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Outline

Functional inequalities in the context of Markov Chains may be interpreted as
a method for estimating quantitatively the rate of convergence to equilibrium.
The main purpose of these lectures is to give a self contained introduction to the
field, mainly oriented to applications to specific models that, I hope, you will
find sufficiently interesting. Some recent developments have made the treatment
of many models quite accessible; so I chose to set up the basic notions to get
as early as possible to the study of some of those models. I have nevertheless
sacrificed to this choice many interesting aspects of functional inequalities, so
the course has no hope to be exhaustive. Moreover, we do not mention a number
of other approaches to estimate rates of convergence, such as the popular Stein’s
method (see [12]).
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1 Preliminaries

1.1 Markov chains in discrete-time

Let S be a finite (or countable) set.

Definition 1. A sequence (Xn)n≥0 of S-valued random variables is a Markov
chain if for each n ≥ 1 and x0, x1, . . . xn+1 ∈ S

P (Xn+1 = xn+1|Xn = xn, . . . , X1 = x1, X0 = x0)
= P (Xn+1 = xn+1|Xn = xn).

In the case P (Xn+1 = x|Xn = y) does not depend on n, we say the chain is
time-homogeneous. In this case the matrix P

P := (pyx)y,x∈S with pyx := P (Xn+1 = x|Xn = y)

is called the transition matrix.
Note that

P (Xn = xn, Xn−1 = xn−1, . . . , X0 = x0)
= pxn−1xn

pxn−2xn−1 · · · px0x1P (X0 = x0)

In other words the initial distribution and the transition matrix determine the
law of the process.

1.2 Markov chains in continuous-time

Let (Xt)t≥0 be S-valued random variables. Fs := σ(Xs : s ≤ t).

Definition 2. (Xt)t≥0 is called a Markov chain if for every x ∈ S and 0 ≤ s ≤ t

P (Xt = x|Fs) = P (Xt = x|Xs).

If P (Xt = x|Xs = y) depends on s, t only through t − s we say that the
chain is time-homogeneous.

In this case, for f : S → R and t ≥ 0, define Stf : S → R by

Stf(y) := E(f(Xt)|X0 = y) =
∑
x∈S

f(x)P (Xt = x|X0 = y).

Proposition 1.1. (St)t≥0 is a semigroup, i.e. S0 = I and St+s = St ◦ Ss.

The proof is a simple exercise of use of the Markov property.

Note that St is a linear operator from RS to itself, so it can be viewed as a
matrix ((St)yx)y,x∈S , with

(St)yx = P (Xt = x|X0 = y)
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If t 7→ St is continuous, it can be shown that:

lim
t↓0

St − I

t
; +L exists

and
St = etL

Note that for x 6= y

0 ≤ P (Xt = x|X0 = y) = (St)yx = tLyx + o(t) ⇒ Lyx ≥ 0

while ∑
x∈S

Lyx = lim
t↓0

∑
x∈S

(St)yx − δyx

t
= 0

and, therefore,
Lyy = −

∑
x6=y

Lyx.

This implies that

Lf(y) =
∑
x∈S

Lyxf(x) =
∑
y 6=x

Lyx[f(x)− f(y)].

The distribution of X0 and the semigroup (St)t≥0 identify the law of the
process: for 0 < t1 < t2 < · · · < tn and x0, x1, . . . , xn ∈ S

P (Xtn = xn, Xtn−1 = xn−1, . . . , X0 = x0)
= (Stn−tn−1)xn−1xn(Stn−1−tn−2)xn−2xn−1 · · · (St1)x0x1P (X0 = x0).

In particular, letting πt(x) := P (Xt = x), we have

πt(x) =
∑

y

P (Xt = x, X0 = y) =
∑

y

(St)yxπ0(y)

and therefore

πt = π0St ⇐⇒
{

π̇t = πtL
π0

Definition 3. A probability π on S is called a stationary distribution if for
every t ≥ 0 πSt = π or, equivalently, πL = 0

Fact 4. If S is finite then at least one stationary measure exists. This is not
necessarily true if S is countable.

Definition 5. A Markov chain is said to be irreducible if for every x, y ∈ S,
x 6= y, there exists a “path” x = x0, x1, . . . , xn = y such that for every k =
0, . . . , n− 1, xk 6= xk+1 and Lxkxk+1 > 0.

Theorem 6. (Ergodic Theorem). For irreducible chains there exists at most one
stationary distribution π. When it exists (in particular for S finite), π(x) > 0
for every x ∈ S, and for every probability π0

π = lim
n→+∞

π0St.
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1.3 Simulation and graphical contruction

Simulation of finite, continuous-time Markov chains involves simulation of ran-
dom numbers with exponential distribution.

We recall that a Poisson process of intensity λ is a random countable subset
N = {X1, X2, . . .} of (0,+∞) such that the random variables (Xk −Xk−1)k≥1

(with X0 = 0) are i.i.d. Exp(λ).
Let S2 := {(x, y) ∈ S × S : x 6= y}.
For each (x, y) ∈ S2, let Nxy be a Poisson process of intensity Lxy. Assume

the following conditions hold.

i. For each x fixed, the Poisson processes (Nxy)y 6=x are independent.

ii. Let I, J be two bounded intervals in (0,+∞) with I ∩ J = ∅. Then the
two families of random variables

{|Nxy ∩ I| : (x, y) ∈ S2} and {|Nxy ∩ J | : (x, y) ∈ S2}

are independent.

iii. Let s > 0, and θsNxy be defined by: t ∈ θsNxy ⇐⇒ t + s ∈ Nxy. Then

{θsNxy : (x, y) ∈ S2} and {Nxy : (x, y) ∈ S2}

are equally distributed.

In particular the conditions above hold when the Poisson processes Nxy are
all independent. This, however, may be not a convenient choice for simulation.

Then we consider the following pathwise updating rule: whenever t ∈ Nxy

and Xt− = x, then Xt = y.

Proposition 1.2. Under conditions i., ii., iii., the process so constructed is
Markov with generator L.

Let ω := (Nxy)(x,y)∈S2 ∈ Ω, where Ω is provided with the probability P
induced by the Poisson processes. ω contains “all the randomness” in the dy-
namics: if X0 = x then Xt = ϕ(t, ω, x), where ϕ : R+ × Ω × S → S is a
deterministic function.

Moreover, the following cocycle property holds

ϕ(t + s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x)).

With this description we are realizing on the same probability space Markov
processes with generator L starting from every initial point x ∈ S. In other
words ϕ(t, ω, ·) is a Markov process on SS such that every one point motion
t 7→ ϕ(t, ω, x) is Markov with generator L.
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1.4 Samplers. Perfect sampling. Monotonicity.

In many situations Markov chains are used as samplers. Let π be a probability
on S. The aim is to sample from π, i.e. generate random points with distribution
π. For S finite but large, direct sampling from π may be unfeasible. As later
examples will show, it is much cheaper to set up an irreducible Markov chain
(Xt)t≥0 with stationary distribution π: for t large Xt is nearly distributed as π,
providing an approximate sample.

How good this approximation is it depends on how rapidly π0St converges
to π. This will be the object of most of the remaining part of these lectures.

In recent years various methods have also been designed to sample exactly
from π using Markov chains. One of these methods, known as “coupling from
the past”, reads as follows.

Let ω = (Nxy)(x,y)∈S2 as in the previous section, and ω = (Nxy)(x,y)∈S2 be
its time-reversed, i.e. −t ∈ Nxy ⇐⇒ t ∈ Nxy. Similarly to above, for t > 0,
we can define the backward time shift θ−t by:

s ∈ θ−tNxy ⇐⇒ s− t ∈ Nxy ( ⇐⇒ t− s ∈ Nxy).

By simple invariant properties of the Poisson processes, θ−tNxy ∩ [0, t] and
Nxy ∩ [0, t] have the same distribution. Moreover the family of point processes
{θ−tNxy : (x, y) ∈ S2} obey conditions i., ii., iii. for the graphical construction
restricted to the time-interval [0, t]. Thus, the process s 7→ ϕ(s, θ−tω, x) is in
[0, t] a Markov process with generator L.

Theorem 7. Let T = inf{t ≥ 0 : ϕ(t, θ−tω, ·) is constant}. Assume P (T <
+∞) = 1. Then ϕ(T, θ−T ω, x) ∼ π for every x ∈ S.

Remark 1.1. 1. The assumption P (T < +∞) is satisfied when the Nxy are
all independent, as well as in many other cases, but it does not follow from
i., ii., iii.

2. The Theorem above provides an explicit algorithm for perfect simulation.

In general, for S large, it is not feasible to compute ϕ(t, θ−tω, x) for each
x ∈ S.

The algorithm above becomes interesting under the following conditions.

a. S has a partial order, with a maximal and a minimal element: x ≤ x ≤ x
for every x ∈ S.

b. For every t, ω fixed, x 7→ ϕ(t, ω, x) is increasing.

In this case ϕ(t, θ−tω, ·) is constant if and only if ϕ(t, θ−tω, x) = ϕ(t, θ−tω, x),
i.e. it is enough to keep track of only two trajectories.

When a Markov chain admits a graphical construction with this monotonicity
property, we say it is completely monotone. A more usual but strictly weaker
notion of monotonicity is when the semigroup St preserves increasing functions.
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1.5 Reversible dynamics: examples

Recall: π is stationary if and only if πL = o, i.e.∑
y

π(y)Lyx = 0 for every x ∈ S.

A simpler sufficient condition for stationarity is: for every (x, y) ∈ S2

π(x)Lxy = π(y)Lyx

that is called Detailed Balance condition (DB). A chain satisfying (DB) is said
to be reversible. (DB) is equivalent to either one of the following.

• if (Xt)t∈[0,T ] is a stationary Markov chain with generator L and Xt ∼ π,
then (XT−t)t∈[0,T ] is also a Markov chain with generator L.

• L is a symmetric operator in L2(π).

Example 1
H : S → R “energy”.

π(x) =
1
Z

e−βH(x) β−1 = “temperature”

Several choices of generator reversible for π are possible, for example

Lxy = e
β
2 [H(x)−H(y)] or Lxy = eβ[H(x)−H(y)]+

One can modify the above examples by choosing a set E of edges (unordered
pairs of elements of S) such that (S, E) is a connected graph. Then set Lxy as
above if {x, y} is an edge in E, Lxy = 0 otherwise.

Example 2: spin systems
Λ be a finite subset of Zd (Λ ⊂⊂ Zd), S = {−1, 1}Λ. For η ∈ S and

τ ∈ {−1, 1}Λc

define ητ ∈ {−1, 1}Zd

in the obvious way:

(ητ)i =
{

ηi for i ∈ Λ
τi otherwise.

For η ∈ {−1, 1}Zd

and A ⊂⊂ Zd, ηA denotes its restriction to A. For each such
A let ΦA : {−1, 1}A → R. The family {ΦA : A ⊂⊂ Zd} is called a summable
potential if

sup
x∈Zd

∑
A3x

‖ΦA‖∞ < +∞.

For a summable potential we can define, for η ∈ S and τ ∈ {−1, 1}Λc

Hτ
Λ(η) :=

∑
A:A∩Λ6=∅

ΦA((ητ)A)
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Thus we define the finite volume Gibbs measure with potential Φ, inverse
temperature β, boundary conditions τ on the volume Λ: η ∈ S

ντ
Λ(η) =

1
Zτ

Λ

exp [−βHτ
Λ(η)] .

One key property of these families of measure is the fact that they can be
interpreted as conditional distribution: ντ

Λ(η) is the probability of observing the
spins η in Λ conditioned on the spin τ in Λc. In particular, for A ⊆ Λ

ντ
Λ(ηA|ηΛ\A) = ν

τηΛ\A

A (ηA).

where we write ντ
Λ(ηA|ηΛ\A) for ντ

Λ

(
{ξ ∈ S : ξA = ηA}|ηΛ\A

)
Elements of S will be called configurations. We now define edges (admissible

transitions) between configurations. In the sampler we are going to define the
only nonzero rates Lησ are when σ = ηi for some i ∈ Λ, where

ηi
j =

{
ηj for j 6= i
−ηi for j = i

We call spin system any sample as in Example 1 for the energy Hτ
Λ. For

example
Lτ

Λf(η) =
∑
i∈Λ

c(i, η)∇if(η)

where ∇if(η) = f(ηi)− f(η) and c(i, η) = exp
[
−β

2∇iH
τ
Λ(η)

]
.

It is instructive to define a “good” graphical construction of these spin sys-
tems. Let M := maxi,η c(i, η) . To each i ∈ Λ we associate a Poisson process
Ni of intensity M , and all these processes are independent. Every t ∈ Ni is
a “possible” jump time for ηi. To such time we associate a uniform random
variable Ut in [0, 1]. For η ∈ S we define the process Nη,i by

t ∈ Nη,i ⇐⇒ t ∈ Ni and Ut ≤
c(i, η)

M
.

All these r.v. Ut are assumed to be independent. The resulting point processes
Nη,i are Poisson processes of intensity c(i, η), that can be used for the graphical
construction of the process (i.e. they satisfy properties i.-iii. above).

Example 3: birth and death processes
In this example S = N, and the only admissible transitions are n 7→ n + 1

(birth of an individual) and n 7→ n − 1 (for n > 0 death of an individual).
Therefore the generator has the form

Lf(n) = a(n)∇+f(n) + b(n)∇−f(n)

with ∇+f(n) = f(n + 1) − f(n), ∇−f(n) = f(n − 1) − f(n). The system is
reversible for a probability π if

a(n)π(n) = b(n + 1)π(n + 1).
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For example, for π(n) := e−λ λn

n! , we may choose a(n) = λ, b(n) = n (a new
individual is born with rate λ, and each individual dies with rate 1 independently
of others).

Example 4: interacting birth and death processes
Suppose at each site i ∈ Λ ⊂⊂ Zd we have a birth and death process. The

simplest case is when these processes are all independent, and each of them has
a(n) = λ, b(n) = n. In this case, if ηi is the number of individuals at i ∈ L, and
η = (ηi)i∈Λ ∈ S = NΛ, the generator of the overall process would be

Lf(η) =
∑
i∈Λ

[
λ∇+

i f(η) + ηi∇−
i f(η)

]
where

∇f(η) = f(ηi,+)− f(η) with ηi,+
j =

{
ηj for j 6= i
ηi + 1 for j = i

and similarly for ∇−
i f(η).

The stationary reversible distribution for this independent case is of course
a product of Poisson measures:

π(η) = e−|Λ|λ
∏
i∈Λ

ληi

ηi!
.

Now, we may perturb this product measure by an interaction term as follows.
Let K : Zd → R be a pair interaction, and

π(η) =
1
Z

π(η) exp

−β
∑

i,j∈Λ

K(i− j)ηiηj


For K(z) ≥ 0 for every z ∈ Zd, we say the interaction is repulsive. A Markov
chain that satisfies detailed balance for this π is

Lf(η) =
∑
i∈Λ

λ exp

−β
∑
j∈Λ

K(i− j)ηj

∇+
i f(η) + ηi∇−

i f(η)

 .

Example 5. A system with a conservation law: interacting random
walks

Consider the probability π on NΛ in the previous example but, for a given
N > 0, we restrict it to the set SN := {η :

∑
i∈Λ ηi = N} of configuration with

exactly N particles. We obtain the following probability

πN (η) =
1

ZN

∏
i∈Λ

1
ηi!

exp

−β
∑

i,j∈Λ

K(i− j)ηiηj

 .
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We are now going to define a Markov chain on SN (that therefore conserves
the total number of particles) which is reversible for πN . The only allowed
transitions will be motions of one particle from a site i ∈ Λ to another site
j ∈ Λ.

Suppose first particles are allowed to jump from i ∈ Λ to any j ∈ Λ (model
on the complete graph). To define the Markov chain we just have to define the
rates c(i, j, η) at which a particle at the site i jumps at j when the current state
is η. A choice for which detailed balance w.r.t. πN holds is

c(i, j, η) =
1
|Λ|

ηi exp

[
β
∑
k∈Λ

K(i− k)ηk

]
.

We thus obtained the complete graph generator

Lc.g.f(η) =
∑

i,j∈Λ

c(i, j, η)∇ijf(η)

where ∇ijf(η) = f(ηij)− f(η) with

ηij
k =

 ηk for k 6∈ {i, j} or k ∈ {i, j} and ηi = 0
ηi − 1 for k = i and ηi > 0
ηj + 1 for k = j and ηi > 0.

A more popular model is that in which particles are only allowed to move to
nearest neighbor sites. In this case the generator is (nearest neighbor model)

Ln.n.f(η) =
∑
i∼j

ηi exp

[
β
∑
k∈Λ

K(i− k)ηk

]
∇ijf(η),

where i ∼ j means |i− j| = 1.
This Markov chain is reversible for the same probability πN as for the com-

plete graph model.
Note that for β = 0 the dynamics reduce to that of N independent, simple

symmetric random walks.

Bibliographic remarks.
A good reference on various aspects of discrete-time Markov Chains is the book
of E. Behrends [2]. For both discrete and continuous time chains see the book
by P. Bremaud [4], which also put emphasis on simulation aspects. For Markov
processes in more general state spaces see [14]. Spin systems and many other
systems motivated by statistical mechanics can be found in [17]. Perfect sam-
pling was first proposed by J. G. Propp and D. B. Wilson in [18], which is still
a good reference, together with the paper by J. Fill [15].
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2 Functional inequalities

2.1 Distances from equilibrium

The aim of this section is to provide some basic tools for giving quantitative
estimates of the rate of convergence to equilibrium of an irreducible Markov
chain.

Let π be the stationary distribution of a Markov chain with semigroup St =
etL. The Ergodic Theorem establishes that, for each “observable” f : S → R
and x ∈ S,

lim
t→+∞

Stf(x) =
∑

y

f(y)π(y) =: π[f ].

One way to view this convergence is in the space L2(π), where observable
are provided with the norm ‖f‖2 :=

√
π [f2]. This suggests to measure distance

from equilibrium by

‖St − π‖2→2 := sup{‖Stf − π[f ]‖2 : ‖f‖2 = 1}.

It is interesting to compare this mode of convergence with a more natural
one. Given a probability µ on S consider the total variation distance

‖µ− π‖TV :=
∑
x∈E

|µ(x)− π(x)|

It can be shown that, letting π∗ := minx π(x),

max
x∈S

‖δxSt − π‖TV ≤ 1
π∗
‖St − π‖2→2.

Thus if we have good estimates on how fast ‖St − π‖2→2 converges to zero, we
have estimates on the rate of convergence to equilibrium in total variation. The
problem is that, for large S, π∗ may be very small.

Another popular notion to measure distance from equilibrium is that of
relative entropy, defined, for a probability µ on S, by

h(µ|π) :=
∑

x

π(x)
(

µ(x)
π(x)

log
µ(x)
π(x)

)
= π

[µ
π

log
µ

π

]
.

By Jensen’s inequality it is easily shown that h(µ|π) ≥ 0 and h(µ|π) = 0 if and
only if µ = π.

The so-called Czisar’s inequality holds:

‖µ− π‖2TV ≤ h(µ|π).

For later use we also introduce the notion of entropy for nonnegative func-
tions f ≥ 0:

Entπ(f) := π[f log f ]− π[f ] log π[f ],

so that
h(µ|π) = Entπ

(µ

π

)
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2.2 Functional inequalities

We are therefore interested in the rate of convergence to zero of quantities as

‖St − π‖2→2 and h(δxSt|π).

A key notion is that of Dirichlet form:

E(f, g) := −π [fLg] .

A simple computation shows that

E(f, f) =
1
2

∑
y∈S

π
[
Lxy(f(y)− f(x))2

]
.

Moreover, if the chain is reversible

E(f, g) =
1
2

∑
y∈S

π [Lxy(f(y)− f(x))(g(y)− g(x))] .

Consider an observable f ; an elementary computation yields

d

dt
‖Stf − π[f ]‖22 = −2E(Stf, Stf).

The idea is to close the above identity as a differential inequality for ‖Stf −
π[f ]‖22. Suppose there is a constant γ > 0 such that the following inequality
holds:

(PI) V arπ[f ] := π
[
f2
]
− π2[f ] ≤ 1

γ
E(f, f)

for every observable f , which is called the Poincaré inequality. Under (PI),
observing that ‖Stf − π[f ]‖22 = V arπ(Stf),

d

dt
‖Stf − π[f ]‖22 ≤ −2γ‖Stf − π[f ]‖22 ⇒ ‖Stf − π[f ]‖22 ≤ e−2γtV arπ(f)

In particular this shows that

‖St − π‖2→2 ≤ e−γt.

With a bit of spectral theory one can show:

• if L is reversible, the largest constant γ for which (PI) holds is the opposite
of the second largest eigenvalue of L (the largest is 0). For this reason
this γ is called the spectral gap. We use the same terminology in the non-
reversible case too: in general −γ is the second largest eigenvalue of L+L∗

2 ,
where L∗xy := Lyxπ(y)

π(x) is the adjoint of L in L2(π).

• If γ is the spectral gap, we have

‖St − π‖2→2 = e−γt.
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We also have
max
x∈S

‖δxSt − π‖TV ≤ 1
π∗

e−γt.

For the decay of the relative entropy a similar argument is used. We first
notice that, for any probability µ on S

h(µSt|π) = Entπ(S∗t f)

where S∗t = etL∗ and f = µ
π . For simplicity, assume that the system is reversible,

so St = S∗t . A simple computation yields

d

dt
Entπ(Stf) = −E(Stf, log Stf).

The inequality that allows to close the former identity is

(MLSI) Entπ(f) ≤ 1
α

E(f, log f),

with α > 0, for every f > 0, which implies

Entπ(Stf) ≤ e−αtEntπ(f) i.e. h(µSt|π) ≤ e−αth(µ|π).

The inequality above is called the modified logarithmic Sobolev inequality.
Using the simple fact that h(δx|π) = log

(
1

π(x)

)
, and using Czisar’s inequal-

ity, we get

max
x∈S

‖δxSt − π‖TV ≤ log
(

1
π∗

)
e−αt/2

to be compared with the estimate obtained above

max
x∈S

‖δxSt − π‖TV ≤ 1
π∗

e−γt.

We will show in next section that α ≤ 2γ. Thus the estimate obtained with the
(MLSI) could be worse in the exponential rate, but for moderate times could
be much better since, for large S, log

(
1

π∗

)
� 1

π∗ .
In these lectures we will deal also with a third functional inequality, the

logarithmic Sobolev inequality:

(LSI) Entπ(f) ≤ 1
s
E(
√

f,
√

f)

for all f ≥ 0. The deepest meaning of this inequality will not be dealt with in
these lectures. Its interpretation in terms of rate of convergence to equilibrium is
not as straightforward as for (PI) and (MLSI). We only mention the nontrivial
fact that one can derive from (LSI):

max
x∈S

‖δxSt − π‖TV ≤ e

(
log

1
π∗

) γ
2s

e−γt.
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This certainly improves

max
x∈S

‖δxSt − π‖TV ≤ 1
π∗

e−γt.

and it is often better than

max
x∈S

‖δxSt − π‖TV ≤ log
(

1
π∗

)
e−αt/2

even though we will prove that 2s ≤ γ.

2.3 Hierarchy of functional inequalities

We show now that the three functional inequalities introduced are, in a suitable
sense, hierarchically ordered. We begin with

Lemma 8. For every f > 0

E(f, log f) ≥ 2E(
√

f,
√

f)

that, if the chain is reversible, can be improved to

E(f, log f) ≥ 4E(
√

f,
√

f)

Proof. Using the inequality, for a, b > 0, b(log a− log b) ≤ 2
√

b
(√

a−
√

b
)
,

we have

E(f, log f) = −
∑

x

π(x)f(x)
∑

y

Lxy [log f(y)− log f(x)]

≥ −2
∑

x

π(x)
√

f(x)
∑

y

Lxy

[√
f(y)−

√
f(x)

]
= 2E(

√
f,
√

f).

In the reversible case the proof is similar, but uses the nicer expression for
the Dirichet form off the diagonal:

E(f, log f) =
∑

x

π(x)
∑

y

Lxy [f(y)− f(x)] [log f(y)− log f(x)] ,

and that one uses the inequality

(log a− log b)(a− b) ≥ 4
(√

a−
√

b
)2

.

Theorem 9. Consider an irreducible, finite state Markov chain, and let γ, α, s
denote the largest constants in (PI), (MLSI) and (LSI) respectively. Then

s > 0 α ≥ 2s 2γ ≥ α γ ≥ 2s.

For reversible chains these improve to 2γ ≥ α ≥ 4s.
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Proof. The inequality α ≥ 2s (α ≥ 4s in the reversible case) follows imme-
diately from last Lemma. To prove 2γ ≥ α and γ ≥ 2s, consider a function g,
and define, for ε > 0, fε := (1 + εg)2. By elementary calculus one gets

Entπ(fε) = 2ε2V arπ(g) + o(ε2)

E(
√

fε,
√

fε) = ε2E(g, g)
E(fε, log fε) = 4ε2E(g, g) + o(ε2)

Thus

1
ε2

Entπ(fε) ≤
1

αε2
E(fε, log fε) ∀ε > 0 ⇒ 2V arπ(g) ≤ 4

α
E(g, g)

⇒ 2γ ≥ α

The inequality γ ≥ 2s is proved similarly.
So we are left to prove that, for a finite, irreducible Markov chain, s > 0,

which by the inequalities above implies γ, α > 0. By definition of (LSI)

s = inf
{

E(
√

f,
√

f)
Entπ(f)

: f ≥ 0, Entπ(f) > 0
}

Since both E(
√

f,
√

f) and Entπ(f) are continuous and homogeneous of degree
1,

s = inf
{

E(
√

f,
√

f)
Entπ(f)

: f ≥ 0, Entπ(f) = 1
}

By irreducibility: Entπ(f) = 1 ⇒ f 6= const. ⇒ E(
√

f,
√

f) > 0. Moreover,
since S is finite, observables belong to a finite dimensional space, and it is easy
to show that {f : Entπ(f) = 1} is compact. Thus s is the infimum over a
compact set of a continuous function that is strictly positive on that set. Thus
the infimum is a minimum, and therefore strictly positive.

Remark 2.1. For Markov chains with infinite state space the inequalities in
the above Lemma still hold, but the constants may be zero.

2.4 Tensor property of functional inequalities

The aim of this section is to explain the behavior of functional inequalities in
the case our Markov chain is a finite family of independent Markov chains. So
assume π = µ⊗N be a product probability on SN . A function f : SN → R can
be viewed as a function of N variables x1, x2, . . . , xN . When we think of f as a
function of xi with all other variables “frozen”, we write fi. So, for instance,

µ[fi] =
∑
x∈S

f(x1, . . . , xi−1, x, xi+1, . . . , xN )µ(x).

Accordingly, we define V arµ(fi) and Entµ(fi).
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Proposition 2.1.

V arπ(f) ≤
N∑

i=1

π [V arµ(fi)]

Entπ(f) ≤
N∑

i=1

π [Entµ(fi)]

for every f (f ≥ 0 for the second inequality).

We will only prove the second inequality. The first can be shown along the
same lines, and it is slightly simpler. We will obtain the inequality from a
stronger result, that will be useful again later.

Lemma 10. Let (Ω,F, π) be a probability space, F1,F2 be two sub-σ-fields of
F, f ≥ 0 be a measurable function with π[f ] = 1 and f log f ∈ L1(π). Then

Entπ(f) ≤ π [Entπ(f |F1)] + π [Entπ(f |F2)] + log π [π[f |F1]π[f |F2]]

where Entπ(f |Fi) := π [f log f |Fi]− π[f |Fi] log π[f |Fi].

We first note that from the Lemma it follows that, for N = 2

Entπ(f) ≤ π [Entπ(f1)] + π [Entπ(f2)] ,

since it is enough to take Fi to be the σ-field generated by the projection on the
i-th component. In this case the independence of F1 and F2 easily implies that
log π [π[f |F1)π[f |F2)] = 0. For N > 2 one just proceeds by induction.

Proof of the Lemma. It is enough (!) to observe that

π [Entπ(f |F1)] + π [Entπ(f |F2)] + log π [π[f |F1]π[f |F2]]
= Entπ(f) + h(ν1|ν2)

where

dν1 := fdπ

dν2 :=
π[f |F1]π[f |F2]

π [π[f |F1]π[f |F2]]
dπ

�

Now, let L be the generator of an irreducible Markov chain on S, and consider
N independent copies of this chain (possibly with different starting points). It
is easy to show that this process on SN is also an irreducible Markov chain, and
that its generator LN is given by

LNf =
N∑

i=1

Lfi

16



If µ is the stationary distribution for L, then π := µ⊗N is the stationary distri-
bution for LN .

Thus, if we denote by EN the Dirichlet form of the product process, and E

the one of the single component, we have

EN (f, g) =
N∑

i=1

π [E(fi, gi)] .

Theorem 11. Let K(L) (resp K(LN )) be one of the three best constants in
(PI), (MLSI) or (LSI) for L (resp. LN ). Then

K(LN ) = K(L)

Proof. We give it for (LSI), the others are the same.

Entπ(f) ≤
N∑

i=1

π [Entµ(fi)] ≤
N∑

i=1

π

[
1

s(L)
E(
√

fi,
√

fi)
]
=

1
s(L)

EN (
√

f,
√

f)

which implies s(LN ) ≥ s(L). To get equality it is enough to take functions of
only one variable.

Bibliographic remarks.
What contained in this section, and much more, con be found in [13]. The proof
of Lemma 10 is in [11].

3 Applications

3.1 (LSI) for spin systems at high temperature: the method
of bisection

We begin by recalling the model: S = {−1, 1}Λ,

Hτ
Λ(η) :=

∑
A:A∩Λ6=∅

ΦA((ητ)A) π(η) = ντ
Λ(η) =

1
Zτ

Λ

exp [−βHτ
Λ(η)] .

Lτ
Λf(η) =

∑
i∈Λ

c(i, η)∇if(η)

where ∇if(η) = f(ηi) − f(η) and c(i, η) = exp
[
−β

2∇iH
τ
Λ(η)

]
. For β = 0 we

just have a family of independent Markov Chains, one for each site of Λ. In this
case, by the tensor property, s(Lτ

Λ) is independent of Λ (and of τ , of course).
Is there a way to partially extend this property (i.e. proving infΛ,τ s(Lτ

Λ) > 0)
to β > 0 small enough?
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In what follows we assume the potential to be finite range and translation
invariant:

ΦA ≡ 0 if diam(A) ≥ R

ΦA+i(ηA+i) = ΦA(ηA+i).

By the finite range property, for Λ fixed, the families {ντ
Λ : τ ∈ {−1, 1}Λc} and

{Lτ
Λ : τ ∈ {−1, 1}Λc} are finite. In particular

sΛ := inf{s(Lτ
Λ) : τ ∈ {−1, 1}Λ

c

} > 0.

Suppose, for simplicity, d = 2. Let RL1,L2 be any rectangle in Z2 with side
lengths L1 and L2. By translation invariance sRL1,L2

is invariant by translation
of RL1,L2 , so it is not necessary to specify the position in space of RL1,L2 .

Let
sL1,L2 := inf{sΛ : Λ ⊆ RL1,L2}.

We will show that
inf

L1,L2
sL1,L2 > 0

by setting up an induction in L1, L2.
Consider Λ := R 3

2 L1,L2
and write it as the union of two overlapping rectan-

gles A,B with first side length ≤ L1, second side length = L2 and A ∩ B is a
rectangle with sides

√
L1, L2 (we should take the integer part of

√
L1, but we

ignore this trivial complication).
Let F1 be the σ-field generated by projection onto {−1, 1}A\B , and F2 be

the σ-field generated by projection onto {−1, 1}B\A. Since Gibbs measures are
conditional measures,

ντ
Λ(·|F1) = ν

τηA\B

B (·)

Also, remember the inequality, for ν := ντ
Λ

Entν(f) ≤ ν [Entν(f |F1) + Entν(f |F2)] + log ν [ν(f |F1)ν(f |F2)]

= ν
[
Entν·B (f) + Entν·A(f)

]
+ log ν [ν·A(f)ν·B(f)]

But

Entν·B (f) ≤ s−1
L1,L2

ν·B

[∑
i∈B

c(i, η)
(
∇i

√
f(η)

)2
]

since B ⊆ RL1,L2 this last expression is the Dirichlet form in the volume B
evaluated at (

√
f,
√

f).
Thus, we can proceed from

Entν(f) ≤ ν
[
Entν·B (f) + Entν·A(f)

]
+ log ν [ν·A(f)ν·B(f)]
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by noticing that

ν
[
Entν·B (f) + Entν·A(f)

]
1
2
≤ s−1

L1,L2
ν

[
ν·B

[∑
i∈B

c(i, η)
(
∇i

√
f(η)

)2
]

+ ν·A

[∑
i∈A

c(i, η)
(
∇i

√
f(η)

)2
]]

= s−1
L1,L2

Eτ
Λ(
√

f,
√

f) + s−1
L1,L2

ν

[ ∑
i∈A∩B

c(i, η)
(
∇i

√
f(η)

)2
]

Let temporarily forget the term ν

[∑
i∈A∩B c(i, η)

(
∇i

√
f(η)

)2
]
, and con-

centrate on the term
log ν [ν·A(f)ν·B(f)]

The idea is that, for β small, ν·A(f) and ν·B(f) are almost independent under ν.
Remember that F1 is the σ-field generated by projection onto {−1, 1}A\B , and
F2 is the σ-field generated by projection onto {−1, 1}B\A.

Lemma 12. Suppose there is a measure ν on {−1, 1}Λ such that ν|Fi
= ν|Fi

for i = 1, 2, and F1,F2 are independent under ν. Set h := ν
ν . Then, for each

f ≥ 0 with ν[f ] = 1

log ν [ν·A(f)ν·B(f)] ≤ 4‖h− 1‖∞Entν(f).

Proof. First notice that

log ν [ν[f |F1]ν[f |F2]] = log ν [hν[f |F1]ν[f |F2]]
= log {ν [(h− 1)ν[f |F1]ν[f |F2]] + ν [ν[f |F1]ν[f |F2]]}

= log {ν [(h− 1)ν[f |F1]ν[f |F2]] + 1}
≤ ν [(h− 1)ν[f |F1]ν[f |F2]] ,

where we used the inequality log(1 + x) ≤ x. Therefore

log ν [ν[f |F1]ν[f |F2]] ≤ ν [(h− 1)ν[f |F1]ν[f |F2]]

= ν

[
(h− 1)

[
ν[f |F1]− ν

(√
ν[f |F1]

)2
] [

ν[f |F2]− ν
(√

ν[f |F2]
)2
]]

≤ ‖h− 1‖∞ν

[∣∣∣∣ν[f |F1]− ν
(√

ν[f |F1]
)2
∣∣∣∣ ∣∣∣∣ν[f |F2]− ν

(√
ν[f |F2]

)2
∣∣∣∣]

= ‖h− 1‖∞ν

[∣∣∣∣ν[f |F1]− ν
(√

ν[f |F1]
)2
∣∣∣∣] ν

[∣∣∣∣ν[f |F2]− ν
(√

ν[f |F1]
)2
∣∣∣∣]
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Now notice that, for k = 1, 2,

ν

[∣∣∣∣ν[f |Fk]− ν
(√

ν[f |Fk]
)2
∣∣∣∣] ≤ 2

√
V arν(

√
f).

In fact

ν

[∣∣∣∣ν[f |Fk]− ν
(√

ν[f |Fk]
)2
∣∣∣∣]

= ν
[∣∣∣√ν(f |Fk)− ν

[√
ν(f |Fk)

]∣∣∣ ∣∣∣√ν(f |Fk) + ν
[√

ν(f |Fk)
]∣∣∣]

≤
√

V arν

(√
ν(f |Fk)

)√
2
[
1 + ν

[√
ν(f |Fk)

]2]
≤ 2
√

V arν

(√
ν(f |Fk)

)
≤ 2
√

V arν(
√

f).

Summing all up we get

log ν [ν[f |F1]ν[f |F2]] ≤ 4‖h− 1‖∞V arν

(√
f
)

,

and the proof is completed by the inequality (see [10])

V arν

(√
f
)
≤ ν [f log f ]

�

There is a “canonical” choice of ν:

ν(η) := ν(ηB\A)ν(ηA\B)ντηΛ\(A∩B)

A∩B (ηA∩B)

where by ν(ηB\A) we mean the probability of ηB\A under the restriction of ν

to {−1, 1}B\A.
The property given in the following (highly nontrivial) result, is known as

strong mixing for Gibbs measures.

Proposition 3.1. For β > 0 sufficiently small, there are constants C,D > 0
independent of A,B,Λ, τ such that

‖h− 1‖∞ ≤ Ce−Ddist(A\B,B\A) = Ce−D
√

L1 .

Summarizing:

Entν(f) ≤ s−1
L1,L2

Eτ
Λ(
√

f,
√

f)

+ s−1
L1,L2

ν

[ ∑
i∈A∩B

c(i, η)
(
∇i

√
f(η)

)2
]

+ Ce−D
√

L1Entν(f)
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We still have to deal with the term

ν

[ ∑
i∈A∩B

c(i, η)
(
∇i

√
f(η)

)2
]

.

We cannot bound it by Eτ
Λ(
√

f,
√

f), as otherwise we would get a horrible factor
2 in the recursion. Note that there is a remarkable freedom in the choice of
A and B. In particular, we can choose An and Bn in

√
L1/3 different ways in

such a way that the sets An ∩Bn are all disjoint. Averaging over n:

3√
L1

ν

[∑
n

∑
i∈An∩Bn

c(i, η)
(
∇i

√
f(η)

)2
]
≤ 3√

L1

Eτ
Λ(
√

f,
√

f).

Thus (
1− Ce−D

√
L1

)
Entν(f) ≤ s−1

L1,L2

(
1 +

3√
L1

)
Eτ

Λ(
√

f,
√

f)

which implies, for some constant C > 0 and L1 large enough

Entν(f) ≤ s−1
L1,L2

(
1 +

C√
L1

)
Eτ

Λ(
√

f,
√

f)

Remember ν = ντ
R 3

2 L1,L2
. However, with no modifications, the argument can

be extended to ντ
Λ for any Λ ⊆ R 3

2 L1,L2
. Therefore

s−1
3
2 L1,L2

≤ s−1
L1,L2

(
1 +

C√
L1

)
Iterating twice on both sides, we get for a possibly different constant C

s−1
2L,2L ≤ s−1

L,L

(
1 +

C√
L

)
which implies (exercise) infL sL,L > 0. We have therefore proved

Theorem 13. There exists β > 0 such that for every β < β

inf
Λ

sΛ > 0,

3.2 The Bochner-Bakry-Emery approach to PI and MLSI

In this section we assume reversibility of L ( ⇐⇒ the Dirichlet form E(f, g)
is symmetric). We recall that the proof that the rate of L2 convergence to
equilibrium is the best constant in (PI) is based on

d

dt
V arπ(Stf) = −2E(Stf, Stf).
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Taking one more derivative we get

d2

dt2
V arπ(Stf) = −2

d

dt
E(Stf, Stf) = 4π

[
(LStf)2

]
.

Suppose now ∃k > 0 such that for every f

E(f, f) ≤ 1
k

π
[
(Lf)2

]
.

We get
d

dt
E(Stf, Stf) ≤ −2kE(Stf, Stf)

In particular E(Stf, Stf) → 0 as t → +∞. Rewriting the last inequality as

d

dt
E(Stf, Stf) ≤ k

d

dt
V arπ(Stf)

and integrating from t to +∞ we get

E(f, f) ≥ kV arπ(f) ⇒ k ≤ γ !

By a bit of spectral Theory it can be shown that the best constant k in

(PI′) E(f, f) ≤ 1
k

π
[
(Lf)2

]
is equal to the spectral gap γ.

The same argument can be implemented with he entropy replacing the vari-
ance. We obtain, for f > 0

d2

dt2
Entπ(Stf) = − d

dt
E(Stf, log Stf) = π [LStfL log Stf ] + π

[
(LStf)2

Stf

]
We therefore have that the inequality

(MLSI′) kE(f, log f) ≤ π [LfL log f ] + π

[
(Lf)2

f

]
for every f > 0, implies the (MLSI) kEntπ(f) ≤ E(f, log f).

This time the converse is not necessarily true: the entropy may decay expo-
nentially fast, but not necessarily in a convex way.

In order to understand how useful the above inequalities are, we write gen-
erators of Markov chains in the following form:

Lf(x) =
∑
γ∈G

c(x, γ)[f(γ(x))− f(x)] =:
∑
γ∈G

c(x, γ)∇γf(x)

where G is some set of functions from S to S (allowed movements). It is clear
that every Markov chain can be written in this way: for (x, y) ∈ S2, define

γxy(z) :=
{

z for z 6= x
y for z = x
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c(z, γxy) :=
{

0 for z 6= x
Lxy for z = x

and G := {γxy : (x, y) ∈ S2}. This, however, is not necessarily the most
convenient representation, as shown in examples below.

Now we give a condition which implies the Markov chain with generator
Lf(x) =

∑
γ∈G c(x, γ)∇γf(x) is reversible with respect to a probability π.

(Rev) For every γ ∈ G there exists γ−1 ∈ G such that γ−1γ(x) = x for every
x ∈ S such that c(x, γ) > 0. Moreover

π(x)c(x, γ) = π(γ(x))c(γ(x), γ−1)

Under (Rev) it is easy to see that

E(f, g) =
1
2
π

∑
γ∈G

c(x, γ)∇γf(x)∇γg(x)


π
[
(Lf)2

]
= π

 ∑
γ,δ∈G

c(x, γ)c(x, δ)∇γf(x)∇δf(x)


The idea is that we could establish (PI) if we could make a pointwise (i.e.

for x fixed) comparison between∑
γ∈G

c(x, γ)∇γf(x)∇γf(x) and
∑

γ,δ∈G

c(x, γ)c(x, δ)∇γf(x)∇δf(x)

as quadratic forms in ∇γf . This is not possible in this terms, but it surprisingly
works after a suitable “reshuffling”.

Theorem 14. Let R : S ×G×G → [0,+∞) be such that for each x, γ, δ with
R(x, γ, δ) > 0 we have

P1 : R(x, γ, δ) = R(x, δ, γ)
P2 : π(x)R(x, γ, δ) = π(x)R(γ(x), γ−1, δ)
P3 : γδ(x) = δγ(x)

Then, for every f, g the following Bochner-type identity holds

π

∑
γ,δ

R(x, γ, δ)∇γf(x)∇δf(x)


=

1
4
π

∑
γ,δ

R(x, γ, δ)∇γ∇δf(x)∇γ∇δf(x)

 ≥ 0
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In particular

π
[
(Lf)2

]
= π

 ∑
γ,δ∈G

c(x, γ)c(x, δ)∇γf(x)∇δf(x)


≥ π

 ∑
γ,δ∈G

(c(x, γ)c(x, δ)−R(x, γ, δ))∇γf(x)∇δf(x)


=: π

 ∑
γ,δ∈G

ΓR(x, γ, d)∇γf(x)∇δf(x)


Proof. First, by (P3), ∇γ∇δf(x)∇γ∇δf(x) = ∇γ∇δf(x)∇δ∇δf(x). Then

write

∇γ∇δf(x)∇δ∇γf(x) = ∇δf(γ(x))∇γf(δ(x))−∇δf(γ(x))∇γf(x)
−∇δf(x)∇γf(δ(x)) +∇δf(x)∇γf(x)

We show that each one of the four summands in the r.h.s. of this last formula,
when multiplied by R(x, γ, δ), summed over γ, δ and averaged over π gives

π

∑
γ,δ

R(x, γ, δ)∇δf(x)∇γf(x)

 .

For the fourth summand there is nothing to prove. Moreover, by (P2),

π

∑
γ,δ

R(x, γ, δ)∇δf(x)∇γf(x)

 = π

∑
γ,δ

R(x, γ, δ)∇δf(γ(x))∇γ−1f(γ(x))


= −π

∑
γ,δ

R(x, γ, δ)∇δf(γ(x))∇γf(x)


which takes care of the second and, by symmetry, of the third summand. For
the first summand we use first (P2), then (P2), (P2) again and (P3):

π

∑
γ,δ

R(x, γ, δ)∇δf(x)∇γf(x)

 = π

∑
γ,δ

R(x, γ, δ)∇δf(γ(x))∇γ−1f(γ(x))


= −π

∑
γ,δ

R(x, γ, δ)∇γf(δ(x))∇δ(x)

 = −π

∑
γ,δ

R(x, γ, δ)∇γ−1f(δγ(x))∇δ(γ(x))


= π

∑
γ,δ

R(x, γ, δ)∇γf(δ(x))∇δ(γ(x))
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The point is that one can often choose R such that, uniformly in x ∈ X, for
every u ∈ Rg ∑

γ,δ

ΓR(x, γ, d)uγuδ ≥ k
∑

γ

c(x, γ)u2
γ .

for some k > 0. If so it is immediately seen that (PI’) holds with the constant
k, thus γ ≥ k.

We do not really have a general method for computing a “good” R. The
following result applies, however, to many cases.

Proposition 3.2. Let us write G in the form G = J ∪ J−1, where J ⊆ G, and
J−1 := {γ : γ−1 ∈ J}. J and J−1 are not necessarily disjoint. Define R(x, γ, δ)
as follows:

R(x, γ, δ) =

8>>>><>>>>:
c(x,γ)[c(x,δ)+c(γ(x),δ)]

2
if γ ◦ δ = δ ◦ γ, γ, δ ∈ J ∩ J−1

c(x, γ)c(γ(x), δ) if γ ◦ δ = δ ◦ γ, γ, δ ∈ J \ J−1 or γ, δ ∈ J−1 \ J

c(x, γ)c(x, δ) if γ ◦ δ = δ ◦ γ,


γ ∈ J \ J−1, δ ∈ J−1 \ J
or γ ∈ J−1 \ J, δ ∈ J \ J−1

0 otherwise.

Then properties (P2-P3) hold.

Proof. The proof consists in a simple “checking by hands”, using the re-
versibility condition (Rev), and it is left as an exercise. �

Condition (P1) must be checked separately, since it may depend on the
special choice of the rates. We shall refer to the R in this Proposition as the
canonical R.

The argument starting from Bochner identity for (MLSI’) follows exactly
the same lines, leading to the following. One first observes that

π[LfL log f ] + π

[
(Lf)2

f

]
= π

∑
γ,δ

c(x, γ)c(x, δ)∇γf(x)∇δ log f(x)


+ π

∑
γ,δ

c(x, γ)c(x, δ)
∇γf(x)∇δf(x)

f(x)


If we use Bochner’s identity in the first term

π

∑
γ,δ

c(x, γ)c(x, δ)∇γf(x)∇δ log f(x)


we can rewrite it as

π

∑
γ,δ

Γ(x, γ, δ)∇γf(x)∇δ log f(x)


+

1
4
π

∑
γ,δ

R(x, γ, δ)∇γ∇δf(x)∇γ∇δ log f(x)
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The problem is that the last summand is not necessarily nonnegative. However:

Lemma 15. For every f > 0

1
4
π

∑
γ,δ

R(x, γ, δ)∇γ∇δf(x)∇γ∇δ log f(x)


+ π

∑
γ,δ

c(x, γ)c(x, δ)
∇γf(x)∇δf(x)

f(x)


≥ π

∑
γ,δ

Γ(x, γ, δ)
∇γf(x)∇δf(x)

f(x)


Proof. Using the same argument as in Theorem 14 we obtain after some

computations:

π

∑
γ,δ

c(x, γ)c(x, δ)
∇γf(x)∇δf(x)

f(x)


= π

∑
γ,δ

Γ(c, γ, δ)
∇γf(x)∇δf(x)

f(x)

+ π

∑
γ,δ

R(x, γ, δ)
∇γf(x)∇δf(x)

f(x)


= π

∑
γ,δ

Γ(c, γ, δ)
∇γf(x)∇δf(x)

f(x)


+

1
4
π

∑
γ,δ

R(x, γ, δ)
{
∇γ

(
∇δf(x)
f(δ(x))

)
∇γ∇δf(x)−∇γ

(
(∇δf(x))2

f(x)f(δ(x))

)
∇γf(x)

}
Thus we are left to show that

π

∑
γ,δ

R(x, γ, δ) {∇γ∇δf(x)∇γ∇δ log f(x)

+∇γ

(
∇δf(x)
f(δ(x))

)
∇γ∇δf(x)−∇γ

(
(∇δf(x))2

f(x)f(δ(x))

)
∇γf(x)

}]
≥ 0

Setting a := f(x), b := f(δ(x)), c := f(g(x)), d := f(δγ(x)), one checks that
{· · · } equals the sum of the following 4 expressions

d log d− d log(bc/a) + (bc/a)− d
c log c− c log(da/b) + (da/b)− c
b log b− b log(da/c) + (da/c)− b
a log a− a log(bc/d) + (bc/d)− a
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which are all nonnegative, since α log α−α log β +β−α ≥ 0 for every α, β > 0.
�

Putting all together we have

π[LfL log f ] + π

[
(Lf)2

f

]

≥ π

∑
γ,δ

Γ(x, γ, δ)
(
∇γf(x)∇δ log f(x) +

∇γf(x)∇δf(x)
f(x)

)
It follows that if we can find k > 0 such that

∑
γ,δ

Γ(x, γ, δ)
(
∇γf(x)∇δ log f(x) +

∇γf(x)∇δf(x)
f(x)

)
≥ k

∑
γ

c(x, γ)∇γf(x)∇γ log f(x)

for every x ∈ S and f > 0, then α ≥ k.
This pointwise comparison is typically much harder than for (PI’).

Before proceeding to examples, we state a simple result that will be useful
in the following two sections.

Lemma 16. Let us write G in the form G = J ∪ J−1, where J ⊆ G, and
J−1 := {γ : γ−1 ∈ J}, and assume J ∩ J−1 = ∅ (we agree the the identity map
is not in G). Then

E(f, g) =
1

2
π

24 X
γ∈G

c(x, γ)∇γf(x)∇γg(x)

35
= π

24X
γ∈J

c(x, γ)∇γf(x)∇γg(x)

35
= π

24 X
γ∈J−1

c(x, γ)∇γf(x)∇γg(x)

35

3.3 MLSI for birth and death processes

Recall the general generator of a birth and death process

Lf(n) = a(n)∇+f(n) + b(n)∇−f(n)

while the detailed balance equation is

a(n)π(n) = b(n + 1)π(n + 1).
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The set G of “movements” consists of two elements {+,−}, where +(n) = n+1
and −(n) = (n − 1)1n>0, and one is the inverse of the other, so we can write
J := {+}, J−1 := {−}.

In the language of the previous section, we have c(n, +) = a(n), c(n,−) =
b(n).

Moreover, the canonical R reads

R(n, +,+) := a(n)a(n + 1)
R(n,−,−) := b(n)b(n− 1)

R(n, +,−) = R(n,−,+) := a(n)b(n).

It is a simple exercise to show that also Condition (P1) of the previous
section is satisfied, while (P2-P3) are guaranteed by the “canonical” choice. In
particular, letting as before Γ(n, δ, γ) = c(n, γ)c(n, δ)−R(n, γ, δ), we have

π[LfL log f ] + π

»
(Lf)2

f

–

≥ π

24 X
γ,δ∈G

Γ((n, δ, γ)

„
∇γf(n)∇δ log f(n) +

∇gf(n)∇δf(n)

f(n)

«35
≥ π

24 X
γ,δ∈G

Γ((n, δ, γ)∇γf(n)∇δ log f(n)

35
= π

ˆ
a(n)[a(n)− a(n + 1)]∇+f(n)∇+ log f(n)

+b(n)[b(n)− b(n− 1)]∇−f(n)∇− log f(n)
˜

Thus, the MLSI holds with the constant α if this last expression is greater or
equal to αE(f, log f) for every f > 0. Moreover

E(f, g) = π
[
a(n)∇+f(n)∇+g(n)

]
= π

[
b(n)∇−f(n)∇−g(n)

]
The comparison becomes simple under, for example, the following assump-

tions:

(A) there exists c > 0 such that for every n ≥ 0, a(n) ≥ a(n + 1) and b(n +
1)− b(n) ≥ c.

These assumptions are satisfied with c = 1 in the case π is a Poisson measure,
a(n) = λ and b(n) = n.

Under the above assumptions, noting that ∇±f(n)∇± log f(n) ≥ 0,

π
[
a(n)[a(n)− a(n + 1)]∇+f(n)∇+ log f(n)

+b(n)[b(n)− b(n− 1)]∇−f(n)∇− log f(n)
]

≥ cπ
[
b(n)∇−f(n)∇− log f(n)

]
= cE(f, log f)

We have therefore proved the following result.

Theorem 17. Under assumption A, the MLSI holds with constant c.
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Despite of its simplicity, this result is sharper that it may appear, as the
following facts illustrate.

Proposition 3.3. Under assumption A, the LSI fails, i.e. there is no s > 0
such that

sEntπ(f) ≤ E(
√

f,
√

f)

for every f ≥ 0.

Proposition 3.4. In the Poisson case (a(n) = λ and b(n) = n) the constant
c = 1 is the optimal constant in the MLSI.

The proof of both Propositions above are elementary, and consist in using
suitable test functions.

To show that LSI fails, one first observe that, by reversibility and Assumption
A,

π(n + 1)
π(n)

=
a(n)

b(n + 1)
≤ a(0)

c(n + 1)

from which it follows that π(n) ≤ B
n! for some constant B > 0.

Using this estimate, and considering the sequence of test functions

fk(n) := 1(k,+∞)(n),

one shows by direct computation that

lim
k→+∞

E(
√

fk,
√

fk)
Entπ(fk)

= 0.

Similarly, to show that α = 1 is the optimal constant for the MLSI in the
Poisson case, one takes the test functions

fk(n) := e−n/k,

and it is easily shown that

lim
k→+∞

E(fk, log fk)
Entπ(fk)

= 1.

3.4 Spectral gap for interacting birth and death processes

We shall be considering Markov chains on NΛ, with Λ ⊂⊂ Zd, whose generator
is given by

Lf(η) =
∑
i∈Λ

λ exp

−β
∑
j∈Λ

K(i− j)ηj

∇+
i f(η) + ηi∇−

i f(η)

 .

and stationary distribution

π(η) =
1
Z

π(η) exp

−β
∑

i,j∈Λ

K(i− j)ηiηj
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For β = 0 this is a family of independent birth and death processes with
Poisson invariant measure. Thus, by tensorization, the MLSI holds with best
constant α = 1.

Argument similar to those of the previous section show that the spectral gap
γ of a single birth and death process as well as that of the whole independent
systems is γ = 1.

By using the Bochner-Bakry-Emery method we show how to obtain an ex-
plicit lower bound for the spectral gap for β > 0 sufficiently small, under the
assumption that the interaction is repulsive (K ≥ 0).

We will also point out why the same method fails when one tries to prove
the MLSI for β > 0; as far as we know, this is still unproved.

It is simple to put a system of interacting birth and death processes in the
general framework of the Bochner-Bakry-Emery method. Let

G := {+i,−i : i ∈ Λ}

where +i (−i resp.) is the function on NΛ that add a particle at i (resp. removes
a particle at i if there is at least one).

We have therefore

c(η, +i) = λ exp

−β
∑
j∈Λ

K(i− j)ηj

 c(η,−i) = ηi

The Dirichlet form is given by, taking J := G := {+i : i ∈ Λ},

E(f, g) = π

[∑
i∈Λ

ηi∇−
i f(η)∇−

i g(η)

]
= π

[∑
i∈Λ

c(η, +i)∇+
i f(η)∇+

i g(η)

]
.

We try again with the canonical R:

R(η, +i,+, j) = c(η, +i)c(ηi,+,+j)

R(η,−i,−j) =
{

ηi(ηi − 1) for i = j
ηiηj for i 6= j

R(η, +i,−j) = c(η, +i)ηj

which is easily shown to satisfy also (P1).
We obtain

π
[
(Lf)2

]
≥
∑

γ,δ∈G

π [(c(η, γ)c(η, δ)−R(η, γ, δ))∇γf(η)∇δf(η)]

=
∑
i∈Λ

π
[
ηi

(
∇−

i f(η)
)2]

+
∑

i,j∈Λ

π
[
c(η, +i)c(η, +j)

(
1− e−βK(i−j)

)
∇+

i f(η)∇+
j f(η)

]
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The first term ∑
i∈Λ

π
[
ηi

(
∇−

i f(η)
)2]

= E(f, f).

For the second term, we first observe that K ≥ 0 implies c(η, +j) ≤ 1. Using
the inequality ∣∣∇+

i f(η)∇+
j f(η)

∣∣ ≤ 1
2

[(
∇+

i f(η)
)2

+
(
∇+

j f(η)
)2]

we obtain the following simple bound∑
i,j∈Λ

π
[
c(η, +i)c(η, +j)

(
1− e−βK(i−j)

)
∇+

i f(η)∇+
j f(η)

]
≥ −

∑
i,j∈Λ

π
[
c(η, +i)

∣∣∣1− e−βK(i−j)
∣∣∣ (∇+

i f(η)
)2]

= −E(f, f)
∑
l∈Zd

(
1− e−βK(l)

)
We have therefore obtained a bound uniform over Λ ⊂⊂ Zd:

π
[
(Lf)2

]
≥ [1− ε(β)]E(f, f).

with
ε(β) :=

∑
l∈Zd

(
1− e−βK(l)

)
.

This implies that the spectral gap γ satisfies the inequality

γ ≥ 1− ε(β)

which is a nice bound when ε(β) < 1. This is true for β sufficiently small if∑
l∈Zd K(l) < +∞.
Note that the above argument is based essentially on the inequality∣∣∇+

i f(η)∇+
j f(η)

∣∣ ≤ 1
2

[(
∇+

i f(η)
)2

+
(
∇+

j f(η)
)2]

When one goes along the same lines for MLSI, one gets terms of the form

∇+
i f(η)∇+

j log f(η).

By analogy, one would try a bound of the type

‖∇+
i f(η)∇+

j log f(η)‖
≤ C

[
∇+

i f(η)∇+
i log f(η) +∇+

j f(η)∇+
j log f(η)

]
for some constant C > 0 independent of f > 0. This simply does not hold true.
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3.5 Spectral Gap for interacting Random walks

We begin by considering a system of interacting random walks on the complete
graph:

S = SN :=

{
η :
∑
i∈Λ

ηi = N

}

Lc.g.f(η) =
∑

i,j∈Λ

c(i, j, η)∇ijf(η)

with

c(i, j, η) =
1
|Λ|

ηi exp

[
β
∑
k∈Λ

K(i− k)ηk

]
and stationary distribution

πN (η) =
1

ZN

∏
i∈Λ

1
ηi!

exp

−β
∑

i,j∈Λ

K(i− j)ηiηj

 .

Again, we put it in the framework of the Bochner-Bakry-Emery method.

G = {γij , (i, j) ∈ Λ2}

where γij is the map on SN that moves a particle from site i to site j, if there
is a particle at i, and it does nothing otherwise.

c(η, γij) = c(i, j, η).

Here the canonical R does not work, since (P1) fails. We rather set

R(η, γij , γhl) := c(η, γij)c(ηi,−, γh,l).

In more explicit terms

R(η, γij , γhl) =
{

c(η, γij)c(η, γil)ηi−1
ηi

e−βK(0) for h = i

c(η, γijc(η, γhl)e−βK(i−h) for h 6= i

One checks by hands that (P1-P3) are satisfied.
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We thus obtain

πN

[(
Lc.g.f(η)

)2]
≥
∑

γ,δ∈G

πN [(c(η, γ)c(η, δ)−R(η, γ, δ))∇γf(η)∇δf(η)]

=
∑
i,j,l

πN

[
c(η, γij)c(η, γil)

(
1− ηi − 1

ηi
e−βK(0)

)
∇ijf(η)∇ilf(η)

]
+

∑
i,j,h,l:i 6=h

πN

[
c(η, γij)c(η, γhl)

(
1− e−βK(i−h)

)
∇ijf(η)∇hlf(η)

]
=
∑

i

πN

[(
1− ηi − 1

ηi
e−βK(0)

)
u2

i (η)
]

+
∑
i 6=h

(
1− e−βK(i−h)

)
πN [ui(η)uh(η)]

where we have set ui(η) :=
∑

j c(η, γij)∇ijf(η).
Now assume K(·) ≥ 0, so that

πN

[(
Lc.g.f(η)

)2] ≥ (1− e−βK(0)
)∑

i

πN

[
u2

i (η)
]

+
∑
i 6=h

(
1− e−βK(i−h)

)
πN [ui(η)uh(η)]

Thus, by the inequality 2|uiuh| ≤ u2
i + u2

h, we get the estimate

πN

[(
Lc.g.f(η)

)2]
≥

1− e−βK(0) −
∑

z∈Zd\{0}

∣∣∣1− e−βK(z)
∣∣∣
∑

i

πN

[
u2

i (η)
]
.

Finally∑
i

πN

[
u2

i (η)
]

=
∑
i,j,l

πN [c(η, γij)c(η, γil)∇ijf(η)∇ilf(η)]

≥
∑
i,j,l

1
|Λ|

πN [c(η, γij)∇ijf(η)∇ilf(η)] = E(f, f)

where first we have used the fact that c(η, γil) ≥ 1/|Λ| for ηi ≥ 1 (due to
K(·) ≥ 0) and it is independent of l, and then we have used the identity∑

i,j,l

πN [c(η, γij)∇ijf(η)∇ilf(η)] =
1
2
|Λ|
∑
i,j

[
c(η, γij) (∇ijf(η))2

]
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which is shown next in Lemma 19.
Summing all up we have proved that

πN

[(
Lc.g.f(η)

)2] ≥
1− e−βK(0) −

∑
z∈Zd\{0}

∣∣∣1− e−βK(z)
∣∣∣
E(f, f).

In other words:

Theorem 18. Under the assumption

1− e−βK(0) −
∑

z∈Zd\{0}

∣∣∣1− e−βK(z)
∣∣∣ > 0

the system has a spectral gap bounded away from zero uniformly in the volume
|Λ| and in the number of particles N .

We still have to prove

Lemma 19.∑
i,j,l

πN [c(η, γij)∇ijf(η)∇ilf(η)] =
1
2
|Λ|
∑
i,j

[
c(η, γij) (∇ijf(η))2

]
Proof. We rely on the fact that c(η, γij) is independent of j, so we rather

write c(η, i). By reversibility

πN [c(η, i)∇ijf(η)∇ilf(η)] = −πN [c(η, l)∇ijf(γliη)∇lif(η)] .

Since ∇ijf(γliη) = ∇ljf(η)−∇lif(η), we have

πN [c(η, i)∇ijf(η)∇ilf(η)]
= −πN [c(η, l)∇ljf(η)∇lif(η)] + πN [c(η, l)∇lif(η)∇lif(η)] .

Summing over i, j, l the conclusion follows easily. �

We now consider the system in which particles can only jump to one of the
nearest site:

Ln.n.f(η) =
∑
i∼j

ηi exp

[
β
∑
k∈Λ

K(i− k)ηk

]
∇ijf(η),

where i ∼ j means |i− j| = 1. The stationary distribution is the same as in the
complete graph model.

This model cannot be studied directly with the Bochner-Bakry-Emery method.
However it can be easily reduced to the model in the complete graph, via the
following Lemma.
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Lemma 20. Denote by Ec.g. and En.n. the Dirichlet forms of the complete
graph and of the nearest neighbor model respectively. Then there exists a uni-
versal constant C, only depending on the dimension d, such that

Ec.g.(f, f) ≤ Cdiam2(Λ)En.n.(f, f).

Proof. Let i, j ∈ Λ, and choose a “path” i = i0, i1, . . . , in−1, in = j, i.e. a
sequence of nearest neighbors with n ≤ D := diam(Λ). Then

(∇ijf(η))2 = (γijf(η)− f(η))2

=

(
n∑

k=1

[γiik
f(η)− γiik−1f(η)

)2

≤ D
n∑

k=1

(
γiik−1 [γik−1ik

f(η)− f(η)]
)
.

By reversibility, using the notation c(η, i) = c(η, γij),

πN

[
c(η, i) (∇ijf(η))2

]
≤ nπN

[
c(η, i)

n∑
k=1

(
γiik−1 [γik−1ik

f(η)− f(η)]2
)]

= n
n∑

k=1

πN

[
c(η, ik−1)[γik−1ik

f(η)− f(η)]2
]
.

This reduces the problem to nearest neighbor exchanges. Summing over i, j, by
some simple symmetry argument we get∑

i,j

πN

[
c(η, i) (∇ijf(η))2

]
≤ n2|Λ|

∑
i∼j

[
c(η, i) (∇ijf(η))2

]
,

from which the conclusion follows, taking into accounts that for the n.n. model
rates do not have the factor 1

|Λ| in front. �

An immediate consequence of this Lemma (known as Yau’s Lemma) is the
following

Corollary 21. If γ is the spectral gap of the system in the complete graph, then
the spectral gap of the system with only nearest neighbor jumps is bounded from
below by γ

Cdiam2
(Λ)

.

Bibliographic remarks
The duplication method is a variation of the martingale method in [19], devel-
oped in [5, 7, 8, 11]. The Bochner-Bakry-Emery method, inspired by [6] was
developed for diffusion processes in [1] and [16], and extended to the discrete
case in [3] and in [9].

References

[1] Bakry, D. and Emery, M., Diffusions hypercontractives. Séminaire de Prob-
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