Symbiotic Branching Compact Interface Property

Leif Döring (TU Berlin)

5th March 2007

Heat Equation with Feller Noise Mutually Catalytic Branching Model Symbiotic Branching Model Compact Support Property

Part I

(3-Step Motivation of Symbiotic Branching)

Part II (Compact Support Property)

Heat Equation with Feller Noise Mutually Catalytic Branching Model Symbiotic Branching Model Compact Support Property

Part I – 3-Step Motivating of Symbiotic Branching

A stochastic evolution equation (SPDE):

Heat Equation with Feller Noise

$$rac{\partial u}{\partial t}(t,x) = rac{1}{2} riangle u(t,x) + \sqrt{u(t,x)} \dot{W}_t$$

with initial condition $u(0, x) = u_0(x)$ and a white noise \dot{W} .

 u_0 is non-negative with subexponential growth. (Always: $t\geq 0,$ $x\in \mathbb{R})$

A stochastic evolution equation (SPDE):

Heat Equation with Feller Noise

$$rac{\partial u}{\partial t}(t,x) = rac{1}{2} riangle u(t,x) + \sqrt{u(t,x)} \dot{W}_t$$

with initial condition $u(0, x) = u_0(x)$ and a white noise \dot{W} .

In the following we want to talk about

- the definition of white noise/weak solutions
- the 'branching' term
- the 'diffusion' term

A stochastic evolution equation (SPDE):

Heat Equation with Feller Noise

$$\frac{\partial u}{\partial t}(t,x) = \frac{1}{2} \triangle u(t,x) + \sqrt{u(t,x)} \dot{W}_t$$

with initial condition $u(0, x) = u_0(x)$ and a white noise \dot{W} .

In the following we want to talk about

- the definition of white noise/weak solutions
- the 'branching' term
- the 'diffusion' term

A stochastic evolution equation (SPDE):

Heat Equation with Feller Noise

$$\frac{\partial u}{\partial t}(t,x) = \frac{1}{2} \triangle u(t,x) + \sqrt{u(t,x)} \dot{W}_t$$

with initial condition $u(0, x) = u_0(x)$ and a white noise \dot{W} .

In the following we want to talk about

- the definition of white noise/weak solutions
- the 'branching' term
- the 'diffusion' term

White Noise

$$C_{A,B}=\mu(A\cap B).$$

White Noise

$$C_{A,B}=\mu(A\cap B).$$

- J.B. Walsh (1988) considered integrals w.r.t. to white noise (among others).
- combined with weak solutions from world of pde

White Noise

$$C_{A,B}=\mu(A\cap B).$$

- J.B. Walsh (1988) considered integrals w.r.t. to white noise (among others).
- combined with weak solutions from world of pde
- \rightarrow weak solution satisfy for $\phi \in \mathit{C}^2_{\mathit{c}}$ the integral equation

$$\int u(t,x)\phi(x) dx = \int u_0(x)\phi(x) dx + \frac{1}{2} \int_0^t \int u(s,x) \bigtriangleup \phi(x) dx ds$$
$$+ \int_0^t \int \sqrt{u(s,x)}\phi(x) \dot{W}(ds,dx), \ a.s.$$

White Noise

$$C_{A,B}=\mu(A\cap B).$$

- J.B. Walsh (1988) considered integrals w.r.t. to white noise (among others).
- combined with weak solutions from world of pde
- \rightarrow weak solution satisfy for $\phi \in \mathit{C}^2_{\mathit{c}}$ the integral equation

$$\int u(t,x)\phi(x) \, dx = \int u_0(x)\phi(x) \, dx + \frac{1}{2} \int_0^t \int u(s,x) \bigtriangleup \phi(x) \, dx ds$$
$$+ \int_0^t \int \sqrt{u(s,x)}\phi(x) \, \dot{W}(ds,dx), \ a.s.$$

Recall Galton-Watson process $(Z_n)_{n\geq 0}$

- describes number of male (female) members of a family
- has non-overlapping generations

Recall Galton-Watson process $(Z_n)_{n\geq 0}$

- describes number of male (female) members of a family
- has non-overlapping generations

There are $Z_0 = x$ males at time 0 and

$$Z_{n+1} = \sum_{k=1}^{Z_n} X_n^k$$

at time n + 1. The X_n^k are iid with mean 1 (critical) and variance $\sigma^2 < \infty$. X_n^k denotes the number of sons of male k at time n.

first talk: SuperBrownianMotion (SBM) as a weak limit of a branching system.

now: same scaling for Galton-Watson.

first talk: SuperBrownianMotion (SBM) as a weak limit of a branching system.

now: same scaling for Galton-Watson.

- increase number of males by factor N
- speed up time as Nt
- divide mass of each male by N

first talk: SuperBrownianMotion (SBM) as a weak limit of a branching system.

now: same scaling for Galton-Watson.

- increase number of males by factor N
- speed up time as Nt
- divide mass of each male by N

rescaled process Z_t^N converges to X_t , solution of Feller's Diffusion

$$\begin{cases} dX_t = \sqrt{\sigma X_t} dB_t \\ X_0 = x \end{cases}$$

first talk: SuperBrownianMotion (SBM) as a weak limit of a branching system.

now: same scaling for Galton-Watson.

- increase number of males by factor N
- speed up time as Nt
- divide mass of each male by N

rescaled process Z_t^N converges to X_t , solution of Feller's Diffusion

$$\begin{cases} dX_t = \sqrt{\sigma X_t} dB_t \\ X_0 = x \end{cases}$$

 \rightarrow connection of branching and $\sqrt{\ldots}$ (note: no space yet)

From SuperBrownianMotion to Stochastic PDEs

- SuperBrownianMotion (SBM) *U_t*: spatial generalization of Feller's Diffusion
- recall: $U_t(\omega)$ is a measure
- U_t has a density only in spatial dimension 1, i.e. there is u(t, x) such that

1

$$U_t(A) = \int_A u(t,x) \, dx$$

• u(t,x) is weak solution of

$$\frac{\partial u}{\partial t}(t,x) = \frac{1}{2} \bigtriangleup u(t,x) + \sqrt{\sigma u(t,x)} \dot{W}_t$$

From SuperBrownianMotion to Stochastic PDEs

- SuperBrownianMotion (SBM) *U_t*: spatial generalization of Feller's Diffusion
- recall: $U_t(\omega)$ is a measure
- U_t has a density only in spatial dimension 1, i.e. there is u(t, x) such that

$$U_t(A) = \int_A u(t,x) \, dx$$

• u(t,x) is weak solution of

$$\frac{\partial u}{\partial t}(t,x) = \frac{1}{2} \bigtriangleup u(t,x) + \sqrt{\sigma u(t,x)} \dot{W}_t$$

 \rightarrow spatial movement yields additional $\frac{1}{2} \triangle$

A stochastic evolution system:

Mutually Catalytic Branching Model

$$\frac{\partial u_1}{\partial t}(t,x) = \frac{1}{2} \triangle u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)} \dot{W}_t^1$$

$$\frac{\partial u_2}{\partial t}(t,x) = \frac{1}{2} \triangle u_2(t,x) + \sqrt{u_2(t,x)u_1(t,x)} \dot{W}_t^2$$

with initial condition $u_1(0, x) = u_1(x), u_2(0, x) = u_2(x)$.

 \dot{W}^1 , \dot{W}^2 are independent white noises, u_1, u_2 are non-negative with subexponential growth.

A stochastic evolution system:

Mutually Catalytic Branching Model

$$\frac{\partial u_1}{\partial t}(t,x) = \frac{1}{2} \triangle u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)} \dot{W}_t^1$$

$$\frac{\partial u_2}{\partial t}(t,x) = \frac{1}{2} \triangle u_2(t,x) + \sqrt{u_2(t,x)u_1(t,x)} \dot{W}_t^2$$

with initial condition $u_1(0, x) = u_1(x), u_2(0, x) = u_2(x)$.

In the following we want to talk about

• the 'interaction' terms

Consider a SuperBrownianMotion U_1 where

- \bullet branching rate depends on spatial position (\rightarrow catalytic)
- branching rate depends on a second species U₂: rate is proportional to the amount of the second species at this site
- assume the second species U_2 is also given by a SBM

Consider a SuperBrownianMotion U_1 where

- \bullet branching rate depends on spatial position (\rightarrow catalytic)
- branching rate depends on a second species U₂: rate is proportional to the amount of the second species at this site
- assume the second species U_2 is also given by a SBM

This motivates the stochastic evolution system

$$\frac{\partial u_1}{\partial t}(t,x) = \frac{1}{2} \bigtriangleup u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)} \dot{W}_t \frac{\partial u_2}{\partial t}(t,x) = \frac{1}{2} \bigtriangleup u_2(t,x) + \sqrt{\sigma u_2(t,x)} \dot{W}_t$$

Consider a SuperBrownianMotion U_1 where

- \bullet branching rate depends on spatial position (\rightarrow catalytic)
- branching rate depends on a second species U₂: rate is proportional to the amount of the second species at this site
- assume the second species U_2 is also given by a SBM

This motivates the stochastic evolution system

$$\frac{\partial u_1}{\partial t}(t,x) = \frac{1}{2} \bigtriangleup u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)}\dot{W}_t$$
$$\frac{\partial u_2}{\partial t}(t,x) = \frac{1}{2} \bigtriangleup u_2(t,x) + \sqrt{\sigma u_2(t,x)}\dot{W}_t$$

one-way interaction

Consider a SuperBrownianMotion U_1 where

- \bullet branching rate depends on spatial position (\rightarrow catalytic)
- branching rate depends on a second species U₂: rate is proportional to the amount of the second species at this site
- assume the second species U_2 is also given by a SBM

This motivates the stochastic evolution system

$$\frac{\partial u_1}{\partial t}(t,x) = \frac{1}{2} \bigtriangleup u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)} \dot{W}_t \frac{\partial u_2}{\partial t}(t,x) = \frac{1}{2} \bigtriangleup u_2(t,x) + \sqrt{\sigma u_2(t,x)} \dot{W}_t$$

one-way interaction

 \rightarrow two-way interaction yields the terms

$$\sqrt{u_1(t,x)u_2(t,x)}, \sqrt{u_2(t,x)u_1(t,x)}$$

A stochastic evolution system:

Symbiotic Branching Model (Etheridge/Fleischmann (2004))

$$\begin{aligned} \frac{\partial u_1}{\partial t}(t,x) &= \frac{1}{2} \triangle u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)} \dot{W}_t^1 \\ \frac{\partial u_2}{\partial t}(t,x) &= \frac{1}{2} \triangle u_2(t,x) + \sqrt{u_2(t,x)u_1(t,x)} \dot{W}_t^2 \end{aligned}$$

with initial condition $u_1(0, x) = u_1(x), u_2(0, x) = u_2(x)$.

 u_1, u_2 are non-negative with subexponential growth and the white noises are now correlated:

$$E[\dot{W}^{1}(t,x)\dot{W}^{2}(t',x')] = \varrho\delta(t,t')\delta(x,x')$$

for $\varrho \in [-1, 1]$.

$$\frac{\partial u_1}{\partial t}(t,x) = \frac{1}{2} \triangle u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)} \dot{W}_t^1$$

$$\frac{\partial u_2}{\partial t}(t,x) = \frac{1}{2} \triangle u_2(t,x) + \sqrt{u_2(t,x)u_1(t,x)} \dot{W}_t^2$$

$$\frac{\partial u_1}{\partial t}(t,x) = \frac{1}{2} \triangle u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)} \dot{W}_t^1$$
$$\frac{\partial u_2}{\partial t}(t,x) = \frac{1}{2} \triangle u_2(t,x) + \sqrt{u_2(t,x)u_1(t,x)} \dot{W}_t^2$$

- comes from the branching behaviour
- comes from the movement in space
- comes from the mutually catalytic behaviour
- additional correlation

$$\frac{\partial u_1}{\partial t}(t,x) = \frac{1}{2} \triangle u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)} \dot{W}_t^1$$
$$\frac{\partial u_2}{\partial t}(t,x) = \frac{1}{2} \triangle u_2(t,x) + \sqrt{u_2(t,x)u_1(t,x)} \dot{W}_t^2$$

- comes from the branching behaviour
- comes from the movement in space
- comes from the mutually catalytic behaviour
- additional correlation

$$\frac{\partial u_1}{\partial t}(t,x) = \frac{1}{2} \triangle u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)}\dot{W}_t^1 \\ \frac{\partial u_2}{\partial t}(t,x) = \frac{1}{2} \triangle u_2(t,x) + \sqrt{u_2(t,x)u_1(t,x)}\dot{W}_t^2$$

- comes from the branching behaviour
- comes from the movement in space
- comes from the mutually catalytic behaviour
- additional correlation

$$\frac{\partial u_1}{\partial t}(t,x) = \frac{1}{2} \triangle u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)} \dot{W}_t^1$$
$$\frac{\partial u_2}{\partial t}(t,x) = \frac{1}{2} \triangle u_2(t,x) + \sqrt{u_2(t,x)u_1(t,x)} \dot{W}_t^2$$

- comes from the branching behaviour
- comes from the movement in space
- comes from the mutually catalytic behaviour
- additional correlation

$$\frac{\partial u_1}{\partial t}(t,x) = \frac{1}{2} \triangle u_1(t,x) + \sqrt{u_1(t,x)u_2(t,x)} \dot{W}_t^1$$

$$\frac{\partial u_2}{\partial t}(t,x) = \frac{1}{2} \triangle u_2(t,x) + \sqrt{u_2(t,x)u_1(t,x)} \dot{W}_t^2$$

- comes from the branching behaviour
- comes from the movement in space
- comes from the mutually catalytic behaviour
- additional correlation

goals: any properties that change their behaviour with the correlation parameter ϱ

Heat Equation with Feller Noise Mutually Catalytic Branching Model Symbiotic Branching Model Compact Support Property

Part II – Compact Interface Property for Symbiotic Branching

From now on we restrict to $u_1 = \mathbb{1}_{\mathbb{R}^+}$, $u_2 = \mathbb{1}_{\mathbb{R}^-}$. For a realization of (u_1, u_2) the interface is defined as:

Interface

$$Int_t(\omega) = cl\{x|u_1(t,x)(\omega)u_2(t,x)(\omega) \neq 0\}$$

From now on we restrict to $u_1 = \mathbb{1}_{\mathbb{R}^+}$, $u_2 = \mathbb{1}_{\mathbb{R}^-}$. For a realization of (u_1, u_2) the interface is defined as:

Interface

$$Int_t(\omega) = cl\{x|u_1(t,x)(\omega)u_2(t,x)(\omega) \neq 0\}$$

Example: $Int_0 = \{0\}$

From now on we restrict to $u_1 = \mathbb{1}_{\mathbb{R}^+}$, $u_2 = \mathbb{1}_{\mathbb{R}^-}$. For a realization of (u_1, u_2) the interface is defined as:

Interface

$$Int_t(\omega) = cl\{x|u_1(t,x)(\omega)u_2(t,x)(\omega) \neq 0\}$$

Example: $Int_0 = \{0\}$

Question

Does the compact interface property hold?

i.e. is

$$\bigcup_{t \leq T} \mathit{Int}_t$$

a.s. compact?

Answer (Etheridge/Fleischmann (2004))

 For each *ρ* ∈ [-1,1] there is a set Ω₁ of measure 1 such that for each ω ∈ Ω₁ and T > 0

 $\bigcup_{t\leq T} \mathit{Int}_t(\omega)$

is compact.

Answer (Etheridge/Fleischmann (2004))

 For each *ρ* ∈ [-1, 1] there is a set Ω₁ of measure 1 such that for each ω ∈ Ω₁ and T > 0

$$\bigcup_{t\leq T} \mathit{Int}_t(\omega)$$

is compact.

• More precisely, there is a positive constant c and a random time T₀ such that

$$\bigcup_{t\leq T} Int_t(\omega) \subset [-cT, cT]$$

for each $T \geq T_0(\omega)$.

Conjecture

There is a constant *c*, a random time T_0 and a set Ω_1 of measure 1 such that for $\varrho < 0$ each $\omega \in \Omega_1$

$$\bigcup_{t\leq T} \mathit{Int}_t(\omega) \subset [-c\sqrt{T}, c\sqrt{T}]$$

for each $T \geq T_0(\omega)$.

Conjecture

There is a constant c, a random time T_0 and a set Ω_1 of measure 1 such that for $\varrho < 0$ each $\omega \in \Omega_1$

$$\bigcup_{t \leq T} \mathit{Int}_t(\omega) \subset [-c\sqrt{T}, c\sqrt{T}]$$

for each $T \geq T_0(\omega)$.

(for $\rho = -1$ and $u_1(t, x) + u_2(t, x) = 1$ (heat-equation with 'Wright-Fisher noise') Tribe (1995) proved propagation with \sqrt{T} .)

How to prove the Conjecture

The proof of Etheridge/Fleischmann is based on estimates of

 $\mathbb{E}[u_1(t,x)u_2(t,x)]^q.$

How to prove the Conjecture

The proof of Etheridge/Fleischmann is based on estimates of

 $\mathbb{E}[u_1(t,x)u_2(t,x)]^q.$

- in particular q = 9 is needed in the proof
- the moments are getting smaller for smaller ϱ
- \bullet they only considered a uniform estimate in ϱ
- if we can manage to give much better bounds, the rest of their proof implies the conjecture

How to prove the Conjecture

The proof of Etheridge/Fleischmann is based on estimates of

 $\mathbb{E}[u_1(t,x)u_2(t,x)]^q.$

- in particular q = 9 is needed in the proof
- ullet the moments are getting smaller for smaller arrho
- ullet they only considered a uniform estimate in ϱ
- if we can manage to give much better bounds, the rest of their proof implies the conjecture

techniques to estimate the moments:

- perturbed duality
- moment equations

Using Generators to Prove Duality

Given markov processes X_t , N_t with statespaces X, N, generators Ω^X, Ω^N and a duality function $H: X \times N \to \mathbb{R}$ bounded.

Proposition (duality)

$$\Omega^{X} H(\cdot, n)(x) = \Omega^{N} H(x, \cdot)(n)$$

$$\Rightarrow \mathbb{E}^{X_{0}}[H(X_{t}, N_{0})] = \mathbb{E}^{N_{0}}[H(X_{0}, N_{t})]$$

Using Generators to Prove Duality

Given markov processes X_t , N_t with statespaces X, N, generators Ω^X, Ω^N and a duality function $H: X \times N \to \mathbb{R}$ bounded.

Proposition (duality)

$$\Omega^{X} H(\cdot, n)(x) = \Omega^{N} H(x, \cdot)(n)$$

$$\Rightarrow \mathbb{E}^{X_{0}}[H(X_{t}, N_{0})] = \mathbb{E}^{N_{0}}[H(X_{0}, N_{t})]$$

Further, for bounded f

Proposition (perturbed duality)

$$\Omega^{X} H(\cdot, n)(x) = \Omega^{N} H(x, \cdot)(n) + f(n) H(x, \cdot)(n)$$

$$\Rightarrow \mathbb{E}^{X_{0}}[H(X_{t}, N_{0})] = \mathbb{E}^{N_{0}} \left[H(X_{0}, N_{t}) exp(\int_{0}^{t} f(N_{s}) ds) \right]$$

Using Generators to Prove Duality

Given markov processes X_t , N_t with statespaces X, N, generators Ω^X, Ω^N and a duality function $H: X \times N \to \mathbb{R}$ bounded.

Proposition (duality)

$$\Omega^{X} H(\cdot, n)(x) = \Omega^{N} H(x, \cdot)(n)$$

$$\Rightarrow \mathbb{E}^{X_{0}}[H(X_{t}, N_{0})] = \mathbb{E}^{N_{0}}[H(X_{0}, N_{t})]$$

Further, for bounded f

Proposition (perturbed duality)

$$\Omega^{X} H(\cdot, n)(x) = \Omega^{N} H(x, \cdot)(n) + f(n) H(x, \cdot)(n)$$

$$\Rightarrow \mathbb{E}^{X_{0}}[H(X_{t}, N_{0})] = \mathbb{E}^{N_{0}} \left[H(X_{0}, N_{t}) exp(\int_{0}^{t} f(N_{s}) ds) \right]$$

 \rightarrow nice generators are nice to prove duality

A Perturbated Duality in Symbiotic Branching

Etheridge/Fleischmann:

- used a dual process to estimate the moments
- used generators to prove perturbed duality

A Perturbated Duality in Symbiotic Branching

Etheridge/Fleischmann:

- used a dual process to estimate the moments
- used generators to prove perturbed duality

$$\mathbb{E}[u_1(t,x)u_2(t,x)]^q = \mathbb{E}^{N_0}\left[(\mathbb{1}_{\mathbb{R}^+},\mathbb{1}_{\mathbb{R}^-})^{N_t}\exp(L_{[N_t^{red},N_t^{red}]}+L_{[N_t^{blue},N_t^{blue}]}+\varrho L_{[N^{red},N^{blue}]})\right]$$

where

$$(\mathbb{1}_{\mathbb{R}^+},\mathbb{1}_{\mathbb{R}^-})^{N_t} = egin{cases} 1, \ ext{all} \ B_t^{ ext{red}} \geq 0, \ ext{all} \ B_t^{ ext{blue}} \leq 0 \ 0, otherwise \end{cases}$$

goal: use the dual process to prove better moment bounds

Heat Equation with Feller Noise Mutually Catalytic Branching Model Symbiotic Branching Model Compact Support Property

Thank You For Listening

Existence and Uniqueness

Existence

There is a weak solution with paths a.s. in $C(\mathbb{R}^+, C_{tem})$.

Uniqueness in Law

Uniqueness in law is known.

Pathwise Uniqueness

Pathwise uniqueness is unknown. But: known for certain coloured noises