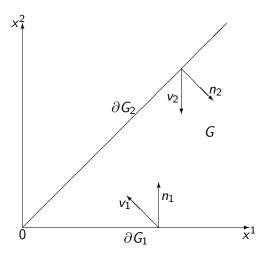
Pathwise Differentiability for SDEs in a convex Polyhedron with oblique Reflection

Sebastian Andres

IRTG Springschool 2007 9th March 2007

First Example: The two-dimensional Wedge



Properties of the process

▶ Domain $G \subseteq \mathbb{R}^d$ such that

$$G = \bigcap_{i=1}^{N} G_i, \qquad G_i := \{x : \langle x, n_i \rangle \ge c_i\},$$

with direction of reflection v_i at ∂G_i .

- ▶ We consider a Markov process (X_t)_{t≥0} in a convex polyhedron with continuous sample paths such that:
 - In the interior of the polyhedron the process behaves like the solution of an SDE.
 - ► At the boundary ∂G_i it reflects instantaneously in direction of the constant vector v_i.
 - The process is stopped, when it hits two faces of the polyhedron simultaneously.

Properties of the process

▶ Domain $G \subseteq \mathbb{R}^d$ such that

$$G = \bigcap_{i=1}^{N} G_i, \qquad G_i := \{x : \langle x, n_i \rangle \ge c_i\},$$

with direction of reflection v_i at ∂G_i .

- ▶ We consider a Markov process (X_t)_{t≥0} in a convex polyhedron with continuous sample paths such that:
 - In the interior of the polyhedron the process behaves like the solution of an SDE.
 - ► At the boundary ∂G_i it reflects instantaneously in direction of the constant vector v_i.
 - The process is stopped, when it hits two faces of the polyhedron simultaneously.

Skorohod-SDE (Oblique Reflection)

For $x \in G$:

$$egin{aligned} X_t(x) &= x + \int_0^t b(X_r(x)) \, dr + w_t + \sum_{i=1}^N v_i \, l_t^i(x), \quad t \geq 0, \ X_t(x) \in G, \quad dl_t^i(x) \geq 0, \quad \int_0^\infty \mathbbm{1}_{G \setminus \partial G_i}(X_t(x)) \, dl_t^i(x) = 0, \end{aligned}$$

where

- $b \in C^1(G)$ and Lipschitz continuous,
- $(w_t)_{t\geq 0}$ *d*-dimensional Brownian motion.

Problem and Notation

Is the mapping $x \mapsto X_t(x)$, $0 \le t < \tau$, pathwise differentiable and how do the derivatives (η_t) evolve, where

$$\tau := \inf\{t \ge 0 : X_t(x) \in \partial G_i \cap \partial G_j; i \neq j\}?$$

Set

$$C^i := \{t < \tau : X_t(x) \in \partial G^i\}, \qquad r_i(t) := \sup([0, t] \cap C^i)\}$$

and

$$s(t) := \begin{cases} 0 & ext{no hit of } \partial G ext{ before } t, \\ i & ext{ last hit of } \partial G ext{ before } t ext{ in } \partial G_i. \end{cases}$$

Problem and Notation

Is the mapping $x \mapsto X_t(x)$, $0 \le t < \tau$, pathwise differentiable and how do the derivatives (η_t) evolve, where

$$\tau := \inf\{t \ge 0: X_t(x) \in \partial G_i \cap \partial G_j; i \neq j\}?$$

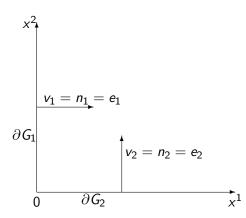
Set

$$C^{i} := \{t < \tau : X_{t}(x) \in \partial G^{i}\}, \qquad r_{i}(t) := \sup([0, t] \cap C^{i})$$

and

$$s(t) := \begin{cases} 0 & \text{no hit of } \partial G \text{ before } t, \\ i & \text{last hit of } \partial G \text{ before } t \text{ in } \partial G_i. \end{cases}$$

The Case $G = \mathbb{R}^d_+$ and $v_i = n_i$



Results of Deuschel/Zambotti (2005)

Theorem

For all $t \ge 0$ and all $x \in \mathbb{R}^d_+$, a.s. the map $x \mapsto X_t(x)$, $t \ge 0$, is continuously differentiable and, setting $\eta^{ij}_t := \frac{\partial X^i_t(x)}{\partial x^j}$, $i, j \in \{1, \ldots, d\}$, there exists a right continuous modification of η such that we have a.s. for all $t \ge 0$:

$$\eta_t^{j} = \delta_{j} + \sum_{k=1}^d \int_0^t \frac{\partial b}{\partial x^k} (X_r(x)) \eta_r^{kj} dr, \qquad s(t) = 0,$$

$$\eta_t^{j} = \begin{pmatrix} \vdots \\ \eta_{r_i(t)}^{(i-1)j} \\ 0 \\ \eta_{r_i(t)}^{(i+1)j} \\ \vdots \end{pmatrix} + \sum_{k=1}^d \int_{r_i(t)}^t \frac{\partial b}{\partial x^k} (X_r(x)) \eta_r^{kj} dr, \qquad s(t) = i.$$

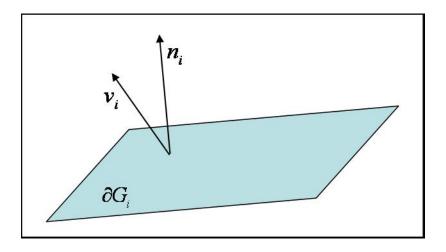
Results of Deuschel/Zambotti (2005)

Theorem

For all $t \ge 0$ and all $x \in \mathbb{R}^d_+$, a.s. the map $x \mapsto X_t(x)$, $t \ge 0$, is continuously differentiable and, setting $\eta^{ij}_t := \frac{\partial X^i_t(x)}{\partial x^j}$, $i, j \in \{1, \ldots, d\}$, there exists a right continuous modification of η such that we have a.s. for all $t \ge 0$:

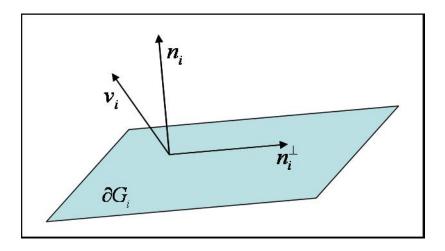
$$\begin{split} \eta_t^{j} &= \delta_{j} + \sum_{k=1}^d \int_0^t \frac{\partial b}{\partial x^k} (X_r(x)) \, \eta_r^{kj} \, dr, \qquad \qquad s(t) = 0, \\ \eta_t^{j} &= \sum_{k \neq i} \langle \eta_{r_i(t)}^{j}, e_k \rangle e_k + \sum_{k=1}^d \int_{r_i(t)}^t \frac{\partial b}{\partial x^k} (X_r(x)) \, \eta_r^{kj} \, dr, \quad s(t) = i. \end{split}$$

Choice of the Coordinate System (1)

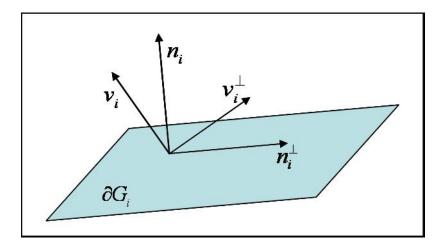


Sebastian Andres

Choice of the Coordinate System (1)



Choice of the Coordinate System (1)



Choice of the Coordinate System (2)

- ► For every ∂G_i we are given n_i and v_i normalized such that $\langle v_i, n_i \rangle = 1$.
- ▶ We choose v_i^{\perp} , $n_i^{\perp} \in \text{span}\{n_i, v_i\}$ such that

$$\langle v_i, v_i^{\perp} \rangle = \langle n_i, n_i^{\perp} \rangle = 0, \quad \langle n_i^{\perp}, v_i^{\perp} \rangle = \langle n_i, v_i \rangle = 1, \quad \langle n_i, v_i^{\perp} \rangle > 0,$$

Let (n^k_i)_{k=3,...,d} be such that it completes {n_i, n[⊥]_i} to an orthonormal basis in ℝ^d.

Result

Theorem

The mapping $x \mapsto X_t(x)$, $x \in G$, is differentiable a.s. for all $t \in [0, \tau) \setminus C$ and, setting $\eta_t^{ij} := \partial X_t^i(x) / \partial x^j$, $i, j \in \{1, \ldots, d\}$, there exists a right continuous extension of η on $[0, \tau)$, which has a.s. the following form: If s(t) = 0:

$$\eta_t^{j} = \delta_{j} + \int_0^t \sum_{k=1}^d \frac{\partial b}{\partial x^k} (X_r(x)) \eta_r^{kj} dr,$$

and if s(t) = i:

$$\eta_t^{\cdot j} = \langle \eta_{r_i(t)}^{\cdot j}, \mathbf{v}_i^{\perp} \rangle \mathbf{n}_i^{\perp} + \sum_{k=3}^d \langle \eta_{r_i(t)}^{\cdot j}, \mathbf{n}_i^k \rangle \mathbf{n}_i^k + \int_{r_i(t)}^t \sum_{k=1}^d \frac{\partial b}{\partial x^k} (X_r(x)) \eta_r^{kj} dr.$$

Observations

Let t_i be a time when the process X reaches ∂G_i. Then:
η^{·j} is projected to the tangent space at time t_i:

$$\langle \eta_{t_i}^{\cdot j}, n_i \rangle = 0.$$

• η^{j} jumps at time t_i as follows:

$$\eta_{t_i}^{\cdot j} - \eta_{t_i-}^{\cdot j} = -\langle \eta_{t_i-}^{\cdot j}, n_i \rangle v_i.$$

• The process $(X_t, \eta_t^{:j})$ in $G \times \mathbb{R}^d$ is Markovian!!

Observations

Let t_i be a time when the process X reaches ∂G_i. Then:
η^{·j} is projected to the tangent space at time t_i:

$$\langle \eta_{t_i}^{\cdot j}, n_i \rangle = 0.$$

• η^{j} jumps at time t_i as follows:

$$\eta_{t_i}^{j} - \eta_{t_i-}^{j} = -\langle \eta_{t_i-}^{j}, \mathbf{n}_i \rangle \mathbf{v}_i.$$

• The process (X_t, η_t^{j}) in $G \times \mathbb{R}^d$ is Markovian!!

Observations

Let t_i be a time when the process X reaches ∂G_i. Then:
η^{·j} is projected to the tangent space at time t_i:

$$\langle \eta_{t_i}^{\cdot j}, n_i \rangle = 0.$$

• η^{j} jumps at time t_i as follows:

$$\eta_{t_i}^{j} - \eta_{t_i-}^{j} = -\langle \eta_{t_i-}^{j}, \mathbf{n}_i \rangle \mathbf{v}_i.$$

• The process $(X_t, \eta_t^{\cdot j})$ in $G \times \mathbb{R}^d$ is Markovian!!

Generator *L* of (X_t, η_t^{j}) (1)

$LF(x,\eta) := L^1F(.,\eta)(x) + L^2F(x,.)(\eta),$

The marginal generator of X:

$$L^{1}F(.,\eta)(x) := \frac{1}{2}\Delta F(.,\eta)(x) + \sum_{i=1}^{d} b^{i}(x) \frac{\partial F}{\partial x^{i}}(.,\eta)(x),$$

where $F(.,\eta) \in C^2(G)$ satisfies the Neumann boundary condition:

$$D_{v_i}F(.,\eta)(x) = 0$$
 for $x \in \partial G_i$,

Generator *L* of (X_t, η_t^{j}) (1)

$$LF(x,\eta) := L^1F(.,\eta)(x) + L^2F(x,.)(\eta),$$

The marginal generator of X:

$$L^{1}F(.,\eta)(x) := \frac{1}{2}\Delta F(.,\eta)(x) + \sum_{i=1}^{d} b^{i}(x) \frac{\partial F}{\partial x^{i}}(.,\eta)(x),$$

where $F(., \eta) \in C^2(G)$ satisfies the Neumann boundary condition:

$$D_{v_i}F(.,\eta)(x) = 0$$
 for $x \in \partial G_i$,

Generator *L* of (X_t, η_t^{j}) (2)

$$LF(x,\eta) := L^1F(.,\eta)(x) + L^2F(x,.)(\eta),$$

The marginal generator of η depending on x:

$$L^{2}F(x,.)(\eta) := \sum_{i=1}^{d} \left(\sum_{k=1}^{d} \frac{\partial b^{i}}{\partial x^{k}}(x) \eta^{k} \right) \frac{\partial F}{\partial \eta^{i}}(x,.)(\eta),$$

where $F(x,.) \in C^1(\mathbb{R}^d)$ satisfies the Dirichlet boundary condition

$$F(x,\eta) = F(x,\eta - \langle \eta, n_i \rangle n_i), \qquad x \in \partial G_i$$

and the Neumann condition:

$$D_{v_i}F(x,.)(\eta) = 0, \qquad x \in \partial G_i.$$

Open Problems

- What happens for $t > \tau$?
- Random walk representation for the derivatives?
- ▶ What about general domains *G* with smooth boundary?

References

- J.-D. Deuschel, L. Zambotti, (2005), *Bismut-Elworthy formula* and Random Walk representation for SDEs with reflection, Stochastic Process. Appl. 115, 907-925.
- P. Dupuis, H. Ishii, (1991), On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics 35, 31-62.
- P. Dupuis, H. Ishii, (1993), SDEs with oblique reflection on nonsmooth domains, The Annals of Prob. 21, No. 1, 554-580.
- P.L. Lions, A.S. Sznitman, Stochastic Differential Equations with Reflecting Boundary Conditions, Comm. Pure Appl. Math. 37 (1984), 511-537.