Stochastic correlation in exponential utility indifference valuation

Christoph Frei

cfrei@math.ethz.ch

EHH

Eidgenössische Technische Hochschule Zûrich
Swiss Federal Institute of Technology Zurich
Department of Mathematics ETH Zurich

Joint work with Martin Schweizer
Spring School, University of Potsdam, March 6th 2007

Motivation: Valuation of contingent claims

Given: Discounted share price S (cont. semimartingale); payoff $H \in L^{\infty}\left(\mathcal{F}_{T}\right)$.
Question: Fair value $h(t)$ for H at $t<T$?
H attainable
$\left(H=x+\int_{0}^{T} \vartheta_{s} d S_{s}\right)$
\rightarrow unique arbitrage-free
price $\left(h(t)=x+\int_{0}^{t} \vartheta_{s} d S_{s}\right)$
H nonattainable, many values consistent with no-arbitrage
\rightarrow use additional criterion

Criterion: Exponential utility indifference

$$
\sup _{\vartheta} \mathbb{E}\left[U\left(\int_{0}^{T} \vartheta_{s} d S_{s}\right)\right]=\sup _{\vartheta} \mathbb{E}\left[U\left(\int_{0}^{T} \vartheta_{s} d S_{s}+H-h(0)\right)\right]
$$

Motivation: Exponential utility indifference valuation

Exponential utility indifference valuation
explicit formula
(Brownian setting)
general properties
(dual methods)

PDE-approach
(Markovian setting) Musiela and
Zariphopoulou
martingale arguments
(stochastic correlation)
Frei and Schweizer
ad hoc technics (constant corr.) Tehranchi

Outline

(1) The nontradable asset model

- Financial market
- Optimization problem

2) Bounds for the value process

- Proposition
- First steps of the proof

3 An explicit indifference valuation formula

- Main result
- Basic idea of the proof

The nontradable asset model

Financial market:

- Tradable stock S

$$
\frac{d S_{s}}{S_{s}}=\mu_{s} d s+\sigma_{s} d W_{\substack{ \\\text { correlation } \rho}} \quad 0 \leqslant s \leqslant T, \quad S_{0}>0
$$

- Contingent claim H is \tilde{W}-measurable.

Stochastic framework:

- $[0, T]$ finite time horizon and $(\Omega, \mathcal{F}, \mathbb{P})$ probability space supporting two independent Brownian motions \tilde{W} and \tilde{W}^{\perp};
- $\mathbb{F}=\left(\mathcal{F}_{s}\right)$ filtration of $\left(\tilde{W}, \tilde{W}^{\perp}\right), \tilde{\mathbb{F}}=\left(\tilde{\mathcal{F}}_{s}\right)$ filtration of \tilde{W};
- ρ process valued in $[-1,1]$;
- \mathbb{F}-Brownian motion W is then defined by

$$
W:=\int \rho d \tilde{W}+\int \sqrt{1-\rho^{2}} d \tilde{W}^{\perp}
$$

Example: Executive stock options

- Manager receives call options on the stock of her company.
- She must not trade the company stock because of legal restrictions.
- She may trade a correlated stock, e.g., shares of another company in the same line of business.

- Deutsche Bank (left-hand scale, in €) Source: www.finanzen.net
- Credit Suisse (right-hand scale, in €)

Assumptions:

- Correlation ρ bounded away from 1 and -1 ;
- Drift μ bounded;
- Volatility σ bounded away from 0 and ∞;
- Contingent claim H bounded;
- Zero interest rate;
- Sharpe ratio $\lambda:=\frac{\mu}{\sigma}$ and correlation $\rho \tilde{\mathbb{F}}$-optional;
- Utility function $U(x)=-\exp (-\gamma x), x \in \mathbb{R}$, fixed $\gamma>0$.

Optimization problem:

- Value process

$$
V\left(x_{t}, q, t\right):=\operatorname{ess}_{\pi \in \mathcal{A}_{t}\left(x_{t}\right)} \underbrace{\mathbb{E}\left[-\exp \left(-\gamma\left(\pi_{T}^{0}+\pi_{T}^{1}\right)-\gamma q H\right) \mid \mathcal{F}_{t}\right]}_{=: \varphi(\pi, q, t)}
$$

with $\pi^{0}=$ amount invested in bank account, $\pi^{1}=$ amount invested in tradable stock $S ;$

- Indifference value $h\left(x_{t}, q, t\right)$ implicitly defined by

$$
V\left(x_{t}, 0, t\right)=V\left(x_{t}-h\left(x_{t}, q, t\right), q, t\right)
$$

- Admissible strategies on $[t, T]$ with initial capital x_{t}

$$
\mathcal{A}_{t}\left(x_{t}\right)=\left\{\begin{array}{l}
\pi \left\lvert\, \begin{array}{l}
\pi \mathbb{F} \text {-optional, self-financing, } \pi_{t}^{0}+\pi_{t}^{1}=x_{t} \\
\int_{t}^{T}\left|\pi_{s}^{0}\right| d s<\infty \text { and } \int_{t}^{T}\left|\pi_{s}^{1}\right|^{2} d s<\infty \text { a.s. } \\
\left(\exp \left(-\gamma\left(\pi_{s}^{0}+\pi_{s}^{1}\right)\right)\right)_{t \leqslant s \leqslant T} \text { of class }(D)
\end{array}\right.
\end{array}\right\}
$$

Proposition (Bounds for the value process V)

Fix $q \in \mathbb{R}, t \in[0, T]$ and x_{t} bounded \mathcal{F}_{t}-measurable. For every $\pi \in \mathcal{A}_{t}\left(x_{t}\right)$,

$$
\varphi(\pi, q, t) \leqslant-e^{-\gamma x_{t}} \mathbb{E}_{\mathbb{P}^{\prime}}\left[\left.\exp \left(-\gamma q H-\frac{1}{2} \int_{t}^{T} \lambda_{s}^{2} d s\right)^{\frac{1}{\bar{\delta}(t)}} \right\rvert\, \tilde{\mathcal{F}}_{t}\right]^{\bar{\delta}(t)} .
$$

There exists a $\pi^{\star} \in \mathcal{A}_{t}\left(x_{t}\right)$ such that

$$
\begin{aligned}
& \varphi\left(\pi^{\star}, q, t\right)=-e^{-\gamma x_{t} \mathbb{E}_{\mathbb{P}^{\prime}}}\left[\left.\exp \left(-\gamma q H-\frac{1}{2} \int_{t}^{T} \lambda_{s}^{2} d s\right)^{\frac{1}{\delta(t)}} \right\rvert\, \tilde{\mathcal{F}}_{t}\right]^{\frac{\delta(t)}{\underline{\delta}},} \\
& \bar{\delta}(t):=\sup _{s \in[t, T]}\left\|\frac{1}{1-\rho_{s}^{2}}\right\|_{L_{\infty}(\mathbb{P})}, \quad \underline{\delta}(t):=\inf _{s \in[t, T]} \frac{1}{\left\|1-\rho_{s}^{2}\right\|_{L_{\infty}(\mathbb{P})}} .
\end{aligned}
$$

First step of the proof

$$
\begin{aligned}
\varphi(\pi, q, t) & =-e^{-\gamma x_{t}} \mathbb{E}_{\mathbb{P}^{\prime}}[\underbrace{\exp \left(\int_{t}^{T}\left(\lambda_{s}-\gamma \pi_{s}^{1} \sigma_{s}\right) d W_{s}^{\prime}\right)}_{\text {controllable by } \pi} \underbrace{\mathcal{F}}_{\tilde{\mathcal{F}}_{T^{- \text {-meas. }}}^{\Psi(q, t)} \mid}] \\
\Psi(q, t) & :=\exp \left(-\gamma q H-\frac{1}{2} \int_{t}^{T} \lambda_{s}^{2} d s\right) \\
\frac{d \mathbb{P}^{\prime}}{d \mathbb{P}^{\prime}} & :=\exp \left(-\int_{0}^{T} \lambda_{s} d W_{s}-\frac{1}{2} \int_{0}^{T} \lambda_{s}^{2} d s\right) \\
W^{\prime} & :=W+\int \lambda_{s} d s .
\end{aligned}
$$

Second step of the proof

Write

$$
\begin{aligned}
& \Psi(q, t) \\
& =\left(\Psi(q, t)^{\frac{1}{\delta(t)}}\right)^{\bar{\delta}(t)} \\
& =\left(\mathbb{E}_{\mathbb{P}^{\prime}}\left[\left.\Psi(q, t)^{\frac{1}{\bar{\delta}(t)}} \right\rvert\, \tilde{\mathcal{F}}_{t}\right] \exp \left(\int_{t}^{T} \zeta_{s} d \tilde{W}_{s}^{\prime}-\frac{1}{2} \int_{t}^{T} \zeta_{s}^{2} d s\right)\right)^{\bar{\delta}(t)}
\end{aligned}
$$

for the $\left(\tilde{F}, \mathbb{P}^{\prime}\right)$-Brownian motion $\tilde{W}^{\prime}:=\tilde{W}+\int \lambda_{s} \rho_{s} d s$. Then plug this into

$$
\varphi(\pi, q, t)=-e^{-\gamma x_{t}} \mathbb{E}_{\mathbb{P}^{\prime}}\left[\exp \left(\int_{t}^{T}\left(\lambda_{s}-\gamma \pi_{s}^{1} \sigma_{s}\right) d W_{s}^{\prime}\right) \Psi(q, t) \mid \mathcal{F}_{t}\right]
$$

Theorem (Explicit indifference valuation formula)

Fix $q \in \mathbb{R}$ and $t \in[0, T]$. There exist \mathcal{F}_{t}-measurable random variables $\delta^{(q)}(t,),. \delta^{(0)}(t,):. \Omega \rightarrow[\underline{\delta}(t), \bar{\delta}(t)]$ such that we have, for almost all $\omega \in \Omega$ and every bounded \mathcal{F}_{t}-measurable x_{t},

$$
\begin{aligned}
V\left(x_{t}, q, t\right)(\omega) & =-\left.e^{-\gamma x_{t}(\omega)}\left(\mathbb{E}_{\mathbb{P}^{\prime}}\left[\Psi(q, t)^{1 / \delta} \mid \tilde{\mathcal{F}}_{t}\right](\omega)\right)^{\delta}\right|_{\delta=\delta(q)(t, \omega)}, \\
h(q, t)(\omega) & =\frac{1}{\gamma} \log \frac{\left.\left(\mathbb{E}_{\mathbb{P}^{\prime}}\left[\Psi(0, t)^{1 / \delta^{\prime}} \mid \tilde{\mathcal{F}}_{t}\right](\omega)\right)^{\delta^{\prime}}\right|_{\delta^{\prime}=\delta(0)(t, \omega)}}{\left.\left(\mathbb{E}_{\mathbb{P}^{\prime}}\left[\Psi(q, t)^{1 / \delta} \mid \tilde{\mathcal{F}}_{t}\right](\omega)\right)^{\delta}\right|_{\delta=\delta(q)(t, \omega)}} \\
\Psi(q, t) & :=\exp \left(-\gamma q H-\frac{1}{2} \int_{t}^{T} \lambda_{s}^{2} d s\right) .
\end{aligned}
$$

Basic idea of the proof: An interpolation argument

We already know that

$$
f(\bar{\delta}(t), \omega) \leqslant-e^{\gamma x_{t}(\omega)} V\left(x_{t}, q, t\right)(\omega) \leqslant f(\underline{\delta}(t), \omega),
$$

where the stochastic process $f(.,):.[\underline{\delta}(t), \bar{\delta}(t)] \times \Omega \rightarrow \mathbb{R}$ is defined by

$$
f(\delta, \omega):=\left(\mathbb{E}_{\mathbb{P}^{\prime}}\left[\Psi(q, t)^{1 / \delta} \mid \tilde{\mathcal{F}}_{t}\right](\omega)\right)^{\delta}, \quad(\delta, \omega) \in[\underline{\delta}(t), \bar{\delta}(t)] \times \Omega .
$$

The basic idea is now to apply the intermediate value theorem.

References

(1) Frei, C. and Schweizer, M. (2007). Exponential utility indifference valuation in a Brownian setting with stochastic correlation. Preprint.
(2) Musiela, M. and Zariphopoulou, T. (2004). An example of indifference prices under exponential preferences. Finance Stoch. 8 229-239.
(3) Tehranchi, M. (2004). Explicit solutions of some utility maximization problems in incomplete markets. Stochastic Process. Appl. 114 109-125.

