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Part I -
3-Step Motivating of Symbiotic Branching
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Step 1

A stochastic evolution equation (SPDE):

Heat Equation with Feller Noise

∂u

∂t
(t, x) =

1

2
4u(t, x) +

√
u(t, x)Ẇt

with initial condition u(0, x) = u0(x) and a white noise Ẇ .

u0 is non-negative with subexponential growth. (Always: t ≥ 0,
x ∈ R)

In the following we want to talk about

the definition of white noise/weak solutions

the ’branching’ term

the ’diffusion’ term



Heat Equation with Feller Noise Mutually Catalytic Branching Model Symbiotic Branching Model Compact Support Property

Step 1

A stochastic evolution equation (SPDE):

Heat Equation with Feller Noise

∂u

∂t
(t, x) =

1

2
4u(t, x) +

√
u(t, x)Ẇt
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White Noise/Weak Solutions

White Noise

White noise on a σ-finite measure space (E , E , µ) is a mean zero
Gaussian process indexed by measurable, finite measure subsets of
E with covariance function

CA,B = µ(A ∩ B).

J.B. Walsh (1988) considered integrals w.r.t. to white noise
(among others).

combined with weak solutions from world of pde

→ weak solution satisfy for φ ∈ C 2
c the integral equation∫

u(t, x)φ(x) dx =

∫
u0(x)φ(x) dx +

1

2

∫ t

0

∫
u(s, x)4 φ(x) dxds

+

∫ t

0

∫ √
u(s, x)φ(x) Ẇ (ds, dx), a.s.
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From Galton-Watson to Feller’s Diffusion

Recall Galton-Watson process (Zn)n≥0

describes number of male (female) members of a family

has non-overlapping generations

There are Z0 = x males at time 0 and

Zn+1 =
Zn∑

k=1

X k
n

at time n + 1. The X k
n are iid with mean 1 (critical) and variance

σ2 < ∞. X k
n denotes the number of sons of male k at time n.
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From Galton-Watson to Feller Diffusion

first talk: SuperBrownianMotion (SBM) as a weak limit of a
branching system.
now: same scaling for Galton-Watson.

increase number of males by factor N

speed up time as Nt

divide mass of each male by N

rescaled process ZN
t converges to Xt , solution of Feller’s Diffusion{

dXt =
√

σXtdBt

X0 = x

→ connection of branching and
√

... (note: no space yet)
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From SuperBrownianMotion to Stochastic PDEs

SuperBrownianMotion (SBM) Ut : spatial generalization of
Feller’s Diffusion

recall: Ut(ω) is a measure

Ut has a density only in spatial dimension 1, i.e. there is
u(t, x) such that

Ut(A) =

∫
A

u(t, x) dx

u(t, x) is weak solution of

∂u

∂t
(t, x) =

1

2
4 u(t, x) +

√
σu(t, x)Ẇt
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24
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Step 2

A stochastic evolution system:

Mutually Catalytic Branching Model

∂u1

∂t
(t, x) =

1

2
4u1(t, x) +

√
u1(t, x)u2(t, x)Ẇ 1

t

∂u2

∂t
(t, x) =

1

2
4u2(t, x) +

√
u2(t, x)u1(t, x)Ẇ 2

t

with initial condition u1(0, x) = u1(x), u2(0, x) = u2(x).

Ẇ 1, Ẇ 2 are independent white noises, u1, u2 are non-negative with
subexponential growth.

In the following we want to talk about

the ’interaction’ terms
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From Catalytic SBM to Mutually Catalytic Branching
Consider a SuperBrownianMotion U1 where

branching rate depends on spatial position (→ catalytic)

branching rate depends on a second species U2: rate is
proportional to the amount of the second species at this site

assume the second species U2 is also given by a SBM

This motivates the stochastic evolution system

∂u1

∂t
(t, x) =

1

2
4 u1(t, x) +

√
u1(t, x)u2(t, x)Ẇt

∂u2

∂t
(t, x) =

1

2
4 u2(t, x) +

√
σu2(t, x)Ẇt

one-way interaction

adf → two-way interaction yields the terms√
u1(t, x)u2(t, x),

√
u2(t, x)u1(t, x)
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Step 3

A stochastic evolution system:

Symbiotic Branching Model (Etheridge/Fleischmann (2004))

∂u1

∂t
(t, x) =

1

2
4u1(t, x) +

√
u1(t, x)u2(t, x)Ẇ 1

t

∂u2

∂t
(t, x) =

1

2
4u2(t, x) +

√
u2(t, x)u1(t, x)Ẇ 2

t

with initial condition u1(0, x) = u1(x), u2(0, x) = u2(x).

u1, u2 are non-negative with subexponential growth and the white
noises are now correlated:

E [Ẇ 1(t, x)Ẇ 2(t ′, x ′)] = %δ(t, t ′)δ(x , x ′)

for % ∈ [−1, 1].
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We have seen so far that

∂u1

∂t
(t, x) =

1

2
4u1(t, x) +

√
u1(t, x)u2(t, x)Ẇ 1

t

∂u2

∂t
(t, x) =

1

2
4u2(t, x) +

√
u2(t, x)u1(t, x)Ẇ 2

t

comes from the branching behaviour

comes from the movement in space

comes from the mutually catalytic behaviour

additional correlation

goals: any properties that change their behaviour with the
correlation parameter %
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t

∂u2

∂t
(t, x) =

1

2
4u2(t, x) +

√
u2(t, x)u1(t, x)Ẇ 2
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Part II -
Compact Interface Property for Symbiotic

Branching
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From now on we restrict to u1 = 1R+ , u2 = 1R− . For a realization
of (u1, u2) the interface is defined as:

Interface

Intt(ω) = cl{x |u1(t, x)(ω)u2(t, x)(ω) 6= 0}

Example: Int0 = {0}

Question

Does the compact interface property hold?

i.e. is ⋃
t≤T

Intt

a.s. compact?
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Answer (Etheridge/Fleischmann (2004))

For each % ∈ [−1, 1] there is a set Ω1 of measure 1 such that
for each ω ∈ Ω1 and T > 0⋃

t≤T

Intt(ω)

is compact.

More precisely, there is a positive constant c and a random
time T0 such that ⋃

t≤T

Intt(ω) ⊂ [−cT , cT ]

for each T ≥ T0(ω).
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Conjecture

There is a constant c, a random time T0 and a set Ω1 of measure
1 such that for % < 0 each ω ∈ Ω1⋃

t≤T

Intt(ω) ⊂ [−c
√

T , c
√

T ]

for each T ≥ T0(ω).

(for % = −1 and u1(t, x) + u2(t, x) = 1 (heat-equation with
’Wright-Fisher noise’) Tribe (1995) proved propagation with

√
T .)
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How to prove the Conjecture

The proof of Etheridge/Fleischmann is based on estimates of

E[u1(t, x)u2(t, x)]q.

in particular q = 9 is needed in the proof

the moments are getting smaller for smaller %

they only considered a uniform estimate in %

if we can manage to give much better bounds, the rest of
their proof implies the conjecture

techniques to estimate the moments:

perturbed duality

moment equations
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Using Generators to Prove Duality

Given markov processes Xt , Nt with statespaces X ,N, generators
ΩX ,ΩN and a duality function H : X × N → R bounded.

Proposition (duality)

ΩXH(·, n)(x) = ΩNH(x , ·)(n)

⇒ E
X0 [H(Xt ,N0)] = E

N0 [H(X0,Nt)]

Further, for bounded f

Proposition (perturbed duality)

ΩXH(·, n)(x) = ΩNH(x , ·)(n) + f (n)H(x , ·)(n)

⇒ E
X0 [H(Xt ,N0)] = E

N0

[
H(X0,Nt)exp(

∫ t

0
f (Ns) ds)

]
→ nice generators are nice to prove duality
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Given markov processes Xt , Nt with statespaces X ,N, generators
ΩX ,ΩN and a duality function H : X × N → R bounded.

Proposition (duality)

ΩXH(·, n)(x) = ΩNH(x , ·)(n)

⇒ E
X0 [H(Xt ,N0)] = E

N0 [H(X0,Nt)]

Further, for bounded f

Proposition (perturbed duality)

ΩXH(·, n)(x) = ΩNH(x , ·)(n) + f (n)H(x , ·)(n)
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X0 [H(Xt ,N0)] = E

N0

[
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0
f (Ns) ds)

]
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A Perturbated Duality in Symbiotic Branching

Etheridge/Fleischmann:

used a dual process to estimate the moments

used generators to prove perturbed duality

E[u1(t, x)u2(t, x)]q

= E
N0

[
(1R+ , 1R−)Nt exp(L[Nred

t ,Nred
t ] + L[Nblue

t ,Nblue
t ] + %L[Nred ,Nblue ])

]
where

(1R+ , 1R−)Nt =

{
1, all B red

t ≥ 0, all Bblue
t ≤ 0

0, otherwise

goal: use the dual process to prove better moment bounds
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Thank You For Listening
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Existence and Uniqueness

Existence

There is a weak solution with paths a.s. in C (R+,Ctem).

Uniqueness in Law

Uniqueness in law is known.

Pathwise Uniqueness

Pathwise uniqueness is unknown. But: known for certain coloured
noises


	Heat Equation with Feller Noise
	Mutually Catalytic Branching Model
	Symbiotic Branching Model
	Compact Support Property

