vn)2

2
+ σ(δ−x un)+ f (un)+

 t

2
unt v

n
t ,

for ρ = 1. To show that the associated total energy H̄1 given in (4.7) is con-
served, we take the time derivative of Ēn1 . Since the equations (5.12) imply

∂t Ē
n
1 = unt δ+x σ ′(δ−x u

n)+ σ ′(δ−x u
n)δ−x u

n
t = δ+x

(
un−1
t σ ′ (δ−x un))(5.13)

the total energy is clearly conserved under the assumed periodic boundary
conditions. It becomes apparent from (5.13) that we have a semi-discrete lo-
cal energy CL in this case because the BEA has been performed on a system
of ODEs rather than the original PDE. Similar results hold for a momentum
CL.
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Applying BEA-3 with ρ = 1, the modified equations of motion are equiv-
alent to the system of PDEs

vt +  t

2
vtt + px +  x

2
pxx = −f ′(u),

ux −  x

2
uxx = w,

ut −  t

2
utt = v,

−σ ′(w) = p.

Using the energy density

Ẽ1 = v2

2
+ σ(w)+ f (u)+  t

2
utvt

these equations imply

∂t Ẽ1 = −utpx − putx +  x

2
(putxx − utpxx),

because

vvt = −utpx − f ′(u)ut −  t

2
(vttut + vtutt )−  x

2
utpxx,

and

σ ′(w)wt = −putx +  x

2
putxx.

Therefore, the modified energy flux is

F̃1 = utp +  x

2
(utpx − putx).

After discretizing the modified CL we get (5.11) for ρ = 1 with

Ẽ
n,i
1 = (vn,i)2

2
+ σ(wn,i)+ f (un,i)+  t

2
δ
(1)
t u

n,iδ
(1)
t v

n,i,

and

F̃
n,i
1 = pn,iδ(2)t un−1,i +  x

2

(
δ
(2)
t u

n+1,iδ(1)x p
n,i − pn,iδ(2)t δ(1)x un,i

)
.

Once again we use, for example, δ(1)t = δ+t , δ(2)t = (δ+t + δ−t )/2, etc., to
maintain the order of convergence.
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6 Numerical results

To check the preservation of the modified CL to higher order numerically,
consider a specific case of (1.2), with σ(w) = w2/2, and f (u) = 1 − cos(u)
which gives the sine-Gordon equation

utt = uxx − sin(u).(6.1)

For all simulations we use the periodic boundary conditions u(x0, ti) =
u(xJ , ti) for x0 = 0 and xJ = 1, and the initial conditions are given by
a standard Gaussian with zero velocity, though similar results hold for dif-
ferent initial and boundary conditions.

We use the Euler box scheme to discretize (6.1), then solve the system of
equations

vi+1 = vi − t (δ+
x wi + sin(ui )

)
ui+1 = ui + tvi+1

wi+1 = −δ−
x ui+1

where ui = u(ti) is the vector whose entries are the values of u at each of
the grid points with analogous definitions for v and w, and δ±

x represents the
matrix obtained by applying δ±x to each entry of a given vector. Using this
notation, we solve for the vectors u, v, and w at each time step, then use
this to evaluate the residual rn,ie given in (4.15). This in turn yields a residual
vector rn,ie , which contains the values of rn,ie at each grid point and is used to
compute

max
n,i

∣∣rn,ie ∣∣ = re

for each value of  t . This procedure is then repeated for different step sizes
 t , in order to check the order of convergence for modified and unmodified
energy CLs. The same is also done for the modified momentum CL where
we evaluate rm for  t fixed, while we vary  x. All simulations were per-
formed using MATLAB, which made it possible to take advantage of the
matrix-vector operations inherent in the problem for this discretization, and
we integrate over one period for each simulation.

Using log-log scale, Fig. 6.1a plots re as a function of t . with x = 1/40
and t = 1/40, 1/80, 1/160, 1/400, 1/600, 1/1000, and 1/1500. Similarly, Fig.
6.1b plots rm as a function of  x for the momentum CL. In this case, back-
ward error analysis in space requires that we keep  t fixed while  x → 0.
However, the condition  t ≤  x must be satisfied in order to ensure the
stability of the Euler scheme. Therefore, we set t = 1/1500 for x = 1/40,
1/80, 1/160, 1/400, 1/600, 1/1000, and 1/1500. The figure clearly shows that
the modified energy CLs, obtained using BEA-1, are conserved to higher
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Fig. 6.1. In log-log scale (a) re as a function of  t and (b) rm as a function of  x where
BEA-1 has been used to get the modified equations

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0

0.01

0.02

0.03

0.04

0.05

0.06

∆ t

r e

Fig. 6.2. re as a function of  t , for the following curves: BEA-2 (–), and BEA-3 with
 x = .005 (- -) and  x = .0025 (-·-)

order. For ρ = 0 the residual converges linearly for both energy and momen-
tum CLs, while ρ = 1 gives second order convergence and ρ = 2 gives third
order convergence.

Now consider the modified energy CL where the modified equations have
been derived using the revised BEA. Here we consider only the energy CL
because the stability restriction  t ≤  x makes it difficult to analyze the
results for the momentum CL. Hence, each plot here gives re as a function
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Fig. 6.3. re as a function of  t in log-log scale for the following curves: BEA-1 (+),
BEA-2 (–), and the shifted residual using BEA-3 with  x = .005 (- -) and  x = .01 (◦)

of  t , but similar results also hold for the momentum CL. Unless stated
otherwise, we set x = 1/100 with t = 1/200, 1/250, 1/300, 1/400, 1/500,
1/600, 1/800, 1/1000, 1/1400, 1/2000. Fig. 6.2 shows a clear difference be-
tween BEA-2 and BEA-3. (Note that, due to the stability restriction t ≤  x,
this plot can only be plotted for  x = 1/400 with  t = 1/400, 1/500, . . . ,
1/2000.) For BEA-2, re → 0 as  t → 0, but for BEA-3, re → C x2, for
some constant C, as  t → 0. However, as  x → 0, we have re → 0. This
is made more clear in the following table, where we see that for t ≈ 0, the
residual converges to zero like  x2, i.e. re = O( t2 + x2).

 x .02 .01 .005 .0025

Approx.
lim t→0 re

.3184 .0827 .0211 .0059

Using log-log scale, Fig. 6.3 compares each method of BEA. It shows
that there is little, if any, difference between BEA-1 and BEA-2. If the  x2

dependence of the residual for BEA-3 is neglected, i.e. the parabolae of Fig.
6.2 are shifted to intercept the y-axis at zero, then we see that the residual
is slightly smaller, and this is true regardless of our choice for  x. Overall,
BEA-3 gives a better understanding of the error due to discretization of a
Hamiltonian PDE.
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7 Concluding remarks

The analysis of this paper is specific to the Euler box scheme, but similar
results hold using other symplectic methods. For example, an application of
the implicit midpoint scheme to each independent variable of (1.4) yields the
Preissman box scheme

Kδ+t z
n+1/2,i + Lδ+x z

n,i+1/2 = ∇zS(zn+1/2,i+1/2),

which is discussed in a multi-symplectic setting in [5]. Using Taylor series
expansions about ti+1/2 we find that

δ+t z(ti) = zt (ti+1/2)+  t2

24
zttt (ti+1/2)+ O( t4),

which implies that the implicit midpoint scheme is a second order meth-
od. Hence, the first modification is second order and the modified equations
become

Kzt + t2Mzttt + Lzx + x2Nzxxx = ∇zS(z),
where

M = 1

24
K and N = 1

24
L.

Now, this can also be written in the form (5.10) for z̃ = [z, p, q, r, s]T , and

S̃1 = S + t2qTMp + x2sTNr,

with

K̃ =




K 0  t2M 0 0
0  t2M 0 0 0

 t2M 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 , L̃ =




L 0 0 0  x2N
0 0 0 0 0
0 0 0 0 0
0 0 0  x2N 0

 x2N 0 0 0 0




where p = zt , q = pt , r = zx , and s = rx . Then the modified CLs are easily
found.

It is important to notice in this case that the modified CL with one mod-
ification is preserved to forth order in  t and  x. Just as for the Euler box
scheme, the numerical verification of this CL can only be achieved by approx-
imating derivatives to the appropriate order, and the residual of the discrete
modified energy CL with ρ modifications generally satisfies

rn,ie = O( x2ρ + t2ρ).
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Clearly, this has not been an exhaustive study but only an introduction.
One major question that remains concerns using these results to derive esti-
mates for the accuracy of numerical solutions. A first step in this direction is
to consider soliton solutions and search for a modified soliton that is satisfied
by the modified equations [18], or that better represents the numerical solu-
tion [7]. Then additional questions to consider concern the stability of such
solitons [4]. Further questions to consider are those related to a theoretical
and numerical juxtaposition of multi-symplectic schemes with non-symplec-
tic energy/momentum conserving schemes (cf. [10,11,13,14,20,22,23]), or
with other non-conservative schemes.

Throughout this text we have discussed the multi-symplectic integration
of Hamiltonian PDEs with application to the nonlinear wave equation. In
particular, we considered the modified equations obtained though various
methods of backward error analysis, and applied the results to the conserva-
tion laws of energy and momentum. It was shown that a semi-discretization
of the PDE, which gave a system of ODEs, could be used to derive semi-
discrete conservation laws, and performing a formal backward error analysis
on this system of ODEs gave modified equations that could be used to get
semi-discrete conservation laws. Yet this approach has a shortcoming in that
the modified equations did not represent the PDE but the system of ODEs.
Hence, an alternative method of BEA was introduced in which a modified
multi-symplectic PDE could be derived and used to obtain conservation laws
that were preserved to higher order in both space and time.
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