The nontradable asset model Bounds for the value process An explicit indifference valuation formula

Stochastic correlation in exponential utility indifference valuation

Christoph Frei

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich cfrei@math.ethz.ch Department of Mathematics ETH Zurich

イロト イポト イヨト イヨト

Joint work with Martin Schweizer

Spring School, University of Potsdam, March 6th 2007

Motivation: Valuation of contingent claims

Given: Discounted share price *S* (cont. semimartingale); payoff $H \in L^{\infty}(\mathcal{F}_{T})$.

Question: Fair value h(t) for H at t < T?

H attainable $(H = x + \int_0^T \vartheta_s \, dS_s)$ → unique arbitrage-free price $(h(t) = x + \int_0^t \vartheta_s \, dS_s)$ H nonattainable,

many values consistent with no-arbitrage

 \rightarrow use additional criterion

・ 同 ト ・ ヨ ト ・ ヨ ト

Criterion: Exponential utility indifference $\sup_{\vartheta} \mathbb{E} \left[U \left(\int_0^T \vartheta_s \, dS_s \right) \right] = \sup_{\vartheta} \mathbb{E} \left[U \left(\int_0^T \vartheta_s \, dS_s + H - h(0) \right) \right]$

Motivation: Exponential utility indifference valuation

E >

The nontradable asset model Bounds for the value process An explicit indifference valuation formula

Outline

- Financial market
- Optimization problem
- 2 Bounds for the value process
 - Proposition
 - First steps of the proof
- An explicit indifference valuation formula
 - Main result
 - Basic idea of the proof

-∢ ≣ ▶

The nontradable asset model Bounds for the value process An explicit indifference valuation formula

Financial market Optimization problem

The nontradable asset model

Financial market:

• Tradable stock S

$$\frac{dS_s}{S_s} = \mu_s \, ds + \sigma_s \, dW_s, \ 0 \leqslant s \leqslant T, \quad S_0 > 0;$$

correlation ρ

• Contingent claim H is \tilde{W} -measurable.

Stochastic framework:

- [0, *T*] finite time horizon and (Ω, *F*, ℙ) probability space supporting two independent Brownian motions *W* and *W*[⊥];
- $\mathbb{F} = (\mathcal{F}_s)$ filtration of $(\tilde{W}, \tilde{W}^{\perp}), \tilde{\mathbb{F}} = (\tilde{\mathcal{F}}_s)$ filtration of \tilde{W} ;
- ρ process valued in [-1, 1];
- \mathbb{F} -Brownian motion W is then defined by

$$\pmb{W} := \int
ho \, \pmb{d} ilde{\pmb{W}} + \int \sqrt{1-
ho^2} \, \pmb{d} ilde{\pmb{W}}^\perp$$

★ 문 ► ★ 문 ► ...

Example: Executive stock options

- Manager receives call options on the stock of her company.
- She must not trade the company stock because of legal restrictions.
- She may trade a correlated stock, e.g., shares of another company in the same line of business.

Assumptions:

- Correlation ρ bounded away from 1 and -1;
- Drift µ bounded;
- Volatility σ bounded away from 0 and ∞ ;
- Contingent claim *H* bounded;
- Zero interest rate;
- Sharpe ratio $\lambda := \frac{\mu}{\sigma}$ and correlation $\rho \tilde{\mathbb{F}}$ -optional;
- Utility function $U(x) = -\exp(-\gamma x)$, $x \in \mathbb{R}$, fixed $\gamma > 0$.

ヘロン 人間 とくほ とくほ とう

э.

Optimization problem:

Value process

$$V(\mathbf{x}_t, \mathbf{q}, t) := \underset{\pi \in \mathcal{A}_t(\mathbf{x}_t)}{\operatorname{ess sup}} \underbrace{\mathbb{E}\left[-\exp\left(-\gamma(\pi_T^0 + \pi_T^1) - \gamma \mathbf{q} \mathbf{H}\right) \middle| \mathcal{F}_t\right]}_{=:\varphi(\pi, \mathbf{q}, t)}$$

with π^0 = amount invested in bank account,

- π^1 = amount invested in tradable stock *S*;
- Indifference value $h(x_t, q, t)$ implicitly defined by $V(x_t, 0, t) = V(x_t - h(x_t, q, t), q, t);$
- Admissible strategies on [t, T] with initial capital x_t

$$\mathcal{A}_{t}(\boldsymbol{x}_{t}) = \left\{ \pi \left| \begin{array}{c} \pi \ \mathbb{F}\text{-optional, self-financing, } \pi_{t}^{0} + \pi_{t}^{1} = \boldsymbol{x}_{t}, \\ \int_{t}^{T} |\pi_{s}^{0}| \, d\boldsymbol{s} < \infty \text{ and } \int_{t}^{T} |\pi_{s}^{1}|^{2} \, d\boldsymbol{s} < \infty \text{ a.s.,} \\ \left(\exp\left(-\gamma\left(\pi_{s}^{0} + \pi_{s}^{1}\right)\right) \right)_{t \leqslant s \leqslant T} \text{ of class } (D) \end{array} \right\}.$$

ヘロン ヘアン ヘビン ヘビン

Proposition (Bounds for the value process V)

Fix $q \in \mathbb{R}$, $t \in [0, T]$ and x_t bounded \mathcal{F}_t -measurable. For every $\pi \in \mathcal{A}_t(x_t)$,

$$arphi(\pi, \boldsymbol{q}, t) \leqslant -\boldsymbol{e}^{-\gamma x_t} \mathbb{E}_{\mathbb{P}'} \left[\exp \left(-\gamma \boldsymbol{q} \boldsymbol{H} - \frac{1}{2} \int_t^T \lambda_s^2 \, ds \right)^{\frac{1}{\overline{\delta}(t)}} \middle| \tilde{\mathcal{F}}_t
ight]^{\delta(t)}.$$

There exists a $\pi^* \in \mathcal{A}_t(x_t)$ such that

$$\varphi(\pi^{\star}, \boldsymbol{q}, t) = -\boldsymbol{e}^{-\gamma \boldsymbol{x}_{t}} \mathbb{E}_{\mathbb{P}'} \left[\exp\left(-\gamma \boldsymbol{q} \boldsymbol{H} - \frac{1}{2} \int_{t}^{T} \lambda_{s}^{2} ds\right)^{\frac{1}{\delta(t)}} \middle| \tilde{\mathcal{F}}_{t} \right]^{\frac{\delta(t)}{\delta}},$$
$$\overline{\delta}(t) := \sup_{s \in [t,T]} \left\| \frac{1}{1 - \rho_{s}^{2}} \right\|_{L^{\infty}(\mathbb{P})}, \quad \underline{\delta}(t) := \inf_{s \in [t,T]} \frac{1}{\|1 - \rho_{s}^{2}\|_{L^{\infty}(\mathbb{P})}}.$$

・ロン・西方・ ・ ヨン・

э

Proposition First steps of the proof

First step of the proof

$$\begin{split} \varphi(\pi, q, t) &= -e^{-\gamma x_t} \mathbb{E}_{\mathbb{P}'} \bigg[\underbrace{\exp \left(\int_t^T (\lambda_s - \gamma \pi_s^1 \sigma_s) \, dW'_s \right)}_{\text{controllable by } \pi} \underbrace{\Psi(q, t)}_{\tilde{\mathcal{F}}_T \text{-meas.}} \middle| \mathcal{F}_t \bigg], \\ \Psi(q, t) &:= \exp \left(-\gamma q H - \frac{1}{2} \int_t^T \lambda_s^2 \, ds \right), \\ \frac{d\mathbb{P}'}{d\mathbb{P}} &:= \exp \left(-\int_0^T \lambda_s \, dW_s - \frac{1}{2} \int_0^T \lambda_s^2 \, ds \right), \\ W' &:= W + \int \lambda_s \, ds. \end{split}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Second step of the proof

Write

$$\begin{split} \Psi(q,t) &= \left(\Psi(q,t)^{\frac{1}{\overline{\delta}(t)}}\right)^{\overline{\delta}(t)} \\ &= \left(\mathbb{E}_{\mathbb{P}'}\left[\Psi(q,t)^{\frac{1}{\overline{\delta}(t)}}\middle|\tilde{\mathcal{F}}_t\right] \exp\left(\int_t^T \zeta_s \, d\tilde{W}'_s - \frac{1}{2}\int_t^T \zeta_s^2 \, ds\right)\right)^{\overline{\delta}(t)} \\ \text{for the } (\tilde{\mathbb{F}},\mathbb{P}')\text{-Brownian motion } \tilde{W}' := \tilde{W} + \int \lambda_s \rho_s \, ds. \text{ Then plug this into} \end{split}$$

plug this into

$$\varphi(\pi, q, t) = -e^{-\gamma x_t} \mathbb{E}_{\mathbb{P}'}\left[\exp\left(\int_t^T (\lambda_s - \gamma \pi_s^1 \sigma_s) dW'_s\right) \Psi(q, t) \middle| \mathcal{F}_t\right].$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Theorem (Explicit indifference valuation formula)

Fix $q \in \mathbb{R}$ and $t \in [0, T]$. There exist \mathcal{F}_t -measurable random variables $\delta^{(q)}(t, .), \delta^{(0)}(t, .) : \Omega \to [\underline{\delta}(t), \overline{\delta}(t)]$ such that we have, for almost all $\omega \in \Omega$ and every bounded \mathcal{F}_t -measurable x_t ,

$$egin{aligned} \mathcal{W}(x_t,q,t)(\omega) &= -e^{-\gamma x_t(\omega)} \Big(\mathbb{E}_{\mathbb{P}'} \Big[\Psi(q,t)^{1/\delta} \Big| ilde{\mathcal{F}}_t \Big](\omega) \Big)^{\delta'} \Big|_{\delta = \delta^{(q)}(t,\omega)}, \ h(q,t)(\omega) &= rac{1}{\gamma} \log rac{\left(\mathbb{E}_{\mathbb{P}'} \Big[\Psi(0,t)^{1/\delta'} \big| ilde{\mathcal{F}}_t \Big](\omega)
ight)^{\delta'} \Big|_{\delta' = \delta^{(0)}(t,\omega)}}{\left(\mathbb{E}_{\mathbb{P}'} \Big[\Psi(q,t)^{1/\delta} \big| ilde{\mathcal{F}}_t \Big](\omega)
ight)^{\delta} \Big|_{\delta = \delta^{(q)}(t,\omega)}, \ \Psi(q,t) &:= \expigg(-\gamma q \mathcal{H} - rac{1}{2} \int_t^T \lambda_s^2 \, ds igg). \end{aligned}$$

ヘロン 人間 とくほ とくほ とう

э

Basic idea of the proof: An interpolation argument

We already know that

$$f(\overline{\delta}(t),\omega) \leqslant -e^{\gamma x_t(\omega)} V(x_t,q,t)(\omega) \leqslant f(\underline{\delta}(t),\omega),$$

where the stochastic process f(.,.): $[\underline{\delta}(t), \overline{\delta}(t)] \times \Omega \to \mathbb{R}$ is defined by

$$f(\delta,\omega) := \left(\mathbb{E}_{\mathbb{P}'} \Big[\Psi(\boldsymbol{q},t)^{1/\delta} \Big| \tilde{\mathcal{F}}_t \Big](\omega) \Big)^{\delta}, \quad (\delta,\omega) \in \big[\underline{\delta}(t), \overline{\delta}(t) \big] imes \Omega.$$

The basic idea is now to apply the intermediate value theorem.

イロト イポト イヨト イヨト

1

References

- Frei, C. and Schweizer, M. (2007). Exponential utility indifference valuation in a Brownian setting with stochastic correlation. *Preprint.*
- Musiela, M. and Zariphopoulou, T. (2004). An example of indifference prices under exponential preferences. *Finance Stoch.* 8 229–239.
- Tehranchi, M. (2004). Explicit solutions of some utility maximization problems in incomplete markets. *Stochastic Process. Appl.* **114** 109–125.

ヘロン 人間 とくほ とくほ とう

э.