Pathwise Differentiability for SDEs in a convex Polyhedron with oblique Reflection

Sebastian Andres

IRTG Springschool 2007 9th March 2007

First Example: The two-dimensional Wedge

Properties of the process

- Domain $G \subseteq \mathbb{R}^{d}$ such that

$$
G=\bigcap_{i=1}^{N} G_{i}, \quad G_{i}:=\left\{x:\left\langle x, n_{i}\right\rangle \geq c_{i}\right\},
$$

with direction of reflection v_{i} at ∂G_{i}.

- We consider a Markov process $\left(X_{t}\right)_{t \geq 0}$ in a convex polyhedron with continuous sample paths such that:
- In the interior of the polyhedron the process behaves like the solution of an SDE.
- At the boundary ∂G_{i} it reflects instantaneously in direction of the constant vector v_{i}.
- The process is stopped, when it hits two faces of the polyhedron simultaneously.

Properties of the process

- Domain $G \subseteq \mathbb{R}^{d}$ such that

$$
G=\bigcap_{i=1}^{N} G_{i}, \quad G_{i}:=\left\{x:\left\langle x, n_{i}\right\rangle \geq c_{i}\right\}
$$

with direction of reflection v_{i} at ∂G_{i}.

- We consider a Markov process $\left(X_{t}\right)_{t \geq 0}$ in a convex polyhedron with continuous sample paths such that:
- In the interior of the polyhedron the process behaves like the solution of an SDE.
- At the boundary ∂G_{i} it reflects instantaneously in direction of the constant vector v_{i}.
- The process is stopped, when it hits two faces of the polyhedron simultaneously.

Skorohod-SDE (Oblique Reflection)

For $x \in G$:

$$
\begin{aligned}
& X_{t}(x)=x+\int_{0}^{t} b\left(X_{r}(x)\right) d r+w_{t}+\sum_{i=1}^{N} v_{i} l_{t}^{i}(x), \quad t \geq 0 \\
& X_{t}(x) \in G, \quad d l_{t}^{i}(x) \geq 0, \quad \int_{0}^{\infty} \mathbb{1}_{G \backslash \partial G_{i}}\left(X_{t}(x)\right) d l_{t}^{i}(x)=0
\end{aligned}
$$

where

- $b \in C^{1}(G)$ and Lipschitz continuous,
- $\left(w_{t}\right)_{t \geq 0} d$-dimensional Brownian motion.

Problem and Notation

Is the mapping $x \mapsto X_{t}(x), 0 \leq t<\tau$, pathwise differentiable and how do the derivatives $\left(\eta_{t}\right)$ evolve, where

$$
\tau:=\inf \left\{t \geq 0: X_{t}(x) \in \partial G_{i} \cap \partial G_{j} ; i \neq j\right\} ?
$$

Set

Problem and Notation

Is the mapping $x \mapsto X_{t}(x), 0 \leq t<\tau$, pathwise differentiable and how do the derivatives $\left(\eta_{t}\right)$ evolve, where

$$
\tau:=\inf \left\{t \geq 0: X_{t}(x) \in \partial G_{i} \cap \partial G_{j} ; i \neq j\right\} ?
$$

Set

$$
C^{i}:=\left\{t<\tau: X_{t}(x) \in \partial G^{i}\right\}, \quad r_{i}(t):=\sup \left([0, t] \cap C^{i}\right)
$$

and

$$
s(t):= \begin{cases}0 & \text { no hit of } \partial G \text { before } t \\ i & \text { last hit of } \partial G \text { before } t \text { in } \partial G\end{cases}
$$

The Case $G=\mathbb{R}_{+}^{d}$ and $v_{i}=n_{i}$

Results of Deuschel/Zambotti (2005)

Theorem

For all $t \geq 0$ and all $x \in \mathbb{R}_{+}^{d}$, a.s. the $\operatorname{map} x \mapsto X_{t}(x), t \geq 0$, is continuously differentiable and, setting $\eta_{t}^{i j}:=\frac{\partial X_{t}^{i}(x)}{\partial x^{j}}$, $i, j \in\{1, \ldots, d\}$, there exists a right continuous modification of η such that we have a.s. for all $t \geq 0$:

$$
\begin{aligned}
& \eta_{t}^{\cdot j}=\delta_{\cdot j}+\sum_{k=1}^{d} \int_{0}^{t} \frac{\partial b}{\partial x^{k}}\left(X_{r}(x)\right) \eta_{r}^{k j} d r, \quad s(t)=0 \\
& \eta_{t}^{\cdot j}=\left(\begin{array}{c}
\vdots \\
\eta_{r_{i}(t)}^{(i-1) j} \\
0 \\
\eta_{r_{i}(t)}^{(i+1) j} \\
\vdots
\end{array}\right)+\sum_{k=1}^{d} \int_{r_{i}(t)}^{t} \frac{\partial b}{\partial x^{k}}\left(X_{r}(x)\right) \eta_{r}^{k j} d r, \quad s(t)=i
\end{aligned}
$$

Results of Deuschel/Zambotti (2005)

Theorem
For all $t \geq 0$ and all $x \in \mathbb{R}_{+}^{d}$, a.s. the $\operatorname{map} x \mapsto X_{t}(x), t \geq 0$, is continuously differentiable and, setting $\eta_{t}^{i j}:=\frac{\partial X_{t}^{i}(x)}{\partial x^{j}}$, $i, j \in\{1, \ldots, d\}$, there exists a right continuous modification of η such that we have a.s. for all $t \geq 0$:

$$
\begin{array}{ll}
\eta_{t}^{\cdot j}=\delta_{\cdot j}+\sum_{k=1}^{d} \int_{0}^{t} \frac{\partial b}{\partial x^{k}}\left(X_{r}(x)\right) \eta_{r}^{k j} d r, & s(t)=0, \\
\eta_{t}^{\cdot j}=\sum_{k \neq i}\left\langle\eta_{r_{i}(t)}^{j}, e_{k}\right\rangle e_{k}+\sum_{k=1}^{d} \int_{r_{i}(t)}^{t} \frac{\partial b}{\partial x^{k}}\left(X_{r}(x)\right) \eta_{r}^{k j} d r, & s(t)=i .
\end{array}
$$

Choice of the Coordinate System (1)

Choice of the Coordinate System (1)

Choice of the Coordinate System (1)

Choice of the Coordinate System (2)

- For every ∂G_{i} we are given n_{i} and v_{i} normalized such that $\left\langle v_{i}, n_{i}\right\rangle=1$.
- We choose $v_{i}^{\perp}, n_{i}^{\perp} \in \operatorname{span}\left\{n_{i}, v_{i}\right\}$ such that $\left\langle v_{i}, v_{i}^{\perp}\right\rangle=\left\langle n_{i}, n_{i}^{\perp}\right\rangle=0, \quad\left\langle n_{i}^{\perp}, v_{i}^{\perp}\right\rangle=\left\langle n_{i}, v_{i}\right\rangle=1, \quad\left\langle n_{i}, v_{i}^{\perp}\right\rangle>0$,
- Let $\left(n_{i}^{k}\right)_{k=3, \ldots, d}$ be such that it completes $\left\{n_{i}, n_{i}^{\perp}\right\}$ to an orthonormal basis in \mathbb{R}^{d}.

Result

Theorem

The mapping $x \mapsto X_{t}(x), x \in G$, is differentiable a.s. for all $t \in[0, \tau) \backslash C$ and, setting $\eta_{t}^{i j}:=\partial X_{t}^{i}(x) / \partial x^{j}, i, j \in\{1, \ldots, d\}$, there exists a right continuous extension of η on $[0, \tau)$, which has a.s. the following form: If $s(t)=0$:
$\eta_{t}^{\cdot j}=\delta_{. j}+\int_{0}^{t} \sum_{k=1}^{d} \frac{\partial b}{\partial x^{k}}\left(X_{r}(x)\right) \eta_{r}^{k j} d r$,
and if $s(t)=i$:
$\eta_{t}^{\cdot j}=\left\langle\eta_{r_{i}(t)}^{\cdot j}, v_{i}^{\perp}\right\rangle n_{i}^{\perp}+\sum_{k=3}^{d}\left\langle\eta_{r_{i}(t)}^{\cdot j}, n_{i}^{k}\right\rangle n_{i}^{k}+\int_{r_{i}(t)}^{t} \sum_{k=1}^{d} \frac{\partial b}{\partial x^{k}}\left(X_{r}(x)\right) \eta_{r}^{k j} d r$.

Observations

Let t_{i} be a time when the process X reaches ∂G_{i}. Then:

- η^{j} is projected to the tangent space at time t_{i} :

$$
\left\langle\eta_{t_{i}}^{j}, n_{i}\right\rangle=0
$$

- η^{j} jumps at time t_{i} as follows:

- The process $\left(X_{t}, \eta_{t}^{j}\right)$ in $G \times \mathbb{R}^{d}$ is Markovian!!

Observations

Let t_{i} be a time when the process X reaches ∂G_{i}. Then:

- η^{j} is projected to the tangent space at time t_{i} :

$$
\left\langle\eta_{t_{i}}^{j}, n_{i}\right\rangle=0 .
$$

- η^{j} jumps at time t_{i} as follows:

$$
\eta_{t_{i}}^{\cdot j}-\eta_{t_{t_{i}}}^{\cdot j}=-\left\langle\eta_{t_{i}-}^{\cdot j}, n_{i}\right\rangle v_{i} .
$$

- The process $\left(X_{t}, \eta_{t}^{j}\right)$ in $G \times \mathbb{R}^{d}$ is Markovian!!

Observations

Let t_{i} be a time when the process X reaches ∂G_{i}. Then:

- η^{j} is projected to the tangent space at time t_{i} :

$$
\left\langle\eta_{t_{i}}^{j}, n_{i}\right\rangle=0 .
$$

- η^{j} jumps at time t_{i} as follows:

$$
\eta_{t_{i}}^{\cdot j}-\eta_{t_{t_{i}}}^{\cdot j}=-\left\langle\eta_{t_{i}-}^{\cdot j}, n_{i}\right\rangle v_{i} .
$$

- The process $\left(X_{t}, \eta_{t}^{\cdot j}\right)$ in $G \times \mathbb{R}^{d}$ is Markovian!!

Generator L of $\left(X_{t}, \eta_{t}^{j}\right)(1)$

$$
L F(x, \eta):=L^{1} F(., \eta)(x)+L^{2} F(x, .)(\eta),
$$
 The marginal generator of X :

 where $F(., \eta) \in C^{2}(G)$ satisfies the Neumann boundary
 condition:

Generator L of $\left(X_{t}, \eta_{t}^{j}\right)(1)$

$$
L F(x, \eta):=L^{1} F(., \eta)(x)+L^{2} F(x, .)(\eta),
$$

The marginal generator of X :

$$
L^{1} F(., \eta)(x):=\frac{1}{2} \Delta F(., \eta)(x)+\sum_{i=1}^{d} b^{i}(x) \frac{\partial F}{\partial x^{i}}(., \eta)(x),
$$

where $F(., \eta) \in C^{2}(G)$ satisfies the Neumann boundary condition:

$$
D_{v_{i}} F(., \eta)(x)=0 \quad \text { for } x \in \partial G_{i},
$$

Generator L of $\left(X_{t}, \eta_{t}^{\cdot j}\right)$ (2)

$$
L F(x, \eta):=L^{1} F(., \eta)(x)+L^{2} F(x, .)(\eta)
$$

The marginal generator of η depending on x :

$$
L^{2} F(x, .)(\eta):=\sum_{i=1}^{d}\left(\sum_{k=1}^{d} \frac{\partial b^{i}}{\partial x^{k}}(x) \eta^{k}\right) \frac{\partial F}{\partial \eta^{i}}(x, .)(\eta)
$$

where $F(x,.) \in C^{1}\left(\mathbb{R}^{d}\right)$ satisfies the Dirichlet boundary condition

$$
F(x, \eta)=F\left(x, \eta-\left\langle\eta, n_{i}\right\rangle n_{i}\right), \quad x \in \partial G_{i}
$$

and the Neumann condition:

$$
D_{v_{i}} F(x, .)(\eta)=0, \quad x \in \partial G_{i}
$$

Open Problems

- What happens for $t>\tau$?
- Random walk representation for the derivatives?
- What about general domains G with smooth boundary?

References

圊 J．－D．Deuschel，L．Zambotti，（2005），Bismut－Elworthy formula and Random Walk representation for SDEs with reflection， Stochastic Process．Appl．115，907－925．

䍰 P．Dupuis，H．Ishii，（1991），On Lipschitz continuity of the solution mapping to the Skorokhod problem，with applications， Stochastics 35，31－62．
R P．Dupuis，H．Ishii，（1993），SDEs with oblique reflection on nonsmooth domains，The Annals of Prob．21，No．1，554－580．
國 P．L．Lions，A．S．Sznitman，Stochastic Differential Equations with Reflecting Boundary Conditions，Comm．Pure Appl． Math． 37 （1984），511－537．

