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Motivation: Valuation of contingent claims

Given: Discounted share price S (cont. semimartingale);
payoff H ∈ L∞(FT ).

Question: Fair value h(t) for H at t < T?

H attainable H nonattainable,(
H = x +

∫ T
0 ϑs dSs

)
many values consistent

→ unique arbitrage-free with no-arbitrage
price

(
h(t) = x +

∫ t
0 ϑs dSs

)
→ use additional criterion

Criterion: Exponential utility indifference

sup
ϑ

E
[
U

( ∫ T
0 ϑs dSs

)]
= sup

ϑ
E

[
U

( ∫ T
0 ϑs dSs + H − h(0)

)]
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Motivation: Exponential utility indifference valuation

Exponential utility indifference valuation

explicit formula general properties
(Brownian setting) (dual methods)

PDE-approach martingale arguments ad hoc technics
(Markovian setting) (stochastic correlation) (constant corr.)

Musiela and Frei and Schweizer Tehranchi
Zariphopoulou
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Financial market
Optimization problem

The nontradable asset model

Financial market:
Tradable stock S

dSs

Ss
= µs ds + σs dWs, 0 6 s 6 T , S0 > 0;

Contingent claim H is W̃ -measurable.

xy correlation ρ

Stochastic framework:
[0, T ] finite time horizon and (Ω,F , P) probability space
supporting two independent Brownian motions W̃ and W̃⊥;
F = (Fs) filtration of

(
W̃ , W̃⊥)

, F̃ =
(
F̃s

)
filtration of W̃ ;

ρ process valued in [−1, 1];
F-Brownian motion W is then defined by

W :=

∫
ρ dW̃ +

∫ √
1− ρ2 dW̃⊥.
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Financial market
Optimization problem

Example: Executive stock options
Manager receives call options on the stock of her company.
She must not trade the company stock because of legal
restrictions.
She may trade a correlated stock, e.g., shares of another
company in the same line of business.

– Deutsche Bank (left-hand scale, in e) Source: www.finanzen.net

– Credit Suisse (right-hand scale, in e)
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Financial market
Optimization problem

Assumptions:
Correlation ρ bounded away from 1 and −1;
Drift µ bounded;
Volatility σ bounded away from 0 and ∞;
Contingent claim H bounded;
Zero interest rate;
Sharpe ratio λ := µ

σ and correlation ρ F̃-optional;
Utility function U(x) = −exp(−γx), x ∈ R, fixed γ > 0.
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Financial market
Optimization problem

Optimization problem:
Value process
V (xt , q, t) := ess sup

π ∈At (xt )

E
[
−exp

(
−γ(π0

T + π1
T )− γqH

)∣∣∣Ft

]
︸ ︷︷ ︸

=: ϕ(π,q,t)

with π0 = amount invested in bank account,
π1 = amount invested in tradable stock S;

Indifference value h(xt , q, t) implicitly defined by
V (xt , 0, t) = V

(
xt − h(xt , q, t), q, t

)
;

Admissible strategies on [t , T ] with initial capital xt

At(xt) =

π

∣∣∣∣∣∣∣∣
π F-optional, self-financing, π0

t + π1
t = xt ,∫ T

t

∣∣π0
s
∣∣ ds <∞ and

∫ T
t

∣∣π1
s
∣∣2 ds <∞ a.s.,(

exp
(
−γ

(
π0

s + π1
s
)))

t6s6T
of class (D)

 .
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Proposition
First steps of the proof

Proposition (Bounds for the value process V )

Fix q ∈ R, t ∈ [0, T ] and xt bounded Ft -measurable. For every
π ∈ At(xt),

ϕ(π, q, t) 6 −e−γxt EP′

[
exp

(
−γqH − 1

2

∫ T

t
λ2

s ds
) 1

δ(t)

∣∣∣∣∣F̃t

]δ(t)

.

There exists a π? ∈ At(xt) such that

ϕ(π?, q, t) = −e−γxt EP′

[
exp

(
−γqH − 1

2

∫ T

t
λ2

s ds
) 1

δ(t)

∣∣∣∣∣F̃t

]δ(t)

,

δ(t) := sup
s∈ [t ,T ]

∥∥∥∥ 1
1− ρ2

s

∥∥∥∥
L∞(P)

, δ(t) := inf
s∈ [t ,T ]

1
‖1− ρ2

s‖L∞(P)

.
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Proposition
First steps of the proof

First step of the proof

ϕ(π, q, t) = −e−γxt EP′

[
exp

(∫ T

t
(λs − γπ1

sσs)dW ′
s

)
︸ ︷︷ ︸

controllable by π

Ψ(q, t)︸ ︷︷ ︸
F̃T -meas.

∣∣∣∣∣Ft

]
,

Ψ(q, t) := exp
(
−γqH − 1

2

∫ T

t
λ2

s ds
)

,

dP′

dP
:= exp

(
−

∫ T

0
λs dWs −

1
2

∫ T

0
λ2

s ds
)

,

W ′ := W +

∫
λs ds.
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Proposition
First steps of the proof

Second step of the proof

Write

Ψ(q, t)

=
(
Ψ(q, t)

1
δ(t)

)δ(t)

=

(
EP′

[
Ψ(q, t)

1
δ(t)

∣∣∣F̃t

]
exp

(∫ T

t
ζs dW̃ ′

s −
1
2

∫ T

t
ζ2

s ds
))δ(t)

for the
(
F̃, P′

)
-Brownian motion W̃ ′ := W̃ +

∫
λsρs ds. Then

plug this into

ϕ(π, q, t) = −e−γxt EP′

[
exp

(∫ T

t
(λs − γπ1

sσs)dW ′
s

)
Ψ(q, t)

∣∣∣∣∣Ft

]
.
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Main result
Basic idea of the proof

Theorem (Explicit indifference valuation formula)

Fix q ∈ R and t ∈ [0, T ]. There exist Ft -measurable random
variables δ(q)(t , .), δ(0)(t , .) : Ω→

[
δ(t), δ(t)

]
such that we have,

for almost all ω ∈ Ω and every bounded Ft -measurable xt ,

V (xt , q, t)(ω) = −e−γxt (ω)
(
EP′

[
Ψ(q, t)1/δ

∣∣∣F̃t

]
(ω)

)δ
∣∣∣∣
δ=δ(q)(t ,ω)

,

h(q, t)(ω) =
1
γ

log

(
EP′

[
Ψ(0, t)1/δ′

∣∣F̃t
]
(ω)

)δ′
∣∣∣
δ′=δ(0)(t ,ω)(

EP′
[
Ψ(q, t)1/δ

∣∣F̃t
]
(ω)

)δ
∣∣∣
δ=δ(q)(t ,ω)

,

Ψ(q, t) := exp
(
−γqH − 1

2

∫ T

t
λ2

s ds
)

.
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Main result
Basic idea of the proof

Basic idea of the proof: An interpolation argument

We already know that

f
(
δ(t), ω

)
6 −eγxt (ω)V (xt , q, t)(ω) 6 f

(
δ(t), ω

)
,

where the stochastic process f (., .) :
[
δ(t), δ(t)

]
× Ω→ R is

defined by

f (δ, ω) :=
(
EP′

[
Ψ(q, t)1/δ

∣∣∣F̃t

]
(ω)

)δ
, (δ, ω) ∈

[
δ(t), δ(t)

]
× Ω.

The basic idea is now to apply the intermediate value theorem.
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