DIRECT CONNECTIONS ON GROUPOIDS AND THEIR JET
PROLONGATIONS.

ABSTRACT. Direct connections are to Lie groupoids, what connections are to principal
bundles. They can serve as a substitute for differentiation in a non smooth setup and arise
in Hairer’s regularity structures, a theory taylored to solve stochastic PDEs. We first review
the concept of groupoid and define direct connections. We show that groupoids which admit
a direct connection are built from principal bundles and focus on frame groupoids built from
frame bundles. From a direct connection on a frame groupoid, on its jet prolongation, we
construct two types of direct connections which we discuss and compare. One of these is
a projective system of direct connections compatible with the projective structure of jet
prolongations. The other one appears in polynomial regularity structures, a toy model in
the vast theory of regularity structures, which we discuss from a geometric point of view
using direct connections on groupoids.
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INTRODUCTION

This expository paper is dedicated to the study of groupoids equipped with direct connections
and to their jet prolongations. Our original motivation was to get a better geomet-
ric understanding of the theory of regularity structures developed by Hairer [I114], which
motivated our study of direct connections on jet prolongations of groupoids. We discuss the
geometric framework underlying regularity structures at the end of the paper. Beyond the
new results it presents, this article provides a pedagogical presentation on groupoids with
connections and their jet prolongations, which is accessible to non experts in one or more of
these subjects. An abridged version should be available in the near future.

Direct connections arise under various disguises in algebraic, geometric and analytic contexts:

e Direct connections were first introduced by Teleman | , , | in the
context of non commutative geometry under the name linear direct connection. They
were built on frame groupoids in order to define the Chern character of the tangent
bundle of a smooth manifold from the geodesic distance function by means of cyclic
homology. Quoting Teleman, ”"while a linear ‘connection provides a transport of
fibers along curves, a linear direct connection provides a direct transport of fibres
from point to point”, so that ”direct connections [can| be defined in contexts where
differentiability is not available”.

¢ Direct connections arise as re-expansion (or transport) maps in Hairer’s regularity
structures [H 14, 2] on an Euclidean vector space and were later generalised to a Rie-
mannian manifold in | |. Here again they arise in the context of singularities,
since regularity structures offer an algebraico-analytic device to transform a singular
stochastic differential equation into a fixed point problem. Hairer’s approach involves
an ad hoc Taylor expansion of the solutions at any point in space-time and a collection
of re-expansion maps which relate the values of Taylor expansions at different points.

e Direct connections on groupoids arise in | ] and compare (modulo an extra
symmetry requirement which amounts to trivial torsion) with 1-forms discussed by
Kock | , | in the context of synthetic geometry, an approach to differential
geometry inspired by ideas of Grothendieck.

e For connections with trivial curvature, we recover local morphisms from the pair
groupoid to a general groupoid studied by Mackenzie in | |, a reference textbook
on groupoids on which much of this paper is based.

We furthermore expect direct connections to play a role in higher gauge theory when viewing
groupoids equipped with direct connections as a generalisation of principal bundles with
connections that are ubiquous in gauge theory.

The study of the jet prolongation of groupoids with connections that we undertake in
this paper was prompted by the quest for a consistent geometric framework to host the
abstract' Taylor expansions that feed into Hairer’s approach. The work of Diehl, Driver
and Dahlqvist | | confirms that frame groupoids with direct connections (which the
authors call transportation maps) play a central role in a geometric approach to regularity
structures.

The paper is organised in five sections with the last one dedicated to direct connections
in the context of regularity structures, see Theorem 5.6. It relies on the previous section
which discusses direct connections on jet groupoids containing the main new results, namely
Theorems 4.5, 4.6 and 4.11. Along the way, we prove intermediate results on direct connections
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such as Proposition 2.4 and Theorem 2.16 in Section 2, which to our knowledge are new.
In Section 3, we mostly review known results on jet prolongations of groupoids, organising
them in a systematic presentation which we feel is accessible to the non-expert.

Lie groupoids and algebroids. Section 1 is a review of known results on groupoids with
a focus on gauge groupoids.

A Lie groupoid G =3 M on a smooth manifold M is a smooth collection of elements,
called arrows, above pairs of points in a manifold, endowed with a partial associative and
unital multiplication compatible with the base points such that all arrows are invertible, all
involved maps are smooth and the projections of an arrow to its source and target points in
M are surjective submersions. Lie groupoids can then be seen as a (bi-)fibred-generalisation
of Lie groups which can act on fibre bundles keeping track of both the fibre transformations
(internal symmetries) and the bundle automorphisms (global symmetries) | ]. They
are therefore well suited to describe extended notions of symmetries in many contexts of
mathematics and physics | : : ].

We shall focus on gauge groupoids, also called Atiyah groupoids, which are locally trivial Lie
groupoids, and those among the Lie groupoids that can be equipped with a direct connection.
We recall (Proposition 1.5) the one to one correspondence between gauge groupoids and
principal bundles

P—>G(P)=PxgP, (1)

which sends a principal bundle P — M to the corresponding gauge groupoid G(P) =3 M. Lie
groupoids are a generalisation of Lie groups, and as Lie groups, they are locally determined
by their infinitesimal structure, given by Lie algebroids.

To a vector bundle F — M corresponds a canonical groupoid Iso(E) =3 M whose arrows
are all possible isomorphisms between any two fibres, called the frame groupoid. The frame
groupoid coincides with the gauge groupoid of the canonical frame bundle of E — M. The
Lie algebroid THE of Iso(E) comsists of vertical vector fields on E which are linear and we
discuss the map that sends such a vector field to a linear derivation on F, see eq. (14) in
§1.6. This establishes an isomorphism between L(Iso(F)) and the bundle Der(E) of linear
derivations on F.

In view of the applications we have in mind, we consider reduced frame groupoids obtained
as the gauge groupoid of a reduced frame bundle (Proposition 1.14). We end the section with
a short discussion on local bisections which later enter the construction of jet prolongations
of groupoids. In particular, it is useful to observe that local bisections on a gauge groupoid
amount to automorphisms of the underlying principal bundle (Example 1.15).

Direct connections on Lie groupoids. In Section 2, we introduce our main protagonists,
direct connections on groupoids, and study their properties. If the base manifold M has an
affine connection, such as the Levi-Civita connection on a Riemannian manifold, a linear
connection V on the bundle £ — M induces a local parallel transport among fibres, along
geodesics of M, that is, a linear isomorphism 7(z,y) : E, — E, for any pair of points (x,y)
of M sufficiently close. The parallel transport 7 along geodesics is an instance of a general
direct connection of the gauge groupoid of FE, called linear direct connection by N. Teleman
in [ ].

We generalise Teleman’s linear direct connections to direct connections on a groupoid
G 33 M, which are local maps I" : P(M) *— G defined on a neighborhood of the identity in
the pair groupoid P(M) = M with values in G. Groupoids with direct connection, our main
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object of study, are locally trivial (Proposition 2.4) and hence gauge groupoids G(P) built
from a principal bundle P.

Differentiating a direct connection G(P) = M on a gauge groupoid along the diagonal
gives rise to a connection on the underlying principal bundle P — M (Proposition 2.11). It is
given by an infinitesimal connection on G(P), namely a vector bundle morphism 6 : TM —
A(P) where T'M is the tangent bundle of M and A(P) the Atiyah bundle which corresponds
to the Lie algebroid of G(P) (Proposition 2.11). To construct a direct connection from an
infinitesimal connection, one can use a parallel transport along geodesics (Proposition 2.13)
built from a connection on the underlying manifold. Theorem 2.16 shows that if I" is the
direct connection defined by a parallel transport on P, then V! coincides with the classical
connection related to the parallel transport. Yet not every direct connection is of this-form
(Example 2.18), and there is no bijective correspondence between infinitesimal and direct
connections.

The curvature of a direct connection I : P+ G on a groupoid G 3 M is an obstruction
to T’ defining a local morphism, given by Qr(z,y,2) = ['(z,2)7' T'(2,9) I'(y,z) defined on
triples (z,y, z) of pairwise neighboring points in M (eq. (35) in §2.7). ‘The connection is
flat when Qr = Id and flatness of connections is preserved by differentiation, as well as by
integration. There is a one-to-one correspondence between flat infinitesimal connections and
flat direct connections (modulo germ equivalence) on groupoids since flat direct connections
are entirely determined by the parallel transport induced by the underlying flat infinitesimal
connection (Proposition 2.30).

Jet prolongations of bundles and groupoids. Section 3 is dedicated to prolongations
of groupoids first considered by Ehresman| |.- The n-jet prolongation of a Lie groupoid
G 33 M is the jet space of n-jets of local bisections o : M »—G (eq. (68) in §3.3). It can
be equipped with a Lie groupoid structure J"G =2 M induced by that of G. Later, Kolar
[ | showed that the jet prolongation .J" actually defines a functor on gauge groupoids
(Proposition 3.3). For a principal bundle P — M, we have J"G(P) = G(W"P) (eq. (73) in
Proposition 3.3). Here, W"P is the n-jet principal prolongation of P given in eq. (60) in
§3.5, which entails both the n-jet prolongation J" P of the principal bundle P and the n-th
frame bundle F"M of M defined in eq. (46) in §3.2. On the infinitesimal level, eq. (73)
yields the corresponding property for Atiyah bundles J"A(P) = A(W"P) (eq. (84) in §3.9).
When P = F'E is the frame bundle of a vector bundle E — M, eq. (73) in Proposition 3.3
gives the description of the n-jet prolongation J"Iso(E) of the groupoid Iso(E) = G(F'E) as
a gauge groupoid J"Iso(E) = GIW"FE) = W'FE xwrar, W'FE, see eq. (77). It is is a
proper-subgroupoid of Iso(J"E), see eq. (81) in §3.8.

Direct connections on jet groupoids. In Section 4, we consider direct connections on
jet-prolongations of Lie groupoids. Proposition 4.2 confirms the fact that a jet prolonged
groupoid J"G with connection is necessarily a gauge groupoid, namely J"G =~ G(W"P) with
G = G(P). From a direct connection I' on a Lie groupoid G =3 M, we build connections
on the jet-prolongation J"G, called n-th order prolongation of I' (see Definition 4.1), whose
composition with the jet projection map 73 : J"G — J°G = G described in §3.7, gives back
.

For this purpose, we assume M comes with an affine connection and first we build a direct
connection AM (see eq. (97)) on Iso(T'M) called exponential direct connection by means of
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the exponential (local) bisection (Definition 4.3). This uses parallel transport on T'M along
small geodesics induced by the connection on M.

Taking jets of the exponential bisection gives rise to a connection AS\Z)— which we call
the exponential direct connection (eq. (96) in Definition 4.4)— on the the jet prolongation
J" Pair(M) of the pair groupoid of M. In Theorem 4.5 we prove that the exponential

direct connection AE\Z) is a jet prolongation of AM and in Theorem 4.6 that the infinitesimal

connection of AS\Z) on J" Pair(M) is the exponential n-th order prolongation 5(M") :TM —
L(J"Pair(M)) = J*TM (eq. (99)) of the affine connection on M used in | , §5] to
build infinitesimal connections on jet prolongations of groupoids.

A similar construction using an affine connection on the underlying manifold, yields a
direct connection I'™ on the jet prolongation J"G of a general Lie groupoid G from a
direct connection I' on G, see eq. (103) in Definition 4.7, which gives back eq. (96) when
G = Pair(M). Corollary 4.8 shows that I'™ which yields an n-th order prolongation of

I, factorises through Ag\z). In Theorem 4.11, we show that any flat connection on the jet

prolongation J"G of a Lie groupoid over a flat manifold, factorises through As\z).

Direct connections on the frame groupoid Iso(J"E) of the jet bundle J"E of a vector
bundle £ — M are of special interest in the context of regularity structures.

Specialising to a direct connection I' on the frame groupoid G =TIso(E) of a vector bundle
E — M, the above construction yields a n-th order prolonged direct connection I'™ on
J™so(E). This in turn induces a direct connection —again'denoted by '™ with some abuse
of notation— on Iso(J"FE) & J"Iso(F).  We compare it' (Proposition 4.18) with another
direct connection I'™) given by eq. (123) in §4.7, built by means of a local Taylor expansion
following the construction in | , Definition 76]. Unlike the family of direct connections
'™ n e N on Iso(J"E),n € N, which yields a projective system, the family of direct
connections f‘(”), n € N obtained by means of Taylor expansions which are relevant in the
context of regularity structures, does not.

Regularity structures are briefly discussed in Section 5, where we propose a notion of

geometric pre-reqularity structure (Definition 5.1) on a vector bundle of finite rank on a
manifold M. It offersa geometric framework to host the algebraic data in Hairer’s regularity
structures on R? [I114] and the polynomial regularity structures on a Riemannian manifold
built in [ ], leaving out the analytic aspects, hence the prefix ”pre”.

The geometric framework we propose keeps track of the structure group in the form of
a groupoid and its action on the vector bundle defined in terms of a direct connection
on the frame groupoid of this veector bundle. The underlying geometric structures are
given in the projective setup (briefly discussed in Appendix 6), and which is well suited
to keep track of the grading inherent to regularity structures and perturbative approaches
to quantum field theory. The model space T in Hairer’s regularity structure is replaced
by a projective limit £ := limFE, of vector bundles F, — M,a € A over a manifold M,

indexed by a discrete set A baounded from below. The typical fibre of E is a graded space
T = @oeaT?, the frame groupoid Iso(E) of E is acted upon by a prounipotent gauge
groupoid G(P) := limG(P,) =3 M (as described in eq. (6.8)) and the structure group in

Hairer’s framework is the structure group of the principal bundle P = limF, — M given as

the inverse limit of a projective system of principal bundles underlying the gauge groupoid.
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To such a geometric pre-regularity structure, we associate a geometric pre-model, leaving
out the analytic requirements for a full fledged model as defined in the context of regularity
structures, hence the prefix "pre” in front of "regularity structures”. As in [[114], it is given
by a pair (I, T): here, IT is a family of maps from the total space E of the vector bundle
to a sheaf D;(—, E°) of vector valued distributions, and T' is a (not necessarily projective)
family of direct connections on the underlying gauge groupoid G(P). In Proposition 5.3, we
express the obstruction II o I' — IT to the "I'-invariance of II” in terms of a curvature term
(140) for I'. In particular, this obstruction vanishes in the flat case.

Polynomial pre-regularity structures discussed in §5.2, bring together the main geometric
and analytic ingredients of the paper, namely groupoids equipped with direct connections
discussed in Section 2 and direct connections on jet prolongations discussed in Section 3.
Theorem 5.2 puts geometric polynomial regularity structures in the general framework of
geometric pre-regularity structures. There, the bundle E is the jet bundle of a vector bundle
E° — M with the index set given by A = Z-, and E" is the n-jet prolongation J"E° of
E°. The frame bundle of the bundle E therefore involves the frame bundles Iso(J"E°) of jet
prolongations of E°. The pre-model (II, T') is built along the lines of | , Definition 80],
from a Taylor expansion map, using the direct connection on Iso(J"E) defined in eq. (123).

The case E° = M xR corresponds to the polynomial regularity structure in the framework
of [I14] if M = R? and that of | ] on a Riemannian manifold M. Theorem 5.6
then revisits Dahlqvist, Diehl and Driver’s | | polynomial regularity structures in the
language of jet prolonged groupoids with direct connections. Our construction on J"E°
relates to that of | ] on X"T*M @ E° via the isomorphism J"E ~ X"T*M ® E° given
by Eq. (125) in §4.7 induced by a connection on M.

Openings. This exploratory paper is a first step towards further possible investigations, one
of which would be to transpose the geometric constructions carried out here in the smooth
setting to the Holder setting better suited for the study of sPDEs. Also, direct connections
on gauge groupoids viewed as an integrated version of connections on principal bundles, open
the road to the study of higher gauge theories.

Acknowledgements: The authors are very grateful to the late Kirill Mackenzie and thank
Alexander Schmeding for their very helpful comments on a preliminary version of the paper.
Youness Boutaib is thankful for the support of the DFG within the research unit FOR 2402.
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1. LIE GROUPOIDS AND LIE ALGEBROIDS

Groupoids can be viewed as a fibred generalisation of groups over manifolds or as a
generalisation of groups as fibred objects over manifolds. They were introduced by Brandt
in | |, who actually introduced what are now called transitive groupoids. Interest in
groupoids broadened in the 50’s when the notion of category arose, since the invertible
elements of a small category form a groupoid. As from then, the use of groupoids was
expanded by Ehresmann in various areas of mathematics, including differential geometry.
Groupoids have become central tools to host singular structures.

In this section we recall basic facts on Lie groupoids as well as on their actions on. fibre
bundles, and the main examples needed in the sequel. Our main references are the standard
textbooks by K. Mackenzie | |, I. Moerdijk and J. Mréun | ] and E. Meinrencken
[ ], and the pedagogical introduction by A. Kumpera | |. Explicit references are
quoted for specific results. We recall the relation between principal bundles and gauge
groupoids (Proposition 1.5) and consider reduced frame groupoids obtained as the gauge
groupoid of a reduced frame bundle (Proposition 1.14). We finish this section with a
short review of (local) bisections which later enter the construction of jet-prolongations
of groupoids.

1.1. Lie groupoids. A groupoid on a manifold M is a set G, whose elements are called
arrows, together with the following structure maps:

(1) a source map s : G —> M and a target mapt: G — M,

(2) a multiplication (or composition) m : G x; G — G, (71,72) — 7172, defined on
the set G Xy G = {(71,72), s(71) = t(72)} of composable arrows, assumed to be
associative,

(3) a unit map u: M — G, = — u(x) =: 1, such that ¢(1,) = s(1,) = x for any x € M
and 1y,)y = v = 7y L4y for any v € G,

(4) an inversion i : G — G, v = 47! such that s(y71) = t(y), t(h7™) = s(v),
Yy = Ly and 7= 1.

The induced map (¢, s) : G —> M x M is called the anchor. From the axioms it follows that
the source and the target are surjective maps, the unit map is injective and the inversion is
bijective. The manifold M is called the base of the groupoid and can be identified with the
set of units u(M) < G. A groupoid is compactly denoted by G =3 M and the structure
maps (s,t, m;u,i) are tacitely understood.

A group G can be seen as a groupoid G =3 * on the base manifold given by a point, with
trivial source and target maps. Hence groupoids generalise groups.

Given a groupoid ¢ =3 M and points z,y in M, we use the following notations:

o G% :=t"!(z) for the t-fibre of x, with restricted source map s := sig= : G* — M,
e Gy := s !(y) for the s-fibre of y, with restricted target map t, := tg, : G, — M,
e G; :=G* n G, for the fibre of (z,y), whose arrows are often denoted 7., (or 7;).

Similarly, for U,V < M, we set GY :=t=1(U), Gy := s71(V) and GJ := GY n Gy.

For any x € M, the set G¥ is a (non-empty) group with the composition of arrows and
unit 1,, called the vertex group (or the isotropy) at x. The non emptyness of the set
g, above two distinct points z,y in M defines an equivalence relation: z ~ y if and only
if ggj whose equivalence classes are called orbits of G. The orbit of a point x in M is the
set O, = s*(G") = t,(G,) € M. The orbit space of G, denoted M /G, is the quotient of
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M by the relation and gives a foliation of M which is possibly singular. The groupoid G is
regular if the orbits have all the same dimension, that is, the foliation is regular, and it is
transitive if it has a single orbit M. This holds if and only if the anchor map is surjective.
A groupoid G 2 M is a Lie groupoid if
(1) it is smooth i.e., if G and M are smooth manifolds
(2) and the source and target maps are surjective submersions.

This guarantees the following nice properties:

Fact 1.1. | , Theorem 5.4] Let G =3 M be a Lie groupoid. Then, for any x;y in M:

(1) The unit set w(M) < G, is a submanifold of G, and by assumption the set of
composable arrows G x ;G is a manifold (this holds for any smooth groupoid).

(2) The vertex group G¥ is a Lie group.

(3) The fibre Gy is a closed submanifold of G (possibly empty).

(4) The orbit O, = t,(G,) = s"(G*) is an immersed submanifold of M and the restricted
maps t, and s* are both principal GI-bundles on O,

Moreover, if G is transitive then the anchor map is a surjective submersion.

Thanks to these properties, Lie groupoids allow an infinitesimal calculus (via Lie algebroids)
analogous to that defined on Lie groups (via Lie algebras), and are suitable to study smooth
actions on fibre bundles.

However, one should keep in mind that the vertex groups G; and G¥ over distinct points
are not necessarily isomorphic, since the fibre G¥ can be empty and the groups can belong
to separate connected components of G, even if the base manifold M is connected.

A morphism between two groupoids is a functor between the (category-theoretic) groupoids.

We focus on morphisms over the identity map (also called morphism over M or
morphism preserving the units) between two Lie groupoids G =3 M and G’ 3 M
respectively with source s, s’ and target ¢, 1" and the same base manifold M, namely smooth
maps ¢ : G — G’ such that

(1) Sop=sand t' o ¢ =1t,
(2) pou=1u,
(3) o(vy') = () d(y) for any composable v, in G, and therefore ¢ oi =i’ o ¢.

It is an isomorphism of Lie groupoids if ¢ is a diffeomorphism.

A subgroupoid of a Lie groupoid G =3 M is a groupoid G’ 3 M together with an
injective Lie groupoid morphism ¢ : G’ < G over M, giving the inclusion.

Examples 1.1. Let M be a smooth manifold.

(1) Given a Lie group G, the cartesian product M x G x M defines a Lie groupoid on M,
called trivial groupoid with vertex group G, with source s(z,g,y) = y, target
t(z,g,y) = x, composition (z, g,y)(y, h, z) = (x, gh, z) induced by the product on G,
unit 1, = (z,1g, ), where 1g is the unit on G and inverse (z,g,y)™" = (y,¢97", z)
with g=! the inverse of ¢ in G, for any z,y,2 in M and g,h in G.

A Lie groupoid G 3 M is called trivial if it is isomorphic to a trivial groupoid.
Any trivial Lie groupoid is clearly transitive.

(2) The pair groupoid of M is the trivial groupoid with trivial vertex group G = {e},
namely the cartesian product Pair(M) = M x M, where arrows are pairs (x,y) of
points, with source s(z,y) = y, target t(z,y) = x, composition (z,y) (v, z) = (z, 2),
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unit 1, = (x, ) and inverse (z,y)™' = (y,z). The diagonal Ay, = {(z,z),7 € M} of
M corresponds to the set of units of the pair groupoid.

For any Lie groupoid G =3 M, the anchor map (¢,s) : G — Pair(M) is a Lie
groupoid morphism over M, which maps the units of G onto the units of Pair(M),
that is, (¢,s)(ug(M)) = Ay The anchor (¢,s) : G — M x M is a local fibration.

(3) The fundamental groupoid of M is the set II(M) of homotopy classes [y] of
continuous paths v : [0,1] — M with source s([y]) = 7(0), target ¢([y]) = ~(1),
partial composition [v][7] = [y7] induced by the concatenation of paths ~,7 :
[0,1] — M such that (1) = v(0), and inversion [y]™' = [y7'] induced by the
inversion of orientation. Its vertex group at a point xy in M is the fundamental

group (M, zy), see | , Examples 1.1.1, 1.3.4]. One can show that it is-a Lie
groupoid with the quotient topology and that it is transitive if and only if M is
connected | , Example 1.10].

]

1.2. Local maps and local morphisms. In a fibre bundle, an object is local if it is defined
in an open neighborhood of a base point. For a groupoid, this notion must be adapted to the
fact that its very essence is to relate distinct base points: locality then means that the points
to be related are sufficiently close to one another, wherever they are in the base manifold.
This leads to the following definition. Since we shall only be concerned by maps over the
identity, we omit specifying it.

Definition 1.2. A local map between two (resp. Lie) groupoids G 3 M and G’ =3 M over
a manifold M is a (resp. smooth) map ¢: U @ G —> G’ defined on an open neighbourhood
U of the units u(M) < G, which commutes with the source, the target and the units, that
is,

(1) Sop=sand t' o p =1,

(2) pou=n1u'.
If U = G, we call ¢ a global map.  To distinguish local from global maps at a glance, we
denote local maps by ¢ : G+—G. Local maps between Lie groupoids are assumed to be
smooth, unless otherwise specified.

A local map defined on an open set U restricts to a local map on any open subsets
U' < U containing u(M) < G. Following Mackenzie, we call two local maps over M germ
equivalent 'if they agree on some neighborhood of u(M). A local map ¢ : G+=—G' is a
local morphism of (resp. Lie) groupoids if it also preserves compositions, i.e.

(3) o) =o(7) ¢(v) for any composable v,~" in U whose product v~/ lies in U.

In this case, it also preserve inversions (resp. which are smooth), i.e. ¢(y 1) = ¢(y) ! for all
y.€ G such that yy~! lies in «. We denote local morphisms by ¢ : Go—G', as in | ,
Definition 6.1.6]. A global morphism in this sense is the same as a groupoid morphism of
Section 1.1 which we shall therefore simply call morphism.

A local map between two Lie groupoids cannot always be extended to a global one, even
if it is a local groupoid morphism. Mackenzie proved in | , Theorem 6.1.10] that this
is possible under rather restrictive conditions, namely when G o— G’ is a local groupoid
morphism of locally trivial Lie groupoids over the same base manifold M, if the source-fibres
(equivalently,the target-fibres) of G are connected and simply connected.
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1.3. Locally trivial groupoids. In practice, the Lie groupoids we are interested in are all
gauge groupoids, whose structure is simple to describe. Let mp : P — M be a principal
bundle with structure group G acting on the fibres on the right, transitively and without
fixed points. The gauge or Atiyah groupoid of P is the quotient manifold

G(P)=P xgP:=(PxP)/ ~ (2)
under the equivalence relation

(p,q) ~ (p9,q9) VYp,qe P, VgeG,

whose arrows are equivalence class of pairs (p,q) in P x P denoted [p,q|, endowed with
source and target maps given by the bundle projection, namely

s(lp,al) =mp(q)  and  [p,q]) =7p(p)  Vpge P,
partial composition

[p,q] [P, 4] = |p,d 9] for the unique ¢ in G such that ¢ = p'g,
defined if 77 (q) = 77 (p'), units 1, = [p,p] for any p in 75" (x) and inverse [p, ¢]~* = [¢,p].

Example 1.3. (1) Given a Lie group G, the trivial groupoid M x G x M is clearly a
gauge groupoid for the trivial principal bundle P = M x G. This holds in particular
for the pair groupoid Pair(M) whose structure group G is trivial.

(2) The fundamental groupoid II(M) is a gauge groupoid for the principal bundle given
by the universal covering of M | , Example 1.3.4].

It is easy to verify that a gauge groupoid G(P) is trivial, i.e. isomorphic to M x G x M,
if and only if the underlying principal bundle P — M is trivial, i.e. isomorphic to M x G.
Gauge groupoids are caracterized by a very simple local structure. Let us first fix some
terminology.

Definition 1.4. | , §6, Example d)] [ , Definition 1.3.2] Let G 3 M be a Lie
groupoid.

e G is locally trivial if for any = in M there exists an open neighborhood U of z in
M such that GY is isomorphic to the trivial groupoid U x G% x U.

e G admits a section atlas if there exists a point zg € M and a collection of local
sections of #,,, i.e. an open covering {U,} of M and smooth maps o, : U, — ggg
such that t,, o 0, = Idy,, called local decomposing maps. This implies that the
restriction t,, : G,, — M is a surjective submersion, which is not a priori ensured in
a Lie groupoid.

o If G admits a section atlas {o,} based at zy, the transition functions are the maps
Gap 1 Ua 0 Ug — G20 given by gap(x) = oa(z) ' os(z).

We now assume that the base manifold M is connected.

Proposition 1.5. | , Lemma 2] | , Propositions 1.3.3 and 1.3.5] [ , Theorem
3.10] Let G 3 M be a Lie groupoid on a connected manifold. The following assertions are
equivalent:

(1) G is a gauge groupoid.

(2) G is transitive (then by Theorem 1.1 the surjective anchor map is a submersion).

(3) G is locally trivial.

(4) G admits a section atlas.
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(5) The anchor map (t,s) : G — M x M is a locally trivial fibre bundle with fibre G0
for a point xo in M, and structure group G3° x G3° acting on the left on the fibre by
(9,9) - h=ghg™", for any g, g, h in G2

(6) (Assuming M is connected) The source map s : G = |J,epy G — M is a locally trivial
Jibration in principal G-bundles on M, with G = G3° for any choice of xg € M. The
principal GZ-bundle t : G, — M s called the vertex bundle of G at the point x
[ , §1.3].

The proof of these equivalences is based on the fact that one can define local sections for
any fibration by the implicit function theorem.

Example 1.6 (Frame groupoids). Any vector bundle 7g : E — M of rank r is associated
to a principal GL,.(R)-bundle 7 : FE — M, called the frame bundle of E, with fibre
F,E =1Iso(R", E,) above x in M given by the set of linear isomorphisms ¢® : R" — E, (the
frames of E,), and projection m(¢®) = x. The gauge groupoid of FFE is called the frame
groupoid of E and denoted by

Iso(E) := G(FE) =3 M. (3)

Its arrows are the linear isomorphisms ¢y : E, — E, between fibres of £, and the whole
groupoid can be described as the set

Iso(E) = | J Tso(E,, E)
z,yeM
with source s(@Y%) = y, target t(¢)) = x and partial composition ¢y ¥ : £, — E, given by
the usual composition of linear maps ¢? : B, — E, and ¢, : E, — E,. Since it is a gauge
groupoid, the frame groupoid is a transitive Lie groupoid.

[

1.4. Groupoid actions. Let G =3 M be a Lie groupoid and () a smooth manifold with a
smooth map ¢ : Q) — M. We call

Gxm Qi= {(1,9) €G x Q, s(v) = w(@)} = | Gota) * {4}
q€Q
resp.
Qxu Gi={(0,7)eQ %G, t(v) = @)} = | J{g} * Goo)-
q€Q
the set of composable pairs (7,¢) in G x @, resp. (¢,7) in @ x G.
A left, rep. right action of G on @ is given by a surjective submersion ¢ : Q — M,

together with an-action map | , Definition 1.6.1], | , §5.3. Semi-direct products]
Gxu@ — Q
(@) — 7-q (4)
resp.
Qxug — @
(¢.7) — q-7 (5)

such that ¢(vy-q) = t(7), resp. ¢(q-7) = s(y) and which is compatible with the groupoid
composition in the sense that 1, - ¢ = ¢ for any ¢ in Q) and

7'(’71'61):(77/)'6] resp. (q-y’).7=q.(7/7)
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for any composable arrows 7,7’ in G and for any ¢ in ) composable with ~'.
For such an action, one can form the semi-direct product groupoid of the G-action,
or translation groupoid G x @), resp. ) x G, which indeed defines a Lie groupoid over M.

Recall that the canonical projection 7 : ) — M of a locally trivial fibration is a surjective
submersion.

If #: @ — M is a fibre bundle, we take ¢ = 7 and denote by p, : @ — @ the map
q — 7 - q induced by the left action. If 7 : E — M is a vector bundle, the action p of G on
E is called linear whenever for any v in G the map p, : £ — E acts linearly on the fibres.
In other words, linear actions of G on E are given by groupoid morphisms G — Iso(F) over
M | , Definition 1.7.1] | , §5.3]. In this case, the bundle F is also called a linear
representation of the groupoid G. As usual, the representation is called faithful if the
corresponding groupoid morphism G — Iso(E) is injective.

Examples 1.7. Let E — M be a vector bundle on a manifold M-

(1) A faithful linear action of the pair groupoid Pair(M) =3 M on E, that is, an
injective morphism Pair(M) < Iso(E) of groupoids over M, is equivalent to a global
trivialization of £ | , §5.3].

(2) The frame groupoid Iso(EF) =3 M has a natural faithful linear representation on E
given by the evaluation

ev:Iso(E) xy E— E, (goz, ay) — gpj(ay), (6)
where the isomorphims ¢ : E, — E, applied to a, € E, gives an element ¢j(a,) in
E,.

(3) If the structure group of the bundle E reduces to the group G, let P — M be
the associated principal G-bundle, with gauge groupoid G(P) =3 M. Then G(P)
acts linearly on F, with action p:-G(P) x) E — FE given by the composition of
pe : Iso(E) x E — E and the map ¢ : G(P) — Iso(E) of Proposition 1.14.

If £ = P x¢qV if-avector bundle associated with a principal G-bundle — M, we

consider classes [r,v] in P x5 V of elements a in E with mg(a) = wp(r). The set of
composable elements is

g(P) XM E = {([p7 Q]a [Tu U])v 7TP((]) = WP(T)}
and the action p of G(P) on E is given by

p([p, q))([r,v]) = [p, gv],

where g in'G is the unique group element such that r = gg. A linear action of the
fundamental groupoid II(M) =3 M on a E is equivalent to a flat connection on F
[ , §5.3].

[]

1.5. Lie algebroids. A Lie algebroid on a manifold M is a vector bundle ¢ : A — M
endowed with a Lie bracket [ , |4: ['(A) x T(A) — I'(A) on its space of sections (that is, an
antisymmetric R-bilinear map satisfying the Jacobi identity) together with a vector bundle
map a: A — TM over M called the anchor, or equivalently a C*(M)-linear map among
sections, which satisfies the Leibniz rule

[X, fY]a = FIX,Y]a+ a(X)(N)Y
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for any X,Y,Z in I'(A) and f in C®(M), that is, the bracket [ , ]a is a derivation. It
then follows that the anchor is a morphism of Lie algebras from C*(M, A) to the space of
vector fields on M, i.e. a([X,Y]a) = [a(X),a(Y)]. The Lie algebroid A is regular if a has
constant rank, and it is transitive if a is fibrewise surjective.

A morphism between two Lie algebroids A — M and A — M on a manifold M is a
morphism of vector bundles ¢ : A — A’ which commutes with the anchors and preserves the
brackets. Lie algebroids together with morphisms of Lie algebroids build the category L of
Lie algebroids.

Example 1.8. If 7 : P — M is a principal G-bundle, the group G acts on the tangent
bundle TP — P with action given by the map dp, : TP — TP tangent-to the action
pg: P — P, p—pg, for any g in G. The quotient bundle

A(P):=TP/G — M (7)

by this action is a Lie algebroid, called the Atiyah algebroid of P;with anchor a : A(P) —
T'M induced by dr : TP — T M (therefore fibrewise surjective). In fact, the space of sections
C*(M, A(P)) coincides with that of G-invariant vector fields on P and therefore it is closed
under the Lie bracket of vector fields. The quotient map x : TP — TP/G = A(P) is a
fibrewise isomorphism between the two bundles over different base manifolds.

Being transitive, the Atiyah algebroid fits into a short exact sequence of Lie algebroids
over M, called the Atiyah sequence,

0 — Ker(a) = (P x g)/G — A(P)=TP/G — TM — 0, (8)
obtained by differentiating the G-equivariant exact sequence of right G-spaces
0 —PxGz=zPxyP—PxM-—PxM-—Q0,

where G acts on P x G by (p,g) - h.= (ph,h 'gh) for pin P and g, h in G, and then taking
the quotient by G, cf. | ,83.2], [ ,§6.4].
]

1.6. Lie algebroid of a Lie groupoid. Lie algebroids are fibred analogues of Lie algebras
over a manifold, and play for Lie groupoids the role that Lie algebras play for Lie groups.
They were introduced by J. Pradines in | ] and are nowadays used to study foliations
[ ], Poisson geometry | | and sigma models in string theory | |. There are
many interesting examples of Lie algebroids which go beyond our scope, cf. [ |, [ ]
and | ]. We are mainly concerned with the Lie algebroid defined by the tangent space
of a Lie groupoid at the units, thanks to the properties listed in Theorem 1.1.

We follow | , §3.5] or | , §4.1]" and consider the vector subbundle of the tangent
bundle TG — G built from the tangent spaces to the source-fibres, namely

1°G = U TGy — 9.
v€g

The Lie algebroid of G is the pull-back of T°G < TG along the embedding v : M — G,
that is, the collection of tangent spaces of the source-fibres at their units

L(G) = u*(T°G) = | ] T0.G..

xeM

'An equivalent definition of the Lie algebroid £G is given by [ , §9.2] or again | , §4.1] as the
normal bundle TG, ar)/Tu(M) of M in G (cf. | , §8.2]).
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The bundle projection onto M is given by the source, which is constant on the fibres 77 G,
(and equal to x) since T*G coincides with the kernel Ker(ds) of the tangent map ds : TG —
TM. The anchor is given by the composition a = dtoi : £L(G) — T M, where Dt : TG — TM
is the tangent map of the target and i : u*(T°G) — T*G < TG is the natural map on the pull-
back. The Lie bracket on the sections C*(M, £(G)) is induced via right-translation by that
of vector fields on G, which must be proven to be closed among right-invariant T°G-valued
vector fields. By construction, it satisfies the requirements of Lie algebroids.

Remark 1.9. An alternative definition consists in swapping source and target, taking
tangent spaces to the target-fibres, leading to an isomorphic Lie algebroid whose Lie-bracket
is induced via left-translation by that of vector fields on G (see e.g. | , The symmetric
construction in §3.5]). In this alternative approach, one considers the pull-back of TG < TG
along the embedding u : M — G, that is, the collection of tangent spaces of the target-fibres
at their units and defines £'(G) := v*(T*G) = J,eps 71.G°. The bundle projection onto M
is given by the target map, which is constant on the fibres 77 G* and the anchor is given
by the composition a = dsoi : L'(G) — T M, where ds.: TG — TM is the tangent to the
source map. There is an isomorphism of vector bundles £(G) ~ £'(G), and the Lie bracket
[-,-] on the space C*(M, £'(G)) induced via left-translation relates to the Lie bracket [-, ]

on COO(MVC(Q)) by ['7 ']I == ['7 ]
If G is a locally trivial groupoid (that is, a gauge groupoid, see Theorem ?7), then £(G)

is a transitive Lie algebroid. The converse holds true if M is connected | , Corollary
3.5.18].
Example 1.10. The Lie algebroid of the gauge groupoid G(P) built from a principal bundle
P — M is isomorphic to the Atiyah algebroid of P | , Example 9.5 (¢)], i.e.

L(G(P)) = A(P). (9)

[

Examples 1.11. Lie algebroids of gauge groupoids give rise to various explicit examples:

(1) The Lie algebroid of the pair groupoid Pair(M) =3 M is isomorphic to the tangent
bundle T"M — M equipped with the vector field brackets and the identity TM — T M
as anchor, i.e. L(Pair(M)) = TM | , Example 3.5.11].

(2) So is the Lie algebroid of the fundamental groupoid II(A/) isomorphic to the tangent
bundle, L(IT(M)) = TM | ].

(3) If P = M x G is the trivial principal G-bundle, and G(P) = M x G x M, then
LM xGxM)=AMxG)=TM® (M x g), where g = Lie(G), with anchor given
by the projection to 7'M and bracket

[X +0,Y +w] =[X,Y]xm) + (X(w) -Y)+ [v,w]g),

where X, Y € X(M) and v,we M x g | , Example 3.5.13]. When G = {1}, this
gives back L(Pair(M)) = TM.
(4) | , §3.4] Let us specialise to the case when P = FFE is the frame bundle of

a vector bundle 7 : £ — M whose gauge groupoid G(FE) ~ Iso(E) is the frame
groupoid of E. Its Lie algebroid £(Iso(F)) = T""E consists of linear vector fields
(¢,X) of the bundle TE — E i.e., pairs (£, X¢), where { : E — TFE is a vector field
on E over a vector field X¢ : M — T'M. Equivalently, { has a local flow given by a
bundle morphism F; : E — F over a local flow f* of X¢ on M. The anchor map
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a:T"E — TM sends the vector field £ on E to the vector field X = dn () on M
and its kernel is the bundle TV E of vertical vector fields on E which are linear, i.e.
&(e) = (e,X(e)) for any e in FE, where X : E — E is a vector bundle morphism.

The Lie algebroid TH"E of Iso(E) coincides with the Atiyah algebroid A(FFE) of
FE and we have the exact sequence

00— TIE —TE 2 TM — 0. (10)

(5) [ , Example 3.3.4], | , Theorem 3.6.6] The Lie algebroid L(Iso(E)) of the
frame groupoid Iso(F) is isomorphic to the bundle Der(E) — M of linear derivations
on £ defined as follows.

A linear derivation on E at a point z in M | , §2.1], is an R-linear map
D, : C*(M,E) — E, for which there is a vector {p, in T,,M such that
D,(Af)=¢&p, N f(z) + M) Dy f YAe CP¥(M),YfeC®(M, E). (11)
Let Der,(E) be the linear space of linear derivations on E at a point x, then
Der(E) = | | Der,(E) - M (12)
zeM

forms a vector bundle over M, called the bundle of linear derivations on E. Its
sections are first order differential operators D : C*(M, E) — C*(M, E) for which
there exists a vector field {p € X(M) on M, such that eq. (11) holds for every x
in M, setting Do(z) := D,(c) and {p(z) = &p,. The Lie bracket on Der(FE) is
the commutator bracket of operators and the anchor is the symbol map Der,(E) 3
D, — Xp, €T, M. Its kernel is isomorphic to End(E,) and the Atiyah sequence in
eq. (8) reads

0 ~— End(E) — Der(E) — TM — 0. (13)

We follow | , Proposition 3.4.4] and| , Example 2.3] to describe the
isomorphism

p: L(Iso(E)) —> Der(E), (14)

which sends alinear vector field (£, X) in T"F to a linear derivation D¢ in Der(E)

defined as follows. For any section f of E and for any section ¢ of E* | , Eq.

(27) p.115]
(&, De(f)) = X(b, f) = £(s)(f)- (15)

Here /4 is the fibrewise-linear function on £ corresponding to the section ¢ so that
bo(f) =<¢; f) and £({y) is again a fibrewise-linear function on E since linear vector
fields preserve the subspace of such functions.

In the remaining part of this paragraph, we consider global morphisms.

Let P - M and P’ — M be two principal bundles over M with structure groups
respectively G and G’ and let G(P) =3 M and G(P) 3 M the corresponding gauge groupoids
as-defined by eq. (2).

(1) Given a morphism ¢g : G — G’ of Lie groups and a morphism ¢ : P — P’ of principal
bundles over the identity which is ¢g-equivariant, that is, ¢(pg) = ¢(p)¢o(g), the map
G(p) : P xg P — P’ xg P’ given by

G(o)(Ip,al) = le(p), ¢(@)],  p,q€ P, (16)
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defines a groupoid morphism
(G(P) = M) 5 (G(P") = M),
The map G(p) is well defined since p’ = pg and ¢ = ¢qg for any g € G implies
that [o(p'), 0(q")] = [@(p) ¢o(9). ¥(q) vo(9)] = [¢(p), ¥(q)], which clearly defines a
groupoid morphism.

(2) Conversely, a morphism of Lie groupoids ¢ : G — G’ over the identity on M induces
by restriction, a morphism ¢ : P := G,, — G, =: P’ of principal bundles and a group
morphism o : G := GI¢ — (G'); =: G, giving rise to a pp-equivariant morphism
¢ : P — P' such that G(p) = ¢.

1.7. The Lie functor. Just as the tangent map at the identity of a morphism of Lie groups
induces a Lie algebra morphism between the corresponding Lie algebras, there exists a
tangent map at the units of a local morphism between Lie groupoeids which gives rise to
a Lie algebroid morphism. More generally, one can differentiate at the units-any local map
between Lie groupoids, and obtain its infinitesimal part-along the diagonal.

Consider a local map ¢ over the identity between two Lie groupoids G =3 M and G’ 3 M,
defined on U < G. For any x € M, we denote by D¢|, the (target)-differential of ¢ at
the unit 1, = u(x) € U given by

DOLL(3(0)) = Lo (1) et

where 7 : (—e,e) > U n G, is any smooth curve living in the source-fibre of z such that
7(0) = 1,.

Lemma 1.12. The differential ‘at the units of a local map ¢ : G+—>G' between two Lie
groupoids G =3 M and G’ =3 M’ induces a vector bundle morphism

between their associated Lie algebroids. If ¢ is a local groupoid morphism, then Do|y is a
Lie algebroid morphism.

Proof. By assumption, the differential D¢ is defined on tangent vector fields to the source
fibres at the units; which span the fibres of the vector space Ker(Ds) = LG. Since ¢ preserves
the source and the target, by Definition 1.2 (1), the map D¢ maps Ker(Ds) to Ker(Ds')
and gives a vector bundle morphism D®|y : LG — LG'. The second assertion is proved in
[ , §3.5,(40) and (41)]. ]

Recall that if G and G’ are two Lie groups with Lie algebras respectively g and ¢, a Lie
algebra morphism g — g’ integrates to a Lie group morphism G — G’ if G is connected and
simply connected. The same does *not* hold true for morphisms of Lie algebroids, since
those do not always integrate to a morphism of Lie groupoids; the obstruction to integrability
is studied in [ |.

Proposition 1.13. Let G 3 M and G =3 M be two locally trivial Lie groupoids on the
same base manifold, and let p: L(G) — L(G') a morphism of Lie algebroids.

(1) | , Theorem 6.2.4] If the source-fibres of G are connected and simply connected,
the morphism ¢ integrates to a global groupoid morphism ¢ : G — G', that is, Dp|y =
©.
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(2) | , Theorem 6.2.3] In general, ¢ integrates to a local groupoid morphism ¢ :
G oG, in the sense that Do|y coincides with ¢ on some open subset U in M, in
which case ¢ is defined on an open neighborhood of the diagonal in U x U. Two such
integrated local morphisms are germ equivalent, i.e. they coincide on a neighborhood
of the diagonal.

To conclude, we have shown that the map £ : G — Lie(G) is functorial, justifying. the
terminology ”Lie functor”.

1.8. Groupoid reductions. Let G 3 M and H 3 M be two Lie groupoids on M. An
injective groupoid morphism [/ : G — H induces an injective morphism of the vertex groups
ly + GF > HZ for any x € M. Consequently, the principal GZ-bundle ¢, G, — M (resp.
s* 1 G¥ — M) reduces to the principal HZ-bundle t, : H, — M (resp. s* : H* — M). If the
map [ exists, we shall say that the groupoid H reduces to G (see also | , Definition
1.6.22]). The Lie algebroid £(#) then reduces as a vector bundle to the Lie algebroid £(G)
[ , Definition 3.3.21].

For gauge groupoids, it follows from the above discussion that a necessary condition for a
gauge groupoid G(Q) =3 M to reduce to a gauge groupoid G(P) =3 M is that the underlying
principal bundle @ — M reduces to the principal bundle P — M | , Chapter I, §5,
p.53]. The next proposition shows the equivalence of the two reductions.

Proposition 1.14. Let P — M and QQ — M be two principal bundles on M.
(1) The gauge groupoid G(Q) reduces to G(P) if and only if the underlying principal
bundle Q) reduces to P. The reduction is given by the injective groupoid morphism
G(t) : G(P) — G(Q) induced by the injective morphism v : P — @Q of principal
bundles.
(2) In particular, the frame groupoid Iso(E) of a real vector bundle E — M of rank

r reduces to the gauge groupoid G(P) of a principal G-bundle, for a subgroup G of
GL.(R), if and only if the frame bundle FE reduces to P.

Proof. The second statement follows from the first one applied to the frame bundle @ = F(E)
with structure group H = GL,(R).

An injective morphism ¢ : () — P of a principal H-bundle to a principal G-bundle over M
is an injective smooth map which preserves the fibres and such that «(p g) = ¢(p) g for any g in
G| , Proposition 1.5.3]. This map induces an injective morphism G(¢) : G(P) — G(Q)
of Lie groupoids over M defined in eq. (16).

Let us prove that it is injective: if [c(p1), t(p2)] = [t(P}), t(py)], the elements py, p} belong
necessarily to the same fibre of P and the same for p, pl,, because ¢ preserves the source and
the target. On the one hand, there exist g;, g2 in G such that pj = p; g1 and p,, = ps go since
the G-action on P is transitive, from which it follows that ¢«(p}) = ¢(p1) g1 and ¢(py) = t(p2) go-
On the other hand, there is an element h € H such that «(p}) = ¢(p1) h and ¢(py) = t(p2) h.
Since the H-action on () is free, we have h = g; and h = g5. Thus, h lies in G and ¢, = gs.

Consequently, [py, pb] = [p1 b, pa h] = [p1, pa]. O

1.9. Bisections. Let G 3 M be a Lie groupoid. A local bisection of G is a smooth local
section o : M #— G of the source map s defined on an open subset U < M, that is, soco = Idy,
whose composition with the target map ¢ is a diffeomorphism ¢, =t o o between U and an
open subset ¢, (U) € M (which might not intersect U).
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If U=p,(U)=M,we call o aglobal bisection or simply a bisection. The space B(G)
of global sections of G is a group with the following operations:

(1) multiplication of o and o’ given by (¢’ e 0)(x) = o'(¢,(x)) o(z) for any 2 € M, which
corresponds to a semidirect product law on pairs (p,, o).

(2) unit bisection given by the unit map u : M — G of the groupoid G,

(3) inverse o~ given by o7(z) = (a(gp;l(az‘)))_l for any x € M, where ¢! denotes

the inverse diffeomorphism of M while the external ( )_1 denotes the inverse in the

groupoid G.
Moreover, the map
v :B(G) — Diff(M), 0 — ¢, =too (17)
is a group homomorphism, because ¢’ e 0 = (0’ o ¢, )0, seen as a pointwise groupoid

multiplication, and therefore

Pores =10 (0 0p5)a) =to (0" 0py) = (too’) 0w, =tgy 0 5.
The space of local sections By,.(G) is a pseudo-group with the above operations, because the
product o’ e o of two local sections defined respectively on two open sets U’ and U is defined
if and only if the target space ¢, (U) of o has a non-empty intersection with the source space
U of o'. In | , Theorem 2.8] the authors show that for is a locally convex and locally
metrisable Lie groupoid over M which admits an adapted local addition. The map in eq.
(17) descends to a pseudo-group homomorphism

@ Bloc(g) I Diﬁloc(M)’ 0 — Qg = too

from local bisections of G =3 M to the set of diffeomorphisms between open subsets of M,
that we improperly denote by Diff},.(M).

Example 1.15. | , Examples 3.5] For a gauge groupoid, global bisections are in bijection
with the automorphisms of the underlying principal bundle: B(G(P)) = Aut(P). In particular,
for the pair groupoid, bisections are in bijection with diffeomorphisms on the manifold,
i.e. B(Pair(M)) = Diff(M), and local bisections are in bijection with diffeomorphisms
defined locally on the manifold, i.e. By,.(Pair(M)) = Diff,,.(M) via the correspondence
o(z) = (ps(z),z) which lies in Pair(M) for any z in U < M.

A smooth map ¢ : G — G’ between two Lie groupoids over M, that is, a global map in
the sense of Definition 1.2, induces a map

B(¢) : B(G) — B('), o= ¢oo. (18)

In fact, since ¢ preserves the source and the target maps, we have s’ o (¢poo) = soo = Idy
and the map @4, =t' 0 (po0) =too = ¢, is a diffeomorphism on M. Moreover B(¢) is a
group morphism if ¢ is a groupoid morphism. In fact, for any o, 0" in B(G) and for any x in
M we have

B(¢)(o" e 0)(x) = ¢(0’(0o(x)0(2))
= 0(0"(¢o(2))9(0(2)) = (B(#)(0') ® B(¢)(0))(x).
If ¢ : G»>G is a (smooth) local map between two Lie groupoids G =3 M, and G’ 3 M,
the composite map ¢ o o is only defined for a local bisection ¢ of G taking values in the

domain of ¢. Assume ¢ : G+ G’ is defined on a neighborhood U of the diagonal u(M) in
G, where u is the unit on G and that s’ o ¢ = s, t' 0 ¢ = t, where s, s are the source maps on
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G and G', t,t' the target maps on G and G'. Let o be a local bisection of G with support in
an open set U < M such that o(U) < U. Then ¢’ := poo : U — G defines a bisection of
G'. Indeed, we have s’ oo’ =s'ogpoo=sooc=Idygandt' oo’ =t ocpoo =too is alocal
diffeomorphism between U and an open subset of M. This way, ¢ induces a map

Bloc(¢) : Bloc(g) - Bloc(gl)7 0 = ¢ © 0, (19)

between local bisections.
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2. DIRECT CONNECTIONS ON LIE GROUPOIDS

The first notion of a connection on a Lie groupoid, due to C. Ehresman in 1952 | ],
refers to a Lie algebroid connection on its Lie algebroid, that is, a bundle section of its
anchor map, and is nowadays called an infinitesimal connection. A notion of connection
specific to Lie groupoids was developed by A. Kock in the framework of Synthetic Differential
Geometry in the 80’s, to integrate infinitesimal representations of Lie groupoids | |.
Such connections are required to preserve the units, to be invariant under inversion, and
allow a notion of curvature which measures the obstruction to preserving general composition
of arrows. A modern exposition of this approach can be found in | ].

Later, linear direct connections were introduced by N. Teleman in 2004-2005 | , ]
specifically on the frame groupoid of a vector bundle £ — M, in order to extract the
essence of the concept of parallel transport on E along geodesic curves in M suitable to
describe the geometric content of the Chern classes of E. In the paper | ], which
provides a comprehensive treatement of Teleman’s approach, direct connections are only
given for the frame groupoid of a vector bundle E. Teleman’s coauthor J. Kubarski later
proposed a generalisation to general Lie groupoids, still named linear direct connections,

in the conference talk | ]. Such direct connections are assumed to preserve the units,
but are not necessarily invariant under inversion, and therefore provide a weaker version of
Kock’s connections, cf. | , §5].

In this section we present direct connections on groupoids and provide the details of
some of the proofs in the litterature. In particular, we prove that a Lie groupoid which
admits a direct connection is a gauge groupoid (Proposition 2.4), that a direct connection
induces an infinitesimal connection on its Lie algebroid (Proposition 2.11), and conversely,
if the base manifold has an affine connection, that a parallel transport on a principal bundle
gives rise to a direct connection on its gauge groupoid (Proposition 2.13). Yet, not all
direct connections are of this form (Example 2.18). We then recall the definition of the
curvature of a direct connection and the known fact that, in the flat case, there is a one
to one correspondence between direct connections and their infinitesimal connections, or,
equivalently, parallel transports on the underlying principal bundle (Proposition 2.30).

2.1. Direct connections. For a manifold M, we call diagonal domain *in M x M any
open neighborhood Ua of the diagonal A := {(x,x), z € M} < M x M.

Let M be endowed with a connection V on T'M. For v in T'M, let ¢, be the geodesic with
initial data v. Let D ={v e TM | ¢, is defined on [0, 1]}. The exponential map of (M, V)
is defined as

exp: D — M, exp(w) := ¢,(1) .
For.a point p in M we write D, = D nT,M and exp,(w) = expp, (w). The map exp gives
a diffeomorphism ‘between what we call a diagonal exponential domain Ux in M x M
and a neighbourhood of the zero section in T'M.

Remark 2.1. A typical example is the Levi-Civita connection on a Riemannian manifold
M with positive injectivity radius, and the any diagonal domain of the form

Un, = {(y,x) e M x M, d(y,z) < r/2}, (20)
whose width can be adjusted within the range 0 < r < 74,;.

2This terminology is borrowed from [ , Def. 83]. They are called first neighbourhoods of the
diagonal in | , 81].
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Definition 2.2. A direct connection on a Lie groupoid G = M is a smooth® local right
inverse of the anchor map which preserves the units, that is, a local map I' : Pair(M) ~— G
over M, defined on a diagonal domain Uy < M x M, such that

(1) T'(z,y) in G for all (z,y) € Ua,
(2) T'(z,z) =1, € G* for all z € M.

We call a direct connection global if it is defined on the whole pair groupoid Pair(M).
Two connections are called germ equivalent if they are germ equivalent as local maps,
i.e. if they agree on some common diagonal domain.

Example 2.3. Let P = M x G be the trivial principal GG-bundle over a smooth manifold M.
Let g : M — G be a smooth function, and py : © — (2, g(z)) the corresponding global section
of P. This gives rise to a (global) direct connection I'y : Pair(M) - P x¢ P~ M x G x M

Lo(y, ) = [(y, 9W)), (z,g(x)] = [(y. 1), (x,9(x) gly)")] -

Lie groupoids equipped with a direct connection are gauge groupoids if the base manifold
is connected. We shall henceforth work under the assumption that the base manifold is
connected.

Proposition 2.4. A Lie groupoid G =3 M over a connected - manifold which can be equipped
with a direct connection T': P(M)+—> G, is a gauge groupoid.

Proof. By Theorem ?7, it is enough to'show that G admits a section atlas. Fix a point
xo € M and suppose that T is defined on a-diagonal domain Un = M x M. Let (U,)aea be
an open cover of M such that  J c4(Ua x Uy) < U. Then I is well defined on any pair of
points laying in the same open set U,.

We first show that for any y € M the fibre G% is not empty. Since M is connected, one
can choose a path 7 ¢ [0, 1] — M connecting xy and y. Then there exist finitely many indices
aq, ... ay such that the corresponding open sets U,,, cover the image of the path. Order them
in such a way that the consecutive intersections are not empty. For any ¢ = 1, ..., k, choose
a point z; € Uy, N U, Then the composite arrow

F(Z/; $k)r($k, xkfl) e F(Sﬂz, iﬂl)r(xl’ 960)

belongs to ng, and this shows the claim.
Now for every o € A choose a point x, € U, and apply the result: the fibre G7o is not

empty and one can choose an arrow £ € G7o. Finally, for any z € U,, set
oo(z) = (2, 24)650 € Gy .

This gives a section atlas (04 : Uy — GL*)aea- [

i+1°

Assuming that the base manifold M is connected is no restriction, since if this is not
the case one can restrict to its connected components. Thus, from now on we consider
gauge groupoids G(P) =3 M associated to principal G-bundles P — M on a connected base
manifold.

3Non necessarily smooth direct connections are considered in [ , ]
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2.2. Direct connections on frame groupoids. In this paragraph, we specialise to a frame
groupoid Iso(E) =3 M of a (finite rank) vector bundle 7g : £ — M. It is a gauge groupoid
G(FFE) 3 M with vertex bundle given by the frame bundle 7 : FE — M.

We borrow from | , Definition 86] the notion of parallelism on a smooth vector
bundle £ — M. It is a local smooth section
U:Mx M+ FE*XFE (21)

of the external tensor product E*XIE — M x M, which is defined on a diagonal neighborhood
and such that U(z,z) = Id, for any = € M. We recall that the external tensor product
E\XIEy — M,y x My of two vector bundles m; : E; — M, is given by F4[X]Ey 1= pri E1Qprs Fs,
where pr; : My x My — M; is the canonical projection.

Clearly a direct connection I" : Pair(M) »— Iso(E) on the frame groupoid yields a parallelism.
Here is an example taken from | , Example 88].

Example 2.5. Let r be the rank of E and (U,,6,) be a trivialising system for E, with
0o : By, = 75 (Ua) > Uy x R". Let ¢ : F(E)y, =7 ' (Us) > Uy x GL.(R) be the
corresponding trivialisation of F(F), given by the map p + ¥, (p) := 0, © p, where a frame

p € F(E), above a point x € U, is seen as an isomorphism R" — E, and 0, restricts to an
isomorphism E, — {x} x R". Then, the map Ty : U, x Uy — Iso(E)y, defined by

Loly, ) == 3 (z,1d) o (v (y,1d)) 7Y, . for z,y € U,

is a direct connection on Iso(E) defined on thediagonal domain Ux = | J, Us x Us,.

[

Conversely, a parallelism on a vector bundle yields a direct connection on its frame
groupoid.

Proposition 2.6. A parallelism U : M x M »— E*[xX] E defines a direct connection
I' i Pair(M) »— Iso(E)
(y,x) — Ulz,y).

Proof. The parallelism sends a pair (z,y) in M x M to U(z,y) in E* x E, and all we need
to prove is the invertibility of the maps U(z,y) : E, — E, for a pair (z,y) in some local
neighborhood of the diagonal. Let us consider a point zy in M and a trivialising neighborhood
U, of xg for £, so that Ely, =~ U, x R" where r is the rank of E. The parallelism induces
a map I'(, z) : Uy, — End(R") which sends an element y in Uy, to I'(y, z) in £} x E, ~
End(R"). Since I'(xg, xo) = Id,,, it sends xy to Idgr which is invertible in End(R"™). The
local inverse theorem then yields the existence of a local neighborhood V,,, = U,, such that
the restriction I'(-, zo)ly,, is invertible, i.e I'(,zo)|v,, : Vz, — Iso(R"). The parallelism U
therefore maps an element (z,y) of the diagonal neighborhood | J, cps Vao * Vi, to U(z,y)in
Iso(E,, E,) which shows that I'(y, ) := U(x, y) defines a direct connection on Iso(E).

[

2.3. Infnitesimal connections on Lie algebroids. The terminology for connections on
Lie algebroids is motivated by that of principal (or Ehresman) connections on principal

bundles.
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Definition 2.7. | , Definition 5.2.5] A connection on a Lie algebroid £ — M is a
splitting of the anchor in the exact sequence of vector bundles:
0 — Ker(a) <> £L 5 TM — 0, (22)

i.e., a vector bundle map ¢ : TM — L such that a o = Idyy,.

It yields an isomorphism of vector bundles
TM x Ker(a) — L

(X, k) — 0(X) + (k). (23)

Example 2.8. | , 85.3] If L = A(P) = TP/G for some principal G-bundle P.— M,
the exact sequence (8) yields the Atiyah exact sequence

0— P xgges A(P) % TM — 0 (24)

since the anchor map on A(P) coincides with the differential T'w|y, : TP — TM of the
canonical projection 7 : P — M and a connection on the Lie algebroid A(P) is an infinites-
imal connection on P.

Example 2.9. We now specialise to the frame bundle P = F'FE and the Lie algebroid of
derivations £ := Der(F) (see Example 1.11 (5)) whose anchor is given by a : D +— X, with
kernel End(F). Consequently, there is an exact sequence of vector bundles (see eq. (25))
0 — Ker(a) = End(E) — Der(E) —> TM — 0 (25)
which yields an isomorphism of vector bundles
TM x End(E) == Der(E)
(X, L) > 6(X)+ L. (26)

2.4. Infinitesimal connections induced by direct connections.

Definition 2.10. If § = M is a Lie groupoid, we call infinitesimal connection on G, a
connection on its Lie algebroid £(G).

A Lie algebroid admitting a connection is necessarily transitive (the anchor is surjective)
and therefore it is the Atiyah algebroid A(P) = T'P/G of a principal G-bundle P — M.
Conversely, any transitive Lie algebroid admits a connection, cf. also | , Corollary
5.2.7]. Consequently, we henceforth consider Atiyah algebroids £ = A(P).

Proposition 2.11. Let G(P) =3 M be a gauge groupoid endowed with a direct connection
[ : Pair(M) > G(P). Then the differential of T’ along the diagonal defines an infinitesimal
connection
6" = DT : TM — A(P)
. ) d
¢ (0) — 6" (c,(0)) = prl CRORDI (27)
where ¢, : [0,1] = M is a smooth curve with initial point x = c,(0).

Proof. Applying Lemma 1.12 to G; = Pair(M), Go = G, and ¢ = I, we build the infinitesimal
connection from the differential of I"

6" := DTy : TM — LG.
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The differential of I' along the diagonal is then computed by fixing a source point = €
M and differentiating I" with respect to the target variable at x. Since L(Pair(M)) =
TM, the differential DI'\y; at x is indeed defined on the tangent space T, M. The vector
4T (cy(s), T)j5=0 in eq. (27) belongs to the tangent space of the source fibre G(P), at the point
['(z,7) = 1,. Consequently, the map d" takes values in the Lie algebroid £L(G(P)) = A(P).
Finally, 6" yields a splitting of the anchor a = dtjr, g, = dm : A(P) — TM, which brings
LT (cy(s), x)‘s:o back to the derivative of the target of I'(¢c,(s), z) at s = 0, which is precisely
¢ (0). ]

This statement also provides an independent proof of the fact that a Lie groupoid on a
connected manifold equipped with a direct connection is a gauge groupoid, cf. Proposition
2.4. Indeed, since a direct connection on a G induces a connection on £(G), the latter is
transitive and hence an Atiyah algebroid A(P). If the base manifold M is connected, this Lie
algebroid then necessarily integrates to the gauge groupoid G(P) | , Corollary 3.5.18|.
Hence, G = G(P) is a gauge groupoid.

We now specialise to the frame groupoid Iso(E) = G(F'E) of a vector bundle £ — M.

Proposition 2.12. Let E — M be a vector bundle whose frame groupoid Iso(E) is equipped
with a direct connection I'. Let X € T, M and let ¢, : [0,1] — M be a smooth curve in M
starting at c,(0) = x and set ¢,(0) = X € T,M. The expression

VR = (@ O ) |y (28)

defined for any local smooth section f of E on a neighborhood U of x, gives rise to a linear
derivation f — Vi f on E. Together with the infinitesimal connection

X)) (f) = % (T(cu(t), z) f(2)) ‘t:O €k,

dt
it yields a decomposition of the tangent map D, f : T.M — Ty, E to [ at any point x in M :
D, f(X) = 6" (X)(f) + Vi f (29)

into a vertical part V% f and a horizontal part 5* (X)f.
FEquivalently, we have

X(p, [) = 6(X)(ly) f +{Dsx)(f),¢) Vo€ Ey. (30)

Proof. The map
d ,_
Vi = = (07, e(0) flea() [,
clearly defines a linear derivation on E. From the fact that I'(c,(t), ) I ' (c,(t), z) = Id., )
for all times ¢ it follows that
d
DY) = ),

d

= (T, ) T (@ e ) fem) |,
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Note that ¢ = 67(X) lies in the Atiyah algebroid A(FE) = T'™E of the frame bundle
FE. Proposition 5.3.5 in | | applied to the frame bundle then gives the following
identification

Vi (f) = Dsexy(f) = p(6" X)(f),
with p: A(FE) — Der(E) as in eq. (14). Inserting this in eq. (15) gives eq. (30).
[

2.5. Direct connections defined by parallel transport. We now explore the relation
between parallel transport and direct connections.

Proposition 2.13. Given a smooth manifold M endowed with an affine connection and
the gauge groupoid G(P) =3 M of a principal G-bundle m : P — M endowed with a
principal connection, the parallel transport T on P along small geodesics on M defines a
direct connection I'™ on G(P).

Proof. The parallel transport 7.(y,x) along any curve [0,1] 3 ¢ — ¢(t) € M joining z to y
can be seen as an element of the subset P, x¢ P, of the gauge groupoid G(P) = P x P, by
means of the identification

Tc(y7$) — FTC(yvx) = [TC(yaz)(p0)7p0] for amny choice of Po € Px

This is well defined in P, xg P, since for any other element pj, € P,, there exists a unique
element g in G such that p{, = pog. The equality [7.(y, z)(py), p6] = [7e(y, x)(Po), po] follows
from the G-equivariance of 7.(y, z).

Since M is endowed with an affine connection pairs of points in the exponential diagonal
domain are linked by a unique geodesic. When the curve c is the geodesic ¢ joining x
and y we shall set 7(y,z) := 7.(y,x). This notational convention will apply to any parallel
transport along geodesics linking any pair of points (x, y) in an exponential diagonal domain
Un. The parallel transport 7(y, ) along the unique geodesic linking x and y defines a direct
connection (x,y) — T'"(y, x). H

Here is a first trivial example.

Example 2.14. On the trivial Lie groupoid G(P) = M x G x M, for P = M x G,
the horizontal distribution H, P = T,M gives the parallel transport 7.(y,z)(x,g) =
(y,g) along any curve ¢ linking = to y, and therefore the direct connection I'(y,x) =
[(y, 1), (%, 1¢g)] of Example 2.3 with G = {1}. O

Example 2.15. With the notations of Example 2.3, any element p € P can be written
p = (z,g(x) h) for a unique h in G and the g-valued map defined on P by w(z,g(x)h) :=
g(x)~'dg(x) yields a principal connection on P. The direct connection I'y is induced by the
corresponding parallel transport.

In Proposition 2.11, we saw that a direct connection I' on G(P) induces an infinitesimal
connection §' : TM — A(P) and hence a horizontal distribution in 7P. We now show that
if [' is the direct connection defined by a parallel transport on P, as in Proposition 2.13,
then ' coincides with the infinitesimal connection induced by the parallel transport.

Theorem 2.16. Let P — M be a principal G-bundle with an infinitesimal connection
§ : TM — A(P) and consider the direct connection T'° on G(P) defined by the parallel
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transport along small geodesics induced by 6. Then, § coincides with the associated infinites-
tmal connection

56 (0)) = ST (eat) )] (31)

Here, as before ¢, : |0,1] — M is a smooth curve with initial point c,(0) = .

Proof. Given an infinitesimal connection ¢ : TM — A(P) and its parallel transport 7, along
small geodesics ¢, consider the associated direct connection I’ : Pair(M) +— G(P) given. by
[o(y, z) = [7(y, x)(p),p] for any choice of p € P,. With some abuse of notation; we denote
by 7(c.(t),z)(p) the parallel transport of p € P, to the fibre above ¢,(t) along the curve ¢,
with initial point ¢,(0) = .

The infinitesimal connection 6™ : TM — A(P) of the direct connection I’ reads

5, . d d
07 (E(0) = =T (ex(t), 2] o = - [7(cal®) ) (). Pl Lo
By uniqueness of the horizontal lift, the tangent vector-at ¢ = 0 to the curve ~v(t) =
7(c.(t), ) (p) gives the value of 0(¢;(0)). Taking into account the action of G on T'P, which
makes the choice of p irrelevant, one can identify 07" (¢,(0)) to the class of 4(0) in TP/G
from which it follows that

" (6,(0)) = xp(7(0)) = 8(c(0)),
for any ¢,(0) € T, M. ]

The above proposition shows how infinitesimal connections can be integrated to direct
connections. However, as we shall see in-the next section the correspondence between
direct connection and infinitesimal connection is not one-to-one. This constrasts with path
connections on groupoids, ef. | | that integrate infinitesimal connections along paths in
the base manifold. If the base manifold is connected, path connections are proven to be in
one to one corespondence with infinitesimal connections | , Theorem 6.3.5].

We now specialise to the frame groupoid FE — M of a vector bundle £ — M equipped
with a linear connection V. The associated parallel displacement on E (or parallel
transport) along a curve [0,1] 3¢ — ¢(t) € M from the point x = ¢(0) € M to the point
y = ¢(1) e M, is the map 7.(y,z) : B, — E,, eo — e(1) where [0,1] 3¢ — e(t) € E solves
the equation Ve = 0 for any ¢ € [0, 1] with e(0) = eo.

As before, when the curve c is the geodesic ¢¥ which links = to y we shall simply write

7(y,z) : E, — E,. (32)

This notational convention will apply to any parallel transport along geodesics linking two
specified points.
We have Vx(f) = £ (774, (t), 2) f(cu(t))) ‘t:O'

The parallel transport on vector bundles is considered by Teleman in | , ], and
appears in [ | under the name parallelism, see eq. (21).
Corollary 2.17. | , Remark 2] Let M be a smooth Riemannian manifold endowed with

a connection with positive injectivity radius and let E — M be a vector bundle equipped
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with a linear connection. The induced parallel transport T on E along small geodesics of M
defines a direct connection:

['7:Ux — Iso(E), (y,z) — T(y, ). (33)

on the frame groupoid Iso(E) = M.

Proof. Let [0,1] 2 ¢t — ¢(t) in M be a curve joining = to y in M. The fact that the
parallel transport 7.(y,x) : E, — E, is a linear isomorphism of the fibres follows from the
vector space structure of V' and from the fact that it is invertible (with inverse given by the
horizontal lift e~*(¢) along the inverse curve ¢7'(t) = ¢(1 — t)). Therefore T:(y, z) in Iso(E)
for any curve ¢ and any two points (y, z) for which it is defined. On a manifold M endowed
with an affine connection, for any two points z and y in an exponential-diagonal domain Ua,
letting ¢ be the unique geodesic linking them yields the map 7(y, z).in Iso(E)Y (as before we

X
drop the mention of the geodesic) which in turn gives rise to the direet connection (33). [

We borrow from | ] an easy and illustrative example.

Example 2.18. | , Example 5] Let M = R with poeints z, global vector field 0, = j—x
on M, flat linear connection VY (f(z)d,) = f'(x) 0, and geodesics given by the segments
parametrized by x.

Let £ = M x R be the trivial bundle on M = R, with global section e¢; : M — E, z —
er(x) = (z,1) in E,. A linear connection V- : I'(TM)®I'(E) — I'(E) on E (necessarily
flat) is given by its Christoffel symbol k£ € C*(M) such that Ve, = ke;. The induced
parallel transport of a vector &y ei(x) € B, along a geodesic from z to y is the isomorphism
of vector space 7(y,z) : E, — E, which assigns to a vector {ye;(z) € E, the vector {(y) =
eKW-K@)¢) e E,, where K () = { ~k(z) dz. The direct connection on Iso(E) induced by V
is the global map I'V : Pair(M) — Iso(E) given by

Fv(y,x) By Fy, 61(55) — 7(3/713) 61(17) = KW K@) 61(y)- (34)

In contrast, the two smooth maps
o afyx)ei(x) = eV e (y),
o Bly,z) er(w) = W ey (y),
define linear isomorphisms F, — E, such that a(z,z) = Idg, and B(x,z) = Id|g, which

yield (global) direct connections on Iso(F). But they are not parallel transports, since they
are not of the form eq. (34). O

2.6. Curvature of direct connections. Given two (small) geodesics a and 5 on M, from z
to y and from y to z respectively, the compositon So« is not necessarily the geodesic from x to
z. The parallel transport 7. along geodesics defined by a principal connection on a principal
bundle P — M, then, does not necessarily satisfy the identity 7.,(z,y) o 7¢, (v, ) = 75 (2, x).
For'the direct connection I'” on the groupoid G(P) induced by the parallel transport as in
eq. (33), this identity amounts to I'" being a morphism of groupoids. In this section we
introduce a curvature for a direct connection, which measures the obstruction to it being
a groupoid morphism. Our definition slightly differs from that given by N. Teleman and
J. Kubarski in | , , , |, and by A. Kock in | , |, but it is
equivalent.
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Definition 2.19. Let I' : Pair(M) =— G be a direct connection defined on a diagonal domain
Un. For any z € M, we set

Upr(z) ={ye M | (z,y), (y,2) eUn} = M
and I'(_,z) : UA(z) — G%, y — I (y, ) := ['(z,y) T'(y,x). We call T natural if I"(y, z) =
1, for all z € M and for all y € UX (). Similarly, for any = € M, we set
UR(z) = {(z,y) e M x M | (y,2),(2,9),(z,2) eUpr} = M x M
and call curvature of I' at x the map R'(_, _, z) : UZ(z) —> G¥ given by
R (z,y,2) :=T(z,2) " Tz )l (y,2) €G7, (2,y) € Up(x). (35)

The direct connection I is flat if R''(z,y,2) = 1, for any z € M and for any (z,y) € U3 (z).
This is equivalent to the condition I'(z,y) I'(y, z) = ['(z,z) for any x.€ M and any (z,y) €
U3 (z), or, equivalently, that " : Pair(M) o— G is a local groupoid morphism.

Remark 2.20. A flat direct connection I' satisfies
1, = D(z,y) T(y,x) Vae M,VyeUr(z), (36)
as a consequence of the fact that I'(xz,z) = 1,. Indeed, if eq. (35) holds, then for any = € M
and any y € UA (x) we have (z,y) € UZ (z) and
1, = (2, 2)"'T(z,y)l(y, ) = T(z,y)L(y, 2).

Example 2.21. A direct connection I'" given by a parallel transport as in eq. (34) of
Example 2.18 satisfies condition eq. (36). The direct connections a and  in Example 2.18
have non trivial curvature, yet whereas /3 satifies eq. (36), the direct connection « does not.

[

Example 2.22. Note that a direct connection of the form

Py,z) = o(y)o(z) ", (37)
for some smooth section o : U — G* and some given point = € M, defines a flat connection.

Given a principal bundle P — M with structure group G with Lie algebra g, the curvature
form of an infinitesimal connection 6 : TM — A(P) is the two form Q° in Q%(M, g) defined

by Q(S(Xl,XQ) = [5(X1), 6(X2)]A(P) -9 ([Xl,XQ]x(M)) for any Xz € TxM,Z = 1,2 and any

vector field extension Xi of X;. So the flatness of the infinitesimal connection § amounts to
it being a morphism of Lie algebroids.

Remark 2.23. For the relation between the curvature R' of a direct connection I' on a
groupoid G and the curvature QV? of the corresponding infinitesimal connection V! : TM —
L(G), we refer to | , Lemma 11] for frame groupoids and | , Theorem 12] for general
locally trivial Lie groupoids.

2.7. Flat direct connections. A direct connection I' : Pair(M) »— G is flat if and only if it
is a local groupoid morphism. Such maps have been extensively studied by K. Mackenzie in
[ , Chapter 6], in particular for what concerns the relationship with their infinitesimal
Lie algebroid morphisms. We collect here some relevant results, the first of which is a
description of the structure of a Lie groupoid which admits a flat direct connection.
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Definition 2.24. A Lie groupoid G =2 M is called flat if it is locally trivial and it admits
an atlas of local decomposition maps o, : U, — GV~ (cf. Definition 1.4) whose transition
functions g5 : Uy N Ug — G¥ given by gas(x) = on(x) ' og(z) are locally constant, i.e.
constant on each connected component.

In essence, the subsequent statement is a reformulation of | , Example 6.1.7] in terms
of direct connections. We call a Lie groupoid flat if it admits a section atlas (see Definition
1.4) with constant transition functions in which case we call the groupoid flat.

Proposition 2.25. A Lie groupoid on a connected base admits a flat direct connection if
and only if it is flat. In that case, it is locally exact, namely there is an open covering {U,}
of M and a section atlas o, : Uy — G with constant transition functions such that the flat
connection I' reads

I‘|U()¢><Uo¢(y7x) = Ua(y) Ogl(x)' (38)

Proof. (=) Assume there exists a local morphism I': Uy o= G defined on a diagonal domain
Un, in which case G is locally trivial by Proposition 2.4. We choose an open covering {U,}
of M such that | J (Uy x U,) € Ua andt z € M. For every q, fix a point z, € U, together
with an arrow &, € G¥~ (which exists by the local triviality of G). Then the collection of
oo(z) :=T(x,24) &, builds a section atlas with constant transition functions. Moreover, for
fixed «, the map

be — U xGE x U,

v (), 0at(7)) T oa(s(7)), s(0)
is an isomorphism under which, for all z,y € U,, we have

Iy, z)= (5 1o, 2). (39)
(<) Conversely, let 0,: Uy = Gf;. be a section atlas with constant transition functions
Gop(z) = 05(x)~! 0,(2) on the intersection U, n Ug, and let us set Un := | J, (U x U,). The

map [' : Un — G given by eq. (38) is well defined. Indeed, the transition maps g.s being
constant on the intersection Uyp := Uy N Ug, for (z,y) € U2, we have

Plucva (8 7) (Clogo, (4,0)) = oa(y) 03" (@) 05(x) 05 ()
= 05(y) 05" (¥) 0a(y) gpalz) 0
= 05(Y) 9o.s (V) 950 (7) 05" ().
That I'|y, v, defines a morphism is easily verified.

Example 2.26. With the notations of Example 2.3, the Lie groupoid G(P) = M x G x M
is flat and the direct connection T'y(z,y) = [(y,1), (z,g(z) g(y)~")] is of the form (37) and
hence flat, which-we can also see directly since

Lo(29) Ty(y,7) = [(2.1), (2, 9(2) g(2) )| = Ty(2, 2).

Example 2.27. The fundamental groupoid TI(M) on a connected manifold M has constant
transition maps. Hence, by Proposition 2.25, it admits a flat direct connection I'y : Pair(M) o— II(M).
It can be constructed as follows. Let {U,} be a cover of M by simply connected open subsets,
then Un = |, (Uy x Uy,) defines a diagonal domain. For any (x,y) € Ua, we define I'y(x, y)
as the homotopy class of any path in Ux connecting x and y. This is well defined as any two
paths in U, are homotopic. O

5 (@)
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The importance of the direct connection I'g lies in a factorisation result shown in MK,
which we reformulate here in the language of direct connections.

Proposition 2.28. | , Prop. 6.1.8] Let M be connected.
(1) The flat direct connection Iy : Pair(M) o— II(M) is uniquely determined up to germ
equivalence.

(2) Any flat direct connection I' : Pair(M) o— G on a locally trivial Lie groupoid G on-M
factorises in a unique way through Ty, i.e. there exists a unique groupoid morphism

H:TI(M)— g, (40)
such that T' = H o T.
Remark 2.29. Clearly, the first assertion follows from the second one applied to G = TI(M).

There is a one-to-one correspondence between flat infinitesimal connections and flat direct
connections, a known fact [ , Corollary 6.2.7] that we briefly spell out for the sake of
completeness.

Proposition 2.30. Let G 3 M be a locally trivial Lie groupoid.

(1) The infinitesimal connection §* defined by a flat direct connection T' on G is flat.
(2) Conversely, a flat infinitesimal connection 6 : TM — L(G) integrates to a flat direct
connection I'? on G, which is unique up to germ equivalence.

In particular, a direct connection is flat if and only if its infinitesimal connection is flat.

Proof. The first assertion follows from Lemma, 1.12 applied to the local map I' : Pair(M) »— G
since DI'y; = 6. The flateness of the infinitesimal connection induced by a flat direct
connection follows from the Lie algebroid morphism property of the tangent map along the
diagonal to a local groupoid morphism | , §3.5]. The second assertion follows from part
(2) of Proposition 1.13, including the uniqueness up to germ equivalence.

[

Example 2.31. | , Example 6.1.7) We have L(II(M)) = L(P(M)) = TM, so the
identity map Id : TM — L(P(M)) lifts to a flat connection on II(M) i.e., a morphism

7 : Pair(M) o— II(M), (41)

which is unigue - modulo germ equivalence. This is the flat direct connection on ITI(M) of
Example 2.27 and Proposition 2.28.

The following assertion is a straightforward consequence of Proposition 2.30.

Corollary 2.32. Let M be a smooth manifold endowed with an affine connection.

(1) If w is a principal connection on a principal bundle P — M and T is the direct
connection on G(P) = M induced by the parallel transport on P, then w is flat as a
principal connection if and only if I' is flat as a direct connection.

(2) If V is a linear connection on a vector bundle E.— M and T is the direct connection
on Iso(E) 3 M induced by the parallel transport on E, then V is flat as a linear
connection if and only if I' is flat as a direct connection.
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3. JET PROLONGATION OF BUNDLES AND GROUPOIDS

Jet prolongations of groupoids were first considered by Ehresman | ] and later revisited
by Kolar | |. In this section we briefly review jets of smooth functions and sections,
which are coordinate free objects, and their coordinate dependent representation via Taylor
polynomials. We recall the main notations and facts on jets of local sections of vector and
principal bundles, referring to the book | | by I. Kolar, P. Michor and J. Slovak for details.
We then turn to jet prolongations of groupoids bisections. and discuss the functoriality of
the jet prolongation of gauge groupoids (see eq. (73)) and their Lie algebroids (see eq. (88)).
Specialising to frame groupoids of vector bundles, we further compare the jet prolongation
of a frame groupoid of a vector bundle with the frame groupoid of the jet prolongation of a
vector bundle.

Throughout this section we work in the category of smooth manifolds M with smooth local
maps f : M — M'. Following our previous conventions, we denote by f : M = M’ a smooth
local map defined on some open subset of M, and call it simply a local map. Similarly, we
denote by f : M +> M’ a smooth local map between M and M’ which is invertible with
smooth inverse, that is, a diffeomorphism between two open subsets U.c M and V < M’,
and call it simply a locally defined diffeomorphism.

3.1. Jets and Taylor polynomials of smooth local functions. Let M and M’ be two
smooth manifolds of dimension respectively d and d'. Given alocal map f : M = M’ defined
around a point x € M, the n-jet of f in x, denoted by 57 f, is the equivalence class of local
maps from M to M’ having the same contact of order n of f in x, that is, the same value
and the same derivatives in x up to order n. Jets of functions can be defined for any integer
order n = 0, and JO(M, M') = M x M.

Denote by J(M, M"), the space of n-jets of local maps f : M »— M’ defined around x
and such that y = f(x). We further set

JHM MY = T, MYy TN M MY =) (M, M),
yeM’ (z,y)eM x M’

As equivalence classes, jets are by definition independent of local coordinates in M and in
M’, but a representative of a jet involves derivatives which do depend on the choice of local
coordinates.

Given a choice of coordinates on M and on M’, the identification of a local map f :
M +— M’ fixing f () =y to its local coordinates expression f : R?+—R? | fixing f(0) = 0,

yields an isomorphism | , §12.6] between J'(M, M'), and the real vector space
no= JoRERY) = P SH(RY*) @R = R, [X7, ..., X4y @R (42)
k=1

d+n) .
d
contains the matrix coefficents @}, = ;0 f7(0) € R.

of dimension [( 1] d’" which prolongs the matrix space L}Ld, ~ Mya(R) for n = 1 and

3.2. Higher frame bundle and higher tangent bundle. Jet composition is a key operation
allowing us to express the invariance of jets under change of local coordinates. For two local
maps f : M = M’ around z and f': M'+— M" around f(z) € M’, the jet composition of
jrf and j;}(x)f’ is the n-jet | , §12.3]

Ji@yf o g f =32 (f" o f). (43)
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The jet composition is associative, unital, with a two-sided unit 1, := j7Idy;, and preserves
the inversion, that is, if h : M« M’ is a locally defined diffeomorphism, then (j7h)~! =
j}l‘(m)h_l.

As a consequence, we can identify the jets of locally defined diffeomorphisms A :
M += M’ with the invertible jets from M to M’, that is, with the jet space

invJ" (M, M') := set of invertible n-jets j"h € J*(M, M') with respect to (44)
jet composition,

and consider the n-jet group or n-differential group in dimension d | , §12.6]
GLj(R) := invL} , = invJy(R%, R?), (45)

~ group of n-jets at 0 of locally defined diffeomorphisms A : R?+5R?
preserving 0, with jet composition.

We have GLY(R) = {1¢r,r)} and the first jet group yields the general linear group GLy(R) =
GL4(R), where a jet jih € GLL(R) is identified to the differential dhy € GL4(R).

The effect on jet spaces of the choice of local coordinates on M is ruled by the n-frame
bundle of M | , §12.12) | , §1]

n
i)

F"M := invJ3(RY, M) =2 (46)
~ set of n-jets at 0 of locally defined diffeomorphisms ¢ : R% «= M.

This is a principal GL(R)-bundle with right action given by the jet composition jjpojih =
Jo(poh), where ¢ : R? s> M is a locally defined diffeomorphism around 0, which represents
a choice of local coordinates on M around @(0) = z, and h : R*+5R? is locally defined
diffeomorphism preserving -0, which represents a change of local coordinates on M at x.
We have FOM =~ M x {1} and the usual frame bundle corresponds to the 1-frame bundle
F'M =~ F(TM), since a jet jip € F'M is equivalent to the pair (¢(0),dpo) € FM where
©(0) = z € M and where the differential dp, : R? S T, M determines a linear frame of TM
at x.

The effect on jets of reading a local map f : M — M’ in local coordinates on M, is
governed on M’ by the n-tangent bundle of M’ in dimension d, also called the space of
n-velocities on M" in dimension d | , §12.8],

oM’ = J(RY, M) 25 M (47)

The n-jet group GL%(R) acts on the left on T}M’' by jet composition with the inverse
diffeomorphism, that is j@h - 52 f = jo(f o h™) where f : R®+— M’ is a local map around 0
and h : R+ R? is locally defined diffeomorphism preserving 0. In particular, in dimension
d =1, the n-tangent bundle of M

TM = Jo(R, M) =5 M, (48)

is a jet prolongation of the usual tangent bundle TM = Jj(R, M) of vectors tangent to
curves on M.

Combining the above ingredients yields a description of the jet bundle J"(M, M') — M as
the fibre bundle associated to the n-frame bundle of M with fibre given by n-tangent space
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of M" in dimension d, that is (see e.g. | , §12.12])
JUM, M) = F"M % g Ty M (49)
= {licw.dof] | ¢ : RS M, f: R s> M'}
Jaf = ligw. g f] such that f = fop.
The bundle projection J"(M, M') — M’ is then inherited from that of the fibre T} M’.

3.3. Jet prolongation of fibre bundles. The n-jet bundle of a fibre bundle 7 : £ — M
is the subset

J"E := set of n-jets of smooth local sections f : M +— F of E (50)

of the jet space J"(M, E), which enjoys the following properties:

e J"E is a closed submanifold of J"(M, E) | , §12.16],
e the anchor restricts to a bundle map which coincides with the target projection,
namely mg : J'"E — M X B = E,
e the source 7" : J"E — M commutes with 7} and m, and is locally trivial | , §6.2],
e the partial jet projections descend to the spaces J*E with 1 <k <n — 1.
The (source) jet projection 7" : J*E — M is a fibre bundle, while the target jet bundle
g o J"E — E is again a filtered tower of affine bundles

- L 2 rl
JUE SR S S JE S J°E = B, (51)
A smooth map ¢ : E — E’ between two fibre bundles 7 : £ — M, 7’ : E' — M’ induces
a smooth map between their n-jet prolongation

J: (7" JUE - M) — (7" D JUE S M), jio — J¢(jo) == jl(doo).  (52)
If #: E — M is a vector bundle of rank r with typical fibre given by a vector space

V = R", then the source jet projection 7" J"E — M is also a vector bundle | , §12.17].
The fibre of J"E is modelled (in the affine filtered sense and for given local coordinates) on

Jo (R, V) = T}V, (53)
where d is the dimension of M. Equivalently, the fibre is modelled on the real vector space
P} :=TiR = JJ(RY,R") = R"@QL], (54)

~ PSRN QR = R, [ Xy, ..., Xq| ®R"
k=0

d+n

), )7’, that is, the space of R"-valued polynomials in d variables.

of dimension (

3.4. Jet prolongation of structure groups. We saw that the jet bundle of a vector
bundle &' — M with fibre R” bundle J"E — M has fibre P}, = T7(R") (see eq. (54)). Its
structure group is given by the subgroup of GL(F},) which hosts the transition functions
Gap of J"E, defined on the intersection U,3 = U, N Up of overlapping charts in a trivializing
atlas {U, € M} of E.

Such maps are naturally described as jets of the transitions functions g,s of E. If E has
structure group G < GL,(R), then the structure group of J"E contains the jets in 0 of local
maps ¢ : R?+— G, that is, the jets Jig in the n-tangent space T}G (defined as in eq. (47)
with M’ = G)), together with the jets in 0 of locally defined diffeomorphisms & : R? += R?
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fixing the point 0 € R that is, the jets jo'h in the n-jet group GLH(R), cf. eq. (45). Since
G is a Lie group, the space T7}G is also a Lie group, with the operation
Jog - Jog = Jo(99') (55)
induced on two smooth local maps ¢,¢’ : RY+>G by the pointwise product g¢ in G-
Furthermore, the action of the diffeomorphism A on the variable of g becomes a right action
of GL}(R) on TG by jet composition. Both contributions, from jih in GL}(R) and from
Jog in T7G, must be taken into account to describe the jets of transition functions of £.
Finally, the structure group of J"E reduces to the the semidirect product | , §15.2]
WiG = GLy « T;G = { (jgh, i) | h G R +5G }, (56)

called the n-jet prolongation of G in dimension d, with usual semidirect group law
(Joh.gog) - (Gol',dog’) = ( shogoh', (3590 g h’)J{fQ’) (57)
= (J(ho ). J3M(g o 1)),

which makes use of both the jet composition (43) and the group operation (55).
The transition functions of E can also be seen as G-equivariant maps

Ug‘%ﬁ x G — Ua|Ua5 x G, (z,1)— ($7ga[3($)),

and the jet prolongation group W7 G can be viewed as the jet space | , §15.2]:

W7G = set of n-jets at (0,1) € RYXG of G-equivariant locally defined
diffeomorphisms ¢ : R? xG +5 R? xG which preserve 0 € RY. (58)

o.)¢ of the G-equivariant

Here, a pair (jih,jig) € GLY x T7G is mapped to the jet j
) nd therefore, ¢(z,a) =

locally defined diffeomorphism defined by ¢(z,1) = (h(z), g(z
(h(zx), g(x)a) for any a € G.

Example 3.1. In particular, if G = GL,.(R), there is an inclusion of groups
WiGL,(R) = GLy(R) x T/ GL,(R)—~GL(P},), (59)

which assigns to the pair of jets ('"h,jg‘g) the linear invertible map on Pj, = Jo(RY, R
acting on' the jet jof = f(0) + j2f of a smooth local function f : R?s—R" (the local

coordinates expression of a section of E) in adding the term g(0) - f(0) to the n-jet at 0 of
the function

[

3.5. Jet prolongation of principal bundles. Let 7 : P — M be a principal bundle with
fibre given by a Lie group G. According to eqs. (49) and (53), the jet bundle J"P — M
of smooth local sections of P has typical fibre modelled on the higher tangent Lie group
T7G. However, J"P is not a principal Ty G-bundle since we need a jet prolongation of P
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with structure group given by the jet prolongation group W7G = GL x T}G. Instead, we
consider the jet space | , §15.4], | , Formula (33)]

WP = F"M x J"P = {(j{v.jmp) | ¢(0) = 2}, (60)

which describes the jets of local sections of P together with a choice of local coordinates
allowing to realise its transition functions as actual elements of a matrix group. An element

of W"™P can equivalently be represented as
™

M@P

(o, jip) = job ‘| / (61)

Rd

where p = p o : R?+— P is such that 5(0) = p(z).
The Lie group 7} G acts on this jet space by

(G0, 3op) - Gog == (J'Sw, i (p(go w‘l))),

where ¢ : R? +— G is a smooth local map defined around 0. Tt can be prolonged to an action
of the jet group WG = GL} x T}G as

(Gow:dep) - (Goh.Jog) = (J'SL(%) o h), jo(p(ge(po h)*l)))),
which is proved to be a principal action. The bundle W”P is therefore a principal W} G-
bundle, called the n-principal prolongation of P.

In analogy with the alternative presentation of the structure group WjG given in (58),
the bundle W™ P can alternatively be defined as the jet space | , §15.3]

W"P = set of n-jets at. (0, 1)‘of bundle automorphisms R? x G »— P : (62)
above base maps R? = )/

with bundle projection to M given by the projection to M of the jet target to P.
One can further check that a morphism ¢ : P, — P, of two principal bundles induces a
morphism of principal bundles W"¢ : W"P, — W"Ps.

3.6. Associated jet bundles and reduction of jet groups. Let P — M be a principal
G-bundle and let E = P x¢ V be an associated fibre bundle with fibre V. It is shown in
[ , §15.5] that J™E is the fibre bundle associated to W™P with fibre T}V, that is,

J'E = W"P xynra T,V (63)
Since £ = P xg V', we have
THE =T7P xwne T}V,
and hence
JVE = F"M Xgram THE = F'"M Xara ToP xwic TV = WP g ToV.
Example 3.2. Let us consider a vector bundle F of rank r, with typical fibre R" and

structure group GL,(R), from which we can build three interesting jet bundles:

(1) On one hand, the jet bundle J"E is a vector bundle with typical fibre T} R" = P},
and its frame bundle F(J"E) can be viewed as an associated principal GL(P},)-
bundle: ’

J"E = F(JnE) XGL(Ple,r) PCZT’
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(2) On the other hand, the principal GL,(R)-bundle associated to E is the frame bundle
FE such that £ =~ F'E xgr, ) R". The existence of its principal jet prolongation
W"FE verifying the identity (63), namely J"E = W"FE xwnar, &) Py, says that
the structure group of J"E can always be reduced to WjiGL,(R) & GL(P},), and
therefore we have

F(JnE) ~W"FE XW(?GLr(R) GL(PCZT) (64)

(3) Finally, if the structure group of E can be reduced to G < GL,(R), so that there is
a principal G-bundle P — M such that F' = P x¢R", then by eq. (63) the structure
group of J"E can be further reduced to Wj3G < W}GL,(R) and we have

J'"E=W"P XW;G PIZT’
and hence

W"FE = W"P xywsa WiGL,(R), (65)
F(J"E) = W"P xwc GL(PL). (66)

Note that there is a proper inclusion of groups
WiG < WiGL.(R) € GL(P},),
and therefore a proper inclusion of bundles
WwnpP < W'FE < E(J"E). (67)

3.7. Jet prolongation of groupoids. Following | I, 1 , 810, [ , §4.5], we recall
the definition of the jet prolongation of a Lie groupoid G =3 M by means of local bisections
defined in §1.9. The n-jet prolongation of G is the jet space

J"G = set of n-jets-of local bisections o : M »— G , (68)

together with the structure of a Lie groupoid on M induced by that of G:

(1) source and target maps s",t" : J"G — M given respectively by the surjective
submersions s"(j2a) = x and t"(j0) = t(o(x)) for any x € M,

(2) the multiplication j%0’jro = j*(o’ e o) defined if only if 2’ = ¢, (z), where o is the
semidirect product of bisections given in Section 1.9,

(3) unit u"(z) = 1 = jxu Where u: M — G is the unit map of G,

(4) inverse (j7o)~! = = Jprr()® ! where 07! is the inverse local bisection as given above.
Since G is a fibered manifold on M by the source map, the jet prolongation J"G enjoys the
same properties as the jet bundle of a fibre bundle described in Section 3.3. In particular:

e J"G is a closed submanifold of the jet space J"(M,G) | , §12.16],

e the natural projection gy J"G — G, jro — o(z) is locally trivial,

e the jet projections nf | : J*G — J*1G, jko — jilg, for any 1 < k < n, give a
filtered tower of affine bundles | , §12.11] similar to (51)

J"G — Jnflg FON Jlg — JOQ = Q, (69>

carrying each a Lie groupoid structure over M.
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Furthermore, the natural projection 7 : J"G — G is a groupoid morphism. In fact, for any
0,0’ in Bi,.(G) and for any = in M such that ¢’ is defined in 2’ = ¢, (x), we have

o (Jro’ jro)) = ¢ (j; (0" e 7)) = (0" e 0)(2)
= 0'(2') o(x) = w5 (j0") w5 (o).

Given a smooth map ¢ : G —> G’ between two Lie groupoids over M, and using the map
Bioc(¢) of eq. (19), we define a smooth map between their n-jet prolongation Lie groupoids
by setting

J"¢: J"G — I, o — J"6(jio) == ji (¢ o o). (70)

If ¢ is a groupoid morphism, then J"¢ is also a groupoid morphism, because Bioe(¢) is a
morphism of pseudo-groups (cf. Paragraph 1.9).

Thanks to the locality of the notion of jet, eq. (70) actually extends to any local map

¢ : G+ G’ defined on an open neighborhood U of the diagonal w(M) in G, where u is the
unit on G. Explicitly, by (19), the map ¢ induces a map

By(G) — B¢;1(U)(g/)7 o=goo, (71)

for any open subset U < M chosen small enough so that w(U) lies in & and we build a local
map J"¢ : J"G+—> J"G" defined on any open neighborhood U" of the diagonal u"(M) =
{jPu, x € M} in J"G such that WS(Z/I”) c U as follows.

An element in U™ is the jet j2o of a local bisection o of G defined in a neighborhood of
x such that 7y (j20) = o(x) € U. The domain U, of o should be chosen small enough so
that the image o(U,) < G is contained in Y. Note that with the Fréchet topology induced
by the supremum norm in all derivatives of order no larger than n on compact subsets, the
union |J,c,, Ujno of open neighborhoods of the point u"(xz) = jlu in J"G gives rise to a
neighborhood U" of the diagonal in J"G with the property that 7y (L{”) lies in U.

We set

Jo(fic) = (@ oal,,) (72
Proposition 3.3. | | The n-jet prolongation of a gauge groupoid G(P) =3 M is isomorphic
to the gauge groupoid of the m-jet principal bundle W™ P, namely

J"G(P) = G(W"P). (73)

Furthermore, the jet prolongation of a morphism ¢ : G(P\) — G(P») yields a morphism
J"o : G(WnP) to G(IW™Py) of gauge groupoids.

Proof. This result is proved in | , §4, after eq. (15)] for all natural functors. ]
Examples 3.4. Proposition 3.3 gives rise to several examples:
(1) For P =M x G we have G(M x G) = M x G x M, and
J' M x G x M) ~GW"M x G)) =~ (F'M xgrn F'M) x TjG, (74)

(2) Specialising to the gauge groupoid of the trivial bundle P = M x {1} yields the pair
groupoid Pair(M) = G(M x {1}). Since T}({1}) = {1}, eq. (74) with G = {1} yields

J" Pair(M) = inv.J* (M, M) = G(F"M) = F*M X gpa@ F"M, (75)
which is confirmed by W™ (M x {1}) = F"M (cf. eq. (46)).



DIRECT CONNECTIONS ON JET GROUPOIDS 39

For n = 1, since GL}) = GLy(R) and F'M = F(TM) is a frame bundle, the 1-jet
groupoid is a frame groupoid | , Example 1.12]

J' Pair(M) = G(FM) = Iso(TM). (76)

(3) The frame groupoid Iso(E) of a vector bundle E with rank r is the gauge groupoid
of the frame bundle F'E with fibre GL, := GL,(R). It follows from eq.(73) that

J'Is0(E) = G(W"FE) = W'FE xywsqr, WFE. (77)

(4) Suppose that the vector bundle E of rank r admits a reduction of its structure group
to a subgroup G < GL,(R) and further to the trivial group {1} < GL,(R) (which
forces E to be trivializable, i.e. £ = M x R"). Then its frame bundle F'E admits a
reduction first to a principal G-bundle P, and further to the trivial principal bundle
M x {1}, which yields a sequence of gauge subgroupoids

G(M x {1}) = Pair(M) < G(P) « G(FFE) = Iso(E).

The jet bundle J"E has structure group GL(P},), frame bundle F'(J"E) and frame
groupoid Iso(J"E). Applying the n-jet prolongation to all ingredients yields a sequence
of subgroups

W1} = GL'(R) € WG = GLE(R) x TG (78)
c WiGL, = GL'(R) x T}GL,
< GL(F;,),

which in turn induces a sequence of reduced principal bundles
WM x {1}) = F*M < W"P = F"M x J"P (79)
c W"FE = F"M % J"FE
c F(J"E),

where P is the reduced frame bundle F'E with structure group G. We finally get a
sequence of subgroupoids

G(F"M) = J" Pair(M) <« G(W"P) = J"G(P) (80)
c G(IW"FE) = J"Iso(E)
c G(F(J"E)) = Iso(J"E).

[

3.8. The frame groupoid of a jet prolonged vector bundle. The frame groupoid
Iso(J"E) of the jet bundle J"E of a vector bundle w : E — M plays a central role in the
context of regularity structures. It is the gauge groupoid of the frame bundle F'(J"E), which
is a principal GL(P},)-bundle and Iso(J"E) contains J"Iso(E) = G(W"FE) as a proper
subgroupoid.

Indeed,

WiGL, = GL}(R) x T}GL, « GL(P},), W"FE=F"M X J'"FE c F(J"E)
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and by egs. (64) and (73) we have
Iso(J"E) = G(F(J"E)) = F(J"E) XGL(Py,) F(J"E)

>~ W"FE xwnar, F(J"E) (81)

=~ W"FE xwnar, GL(P},) xwyar, W'FE.
This shows that J"Iso(F) is a proper subgroupoid of Iso(J"FE), with inclusion given by

[A, B]. — |A, 1, B]. for A, Be W"FFE,
where 1 is the unit in the group GL(PZZT) and where the equivalence relations are
(AH,B) ~(A,BH') and (AH,G,BH')~ (A,HG(H')",B)

for any A, Be W'"FE, Ge GL(P},) and H, H' € W}GL,.

3.9. Jet prolongation of Lie algebroids. The n-jet bundle of a Lie algebroid £ — T'M
is the vector bundle J"L — M of its underlying vector bundle £ — M. It turns out | ,

Proposition 1] | , Example 6.11] that this jet bundle is again a Lie algebroid J"L — T'M,
with anchor and bracket given by
a(j; X) = a(Xe) and  [J7X 57V = j([X, Y], (82)

for any smooth sections X,Y of £ and any z in M.
If ¢ : L — L' is a smooth map between Lie algebroids, there exists a jet prolongation

T JL = JUL X JUe(jEX) = (g0 X)), (83)

If ¢ is a morphism of Lie algebroids, by (82) the map J"¢ is also a morphism of Lie algebroids.
Hence J" is a functor on the category of Lie algebroids.

The n-jet prolongation of the Atiyah algebroid A(P) — M of a principal bundle P — M
is isomorphic to the Atiyah algebroid of its n-jet principal bundle W™ P | , §2 Eq. (8)]

JUA(P) =~ A(W"P). (84)

Specialising (83) to £ = A(P), we see that the n-th jet prolongation defined in eq. (83)
applied to the morphism of vector bundles A(¢) : A(P1) — A(F»), with P, — M and
P, — M two principal bundles, gives rise to the map J"A(¢) : J*A(P,) — A(P,), which
coincides with A(W™g¢) : AW"P,) - A(W"Py).

Example 3.5. In particular:

(1)-If P = M x {1} is the trivial principal bundle with trivial fibre, we have A(M x {1}) =
TM and W™(M x {1}) = F"M, therefore | , Proposition 1], | , 82 Eq. (6)]

J'TM = A(F"M). (85)

The case n = 1 is particularly important for connections, and gives a sequence of key
isomorphisms induced by egs. (85), (9), (76) and Example 1.11 (4):

JITM = A(FM) = L(J" Pair(M)) = L(Iso(TM)) = Der(TM). (86)

(2) If P = M x @G is the trivial principal G-bundle, then A(M x G) = TM & (M x g)
and W™(M x G) = F"M x™ T}G, therefore

J(TM @ (M x g)) = A(F"M x" T}G). (87)
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(3) If P = FFE is the frame bundle of a vector bundle £ — M, then A(P) = Der(F) is
the Lie algebroid of derivations of E and W"(FE) = F"M x™ J"FE, therefore

J"Der(E) = A(F"M x™ J"FE).

[
If G is a Lie groupoid and LG its Lie algebroid, there is an isomorphism of Lie algebroids

[ , Proposition 1 and Theorem 1], | , Example 9.5 (e)]
L(J"G) = J"L(G). (88)

Furthermore, the n-th jet prolongation ;"¢ of a morphism ¢ : G; — G5 of two groupoids
induces by differentiation a morphism on their n-th jet prolongations D(j"¢)|y : £(J"Gi) —
L(J"Gs).

Example 3.6. (1) For P = M x {1}, we have on one side G(M % {1}) = Pair(M)
hence J"G(M x {1}) = J"Pair(M) = G(F"M) by eq. (75), and onthe other side
L(Pair(M)) = TM hence J"L(Pair(M)) = J"T M, giving a sequence of isomorphisms
[[Kol0s, §2.(6)]

L(J"Pair(M)) = L(G(F"M)) = A(F"M) = J"T M. (89)
The case n = 1 reproduces the isomorphisms.of eq. (86).
(2) For P =M x G we have G(M x G) = M x G x M, LIM xGx M) =TMe® (M x g)
and (by eq. (74)) J"(M x G x M) = (F"M xarr F"M) x T7G so that

LJY (M x Gx M))=J(ITM® M xg)),

which is consistent with eq. (87).
(3) If P = FE if a frame bundle, then G(FE) = Iso(F) is the frame groupoid of E,
L(Iso(E)) = Der(FE) and we have

L(J"so(E)) = J"Der(E).
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4. DIRECT CONNECTIONS ON JET GROUPOIDS

In this section, we build direct connections on jet prolongations J"G of Lie groupoids from
a direct connection I' on a Lie groupoid G, by means of an affine connection on the underlying
manifold. Building blocks of the construction are the exponential (local) bisection (Definition
4.3) and the related exponential direct connection AM in eq. (97) on the frame groupoid
G(FM) ~ Iso(T'M), both of which use the parallel transport on 7'M induced by the affine
connection on M. Taking jets of the exponential bisection gives rise to the exponential
direct connection ASZ) (eq. (96) in Definition 4.4) on the jet prolongation J" Pair(M) of
the pair groupoid Pair(M) of M. In Theorem 4.5 we prove that the exponential direct
connection ASZ) is a jet prolongation of AM and in Theorem 4.6 that the infinitesimal

connection of AS\Z) on J" Pair(M) is the exponential n-th order prolongation 51(\2) :TM —
L(J"Pair(M)) = J*TM (eq. (99)) of the affine connection on M used in [ , §5] to
build infinitesimal connections on jet prolongations of groupoids. ~A similar construction
yields a direct connection I'™ on the jet prolongation J"G of a general Lie groupoid G from
a direct connection I' on G, see eq. (103) in Definition 4.7, which gives back eq. (96) when
G = Pair(M). Corollary 4.8 shows that I'™ which yields an n-th order prolongation of
I', factorises through AS\Z). In Theorem 4.11, we show that any flat connection on the jet
prolongation J"G of a Lie groupoid over a flat manifold, factorises through AE\Z). Direct
connections on the frame groupoid Iso(J"E) of a jet bundle are of special interest in the
context of regularity structures. This is the gauge groupoid of the frame bundle F(J"FE)
with structure group GL(PCZT), but it is not the jet prolongation of a groupoid. While this
section mainly focusses on direct connections on jet groupoids of frame bundles, we dedicate
§4.7 to frame groupoids of jet bundles. Inspired by | |, we build a direct connection
'™ on Iso(J"E), which is not a jet prolongation of T' by means of local Taylor expansions,
and compare it with T™ in Proposition 4.18.

4.1. Higher order direct connections. Let G =2 M be a Lie groupoid with n-jet prolongation
groupoid J"G.
Definition 4.1. We call n-th order direct connection on G a direct connection on the
n-jet groupoid J"G, that is, a local map
Y : Pair(M) «— J"G, (90)
such that
(1) X(x,y) € (J*G), for all (v,y) € Ua,
(2) for all z e M, X(z,z) = u"(z) the unit in (J"G).
Ifwy: J°G — J°G = G is the jet projection described in §3.7, the composite map
Yo =my o : Pair(M) »—>G (91)
is a direct connection on G, that we shall call 0-th order projection of .

Viceversa, given a direct connection I' on G, we call n-th order prolongation of I' any
direct connection '™ on J"G such that (I'™)y = 7 o T =T

Proposition 4.2. If a jet groupoid J"G admits a direct connection, then J"G is the gauge
groupoid of a jet prolonged principal bundle, that is,

J'G = GW"P) (92)
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for some principal bundle P — M such that G = G(P).

Proof. By Proposition 2.4, we know that if J"G admits a direct connection X, then J"G =
G(Q) for some principal bundle ) — M. Since the existence of ¥ on J"G implies the
existence of the direct connection >y on G, again by Proposition 2.4, G is the gauge groupoid
of a principal bundle P — M. By eq. (73) we then necessarily have @) = W"P. ]

In the sequel we construct a jet prolongation
Pair(M) 2 (y, )« T (y,z) € (J"G)”
on the jet groupoid J"G of a direct connection I' : Pair(M) = G on a given groupoid G.

4.2. Exponential direct connection on the jet pair groupoid. Assuming that the

manifold M is endowed with an affine connection V¥, we first build an exponential bisection
on Pair(M).

Definition 4.3. For any x in M, let U, denote an open neighborhood of x chosen in such
a way that any two points in U, are linked by a unique geodesic. For any z in U,, let
exp, : Vo. € T.M — M denote the exponential map along geodesics and let 7 (z, x) :
T,M — T,M be the parallel transport determined by V* along the geodesic ¢? linking x
to z. For any choice of y in U,, we call exponential bisection from x to y the local
bisection, denoted by ¥ : z — (¢¥(z), 2)), defined on U, by the diffeomorphism

oYU, > M, z — exp, (TM(z,x)(expw’l(y) )), (93)
el M

which clearly sends = to y.
The exponential bisection 7¥ which is smooth in (y,x), is the unique local bisection on

Pair(M) with the following properties

(1) mi(z) = (y, ),

(2) if y = z then 7¥(2) = (z,2) for any z € U,,

(3) the local vector field U, 5 z — exp;* (¢%(z)) € T.M is parallel.
The last assertion follows from the fact the integral curve [0,1] 3 ¢ — exp,(tX) of any
X e Vo, € T, M coincides with the geodesic ¢¥ linking = to y = exp,(X), then:

(4) for anyz.in Uy, t+— @ig(t)(z) is the integral curve of T(fzv[X in T, M, i.e. for any t we
have
050 (2) = exp, (7" (2, 2)(tX)) = exp, (7" (2, 2)X), (94)
(5) and in particular
d o
4|0 = ()X (95)

We use the exponential bisection to construct a connection on J" Pair(M).

Definition 4.4. Let U = | J,.,; U x U, be the diagonal domain covered by uniformly normal
neighborhoods as in Definition 4.3. We call exponential n-th order direct connection

on Pair(M) the local map Ag\? : Pair(M) »— J" Pair(M) defined on any (y,z) in U by

AW (y,z) = j2 (2 — 7U(2)). (96)
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Eq. (96) says that the bisection 7¥ is a “jet primitive” for the groupoid direct connection
Al

Note that AS\Z) is a jet prolongation to J" Pair(M) of the trivial connection Id on Pair(M).
Also, by eq. (76) we have J! Pair(M) ~ Iso(T'M) from which it follows that J" Pair(M) ~
J" so(TM). We now show how AS\Z) can be viewed as a jet prolongation of a direct
connection on the frame groupoid G(FM) ~ Iso(TM) of M. The direct connection on
Iso(T'M) is built along the lines of Corollary 2.17 applied to the vector bundle £ =T M by
means of the parallel transport along small geodesics induced by the affine connection V:

Ay : Pair(M) = Iso(T M) (97)
given by Ay (y, z) = [77(y,z)(¢"), "] for any choice of a frame " in F, M, cf. §2.5.

Theorem 4.5. The exponential n-th order direct connection Ag\? on J"Pair(M) is a jet
prolongation of the direct connection Ay defined in eq. (97).

Proof. For given (y,z) in Pair(M), the exponential bisection z — 7Y(z) = (¢¥%(2),2) is
a smooth map defined in the neighborhood U, of z, therefore its n-jet at x belongs to
the jet groupoid J"Pair(M) and lies in the fibre above 7¥(z) = (y,x). Since ¢%(z) =
exp, (7™ (z, ) exp; '(2)) = exp,(0) = z, we have j7¢% = j"Idy, = Idy,(z) = 2 and therefore
AS\Z) (x,x) = u"(x) is the unit 1, in the jet groupoid J" Pair(M). Hence the map AS\Z) defined
by eq. (96) is a direct connection on J" Pair(M).

For n = 1, we have AS\? (y,2) = jin¥'="((y,2),d(¢¥).), where the differential at 2 of the
diffeomorphism 2z — ¢¥(z) precisely gives the parallel transport 7 (y, ) along the geodesic
linking = to y and hence Ag\lj) = Ay OJ

4.3. Exponential infinitesimmal connection on the jet pair groupoid. We show that

the infinitesimal connection induced by the direct connection AE\Z) in Definition 4.4 coincides
with the jet prolongation of the infinitesimal connection of Aj,.
An affine connection VY on M amounts to an infinitesimal connection

Oy 2 TM — Der(TM) ~ L(Iso(TM))

on the frame groupoid Iso(T'M). By eq. (86) we have Der(TM) = J'TM. According to
[ .83 or | , §5], if VM is torsion-free then d,; can be prolonged to an n-th order
Lie algebroid connection

8 TM — J'TM =~ A(F"M) = £(J" Pair(M)), (98)

called the exponential n-th order prolongation of d,;. On a vector X in T, M, it is
defined as the n-jet

0 (X) = i, (Dexp, (X)) (99)

where Dexp, : T(T,M) — TM is the differential of exp, in a neighborhood of the null
vector 0, in T, M and X is the vector field on T, M obtained by translation of X.
Note that 67 (X) = Dexp,(X) = 6y (X).
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Theorem 4.6. The infinitesimal connection §AYT of the exponential n-th order direct connection
AS\Z) on J" Pair(M) is the exponential n-th prolongation (5](\2) given in eq. (99) and we have
A (X) = 60N(X) = jr(z > M (2,2) X) (100)
for any X wn T, M.
Eq. (100) says that the parallel transport along small geodesics is a “jet primitive” for the
Lie algebroid infinitesimal connection 5(Mn).

Proof. Let us fix a point z in M and a vector X in T, M, and show eq. (100). The jet

in eq. (99) is computed for the function T,M 3 v — (Dexp,),(X(v)), where (D exp,), :
T, (T, M) — Texp, ()M is defined on a vector Y, in T, (T, M) by the derivative

(Dexp,)u(V) = |y exp,(0(1)).

Here, t — v(t) € T, M is the integral curve for Y, (i.e. such that %‘t:ov(t) =Y,) such that
v(0) = v. Since T, M is a vector space, for any v in 7, M there is a canonical isomorphism

of vector spaces
T,M = Ty (ToM) —=> T,(T, M)

which identifies X in T, M first to the vector 0, + X in Tp, (T, M) and then, by translation,
to the vector v + X in T, (T, M). A generic vector Y, in T,(T,, M) is therefore necessarily of
the form X (v) = v+ X for some X in 7, M, and its integral curve through v is v(t) = v +t.X.
We have

o
dt
= TM(epr(U), x)X € Texp, ()M,

(D expy)(X () = —|,_, exp, (v + tX)
where ¢ is the geodesic linking z to exp,(v), and eq. (99) gives
(5](\2)()() = jo (v > 7™ (exp,(v), 2) X). (101)

On the other hand, setting y = exp,(X) in U, and denoting as before by ¢t — c%(t) =
exp,(tX) the geodesic linking x to y we find that

(n) d n d " o
O (X) = 2|, AV (1) 2) = |32 (= = 020 (2)
d, . p . .
= %‘tzojx (z— gp;(t)(z)) in £(J" Pair(M)),
. d &
= j" (z . E‘togoxz(t)(z)) . (102)

We have used the fact that the derivatives in ¢ and in the coordinates of z commute since all

the maps are smooth and the variables ¢ and z are mutually independent. Now, according
Y

to eq. (94), for any z in U, the curve ¢t — go?”(t)(z) is the integral curve of the vector

T (2, 2)X € T,M. From eq. (95) it then follows that

A (X) = g7 (2 > M (2,2) X).
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Setting z = exp,(v), we see that this formula and eq. (101) coincide, thus proving eq. (100).
H

4.4. Exponential direct connections on jet prolonged groupoids. Let M be equipped
with an affine connection VM. In this paragraph we prove that any direct connection on
a Lie groupoid ¢ = M can be prolonged to the jet groupoid J"G using the exponential
bisection 7¥ of Pair(M) given in Definition 4.3.

Definition 4.7. Let I' : Pair(M) »— G be a direct connection defined on a diagonal domain
Vc MxMandletUd =, Us x U, be the diagonal domain covered by uniformly normal
neighborhoods as in Definition 4.3.
We call exponential n-th order prolongation of I' the local map '™ : Pair(M) + J"G
defined by
r"(y,z) = j; (Tomt)e J'GY (103)
for any (y,x) e VnlU.

Corollary 4.8. The exponential n-th prolongation T'™ ;Pair(M) +— J"G of T indeed defines
a direct connection on the jet groupoid which prolongs I'. Moreover, it is compatible with the
filtration on J"G

7 D = pn=bgn | (104)
where 7_, : J"G — J"7'G are the canonical projections and it factorises through Ag@),
namely for any two points x,y in an exponential neighborhood of the diagonal of M, we have

P (y, ) = g, T 0 INRIORS) (105)

Proof. We only need to check eq.(104). Foralocal bisection ¢ of G defined in a neighborhood
of x, we have

mr_ (DU (y,2)jio) = mh_y (o)) = j2 ' (Don?) =T V(y,2)j0 0.
L]

Remark 4.9. The family {I'™,n € Z-,} is a projective system of direct connections in the
sense of §6.4.

We now show that the infinitesimal connection 6™ of I'™ factorises through 6(Mn) =
j2(z = 7™ (2, z)) defined in eq. (99).

Proposition 4.10. (1) The infinitesimal connection of '™ can be expressed in terms of
the infinitesimal connection of I' as follows
" (X) = g (2 0" (P (2, 2) X)), (106)

for any X in T, M. As expected, ST s therefore a jet prolongation of o' .
(2) Moreover, §* o factorises through the exponential infinitesimal connection (5(Mn) :TM —
JVTM of eq. (98) as follows

st = st o 6\, (107)
where J" is given by (70).

Proof.
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(1) Let us fix a point z in M, a vector X in T, M together with its integral curve

c¥(t) = exp,(tX) for t in [0, 1], where we have set y := exp,(X). The infinitesimal
connection of '™ is computed using eq. (27) in §2.4. Since the derivatives in ¢

commute with the partial derivatives with respect to the local coordinates in M and
in T'M, we have

d
dt

:%‘tzojg( — T o 00(2)
=52z SLL PO, 2) (108)
=iz = 0N ) X)),

o1 () = = (D), )

where as before 7% (2, x) is the parallel transport along the geodesic c? linking x to

z. The last equality follows from the fact that % \ Ogogf”(t)( ) =1 (z,2)X € T.M
(cfr. eq. (95)). This proves eq. (106).

For n = 0, eq. (106) says that 07" (X) = 67 (7™ (z, 2)X) = 6 (X), therefore 6"
is indeed a jet prolongation of 5F

Let us now compute j70" o (5 ( ) using the expression (101). Choosing a vector
ve T, M, we set z = exp,(v) and let as before cZ denote the geodesic from z to z.
Then t — exp, (v + tX) is the integral curve of the vector 7 (exp,(v), z) X, so that

j;L(SF o (S(Mn)( X) = jx(SF (]0 (v — TM(GXPI(U),.T)X))
= j{f(v — 5F(exp$(v + tX)))

‘ d
=% (v —> %‘tZOF(expx(v + tX),x))

d .
b so(o i 0.0)

d,
= ot (2 = Dlexp, (7 (2, 2)t), )

N d
=32 (== Gl-ol (0 2), )
= 67" (X)

on the grounds of eq. (108). This proves eq. (107).

4.5: The flat case. Let G be a Lie groupoid. A flat infinitesimal connection

§:TM = L(FM) —> LG

i.e., a morphism of Lie algebroids, can be prolonged to a morphism of Lie algebroids

J"S + JTM ~ L(F"M) — J"L(G).
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By Proposition 1.13, since L£(J" Pair(M)) ~ L(F"M) ~ J"T'M, the map J"§ integrates to
a (uniquely defined) local morphism
T J" Pair(M) o J"G. (109)

If moreover M is equipped with a flat connection, the corresponding infinitesimal flat
6(”)
connection TM -5 L(J"(Pair(M))) defined in eq. (98) canonically integrates to the flat

direct connection AS\Z).
The resulting composition

7o AW . P(M) o J*G
defines a direct connection on J"G, which is flat as a composition of local groupoid morphisms.

The following theorem confirms via a straightforward algebraic argument, that this composition
yields back the direct connection I'™ (cfr. eq. (105)). By similar algebraic arguments, in the

flat case, Ag\? is shown to correspond to the direct connection induced by parallel transport
on F"M. We conjecture that this latter realisation only takes place if the underlying
connection on M is flat.

Theorem 4.11. Let M be a manifold equipped with a flat connection.

(1) The exponential direct connection AS\Z) defined in eq. (96) is a flat direct connection
induced by the parallel transport on F™"M along small geodesics determined by 6(Mn)
defined in eq. (99).

(2) Let I . Pair(M) o— J"G be a flat direct connection on J"G, whose infinitesimal
connection 6" factorises 5" = Jso (51(\7/}) through the infinitesimal connection 6(Mn) of
eq. (99) by means of the n-th jet prolongation J"§ of a flat infinitesimal connection
0 on G. In that case, I also factorises i.e.

I =170 Al (110)
with Ag{}) as in eq. (96) and I} asin eq. (111) so that the corresponding diagramme

commutes:

Al
Pair(M ) s—— J"(Pair(M))

JMG(P))

FicUrE 1. Connections on jet prolongations of gauge groupoids

(3) Consequently, the direct connection T™ on J"G defined in eq. (103) factorises
through AS{;}) defined in eq. (96)

I =17 0 A, (111)
where 6' is the (flat) infinitesimal connection of I' as defined in eq. (27).
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The above identifications of direct connections hold on some exponential neighborhood of the
diagonal of M.

Remark 4.12. Eq. (111) gives an alternative interpretation of eq. (105) when the direct
connection is flat and the underlying manifold is equipped with a flat connection.

Proof. The proof uses Proposition 2.30, which says that a flat infinitesimal connection
integrates to a unique direct connection modulo germ equivalence. It enables us to identify
direct connections on some exponential neighborhood of the diagonal of M, identifications
which we shall not specify in the proof.

(1) Formula (100) in Theorem 4.5 tells us that AN = (5(M"), which is flat as can be seen
from its expression in terms of parallel transport of the underlying flat connection
on M. Since a flat infinitesimal connection integrates to a unique direct connection
modulo germ equivalence (cfr. Proposition 2.30), and 5(Mn) is the infinitesimal connection
of the direct connection on F"M defined by the parallel transport along small
geodesics determined by (5(M"), the statement follows.

(2) Since ¢ is flat, by eq. (111) its n- th jet prolongation J™¢ integrates to a flat connection
I'?. By Part (1) of the theorem, AS\Z) is flat so that the composition I'j o Ag@) is flat.
Eq. (110) then follows from the uniqueness {(efr. Proposition 2.30) of a flat direct
connection with a given infinitesimal connection, here 6'".

(3) Eq. (111) follows from eq. (110) applied to the (flat) infinitesimal connection § := &'

[

4.6. Direct connections on a jet frame groupoid from jet prolongations. We consider
the case where G = Iso(E) =3 M is the frame groupoid of a smooth vector bundle 7 : E — M.
Direct connections on the jet groupoid J"Iso(F) are best described as linear operators acting
on the jet bundle J"E. For this, we first describe the inclusion p : J"Iso(E) — Iso(J"E).

An element in J"Iso(£) is-the jet j7 o of a local bisection ¢ : U, — Iso(£) defined on an
open neighborhood U,, of a point xyin M, that is, a smooth map such that o(x) in Iso(E)Y
for any = in U,,, where y = ¢, () is the image of x by the diffeomorphism ¢, = t oo of
M defined on U,, associated to o. This means that, for any « in U,,, o(z) : E, — E, is a
linear isomorphism between fibres of E above ¢,-related points.

The image p(jr o) in Iso(J"E) is a linear isomorphism p(j; o) : Jp E — J' E between
fibres of J"E above p,-related points, where we set yo = ¢, (), defined on the jet j f €
JI E of a’smooth local section f of E around z as

o) G ) = 7 (5= (07 @) - (67" W) (112)
=i, (v = o(@) - (@) 2 e

where ! is the inverse diffeomorphism of ¢, and where we denote by - the linear action
of o(z) on f(x) € E,, as in eq. (?77?), and by o the jet composition as in eq. (43). The map
p will be usually omitted, and the linear action defined by eq. (112) will be simply denoted
by ji,0 - 72,

Assume that the manifold M is equipped with an affine connection VM, and let T :
Pair(M) = Iso(E) be a direct connection on the frame groupoid, defined on a diagonal
domain U in Pair(M). Then, for any (yo,z0) in U, I'(yo,x0) : Ey, — Ey is a linear
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isomorphism. As before, we denote by - the action of I'(yg, o) on any element e, in E,,
that is, we write
E.y 3 ey — Iy, o) - €4y € Eyy.

From I'" we can build the exponential direct connection on J"Iso(E) as in eq. (103).
Namely, for (yo,70) € U, we consider the exponential bisection 7% and its associated
diffeomorphism ¢% given in Definition 4.3. Then, according to eq. (112), T (yo,zg) is
the linear isomorphism Ji £ — Ji E acting as

DOy, x0) - G2 S = 73y (32> T(w, 0 (0) - F (052 (0))
=, = Tl (@) 2) - (@) o s,
where [ is a local section of ' around xq and 1,0 is the inverse diffeomorphism of ©%.
This jet prolongation is compatible with the filtration on J"FE, i.e.
gt I — =g (113)
where 7"_; : J"E — J" 'E was defined in eq. (51). Indeed,
Ty (T (o, w0) - gy £) = iy (g (v = D@ 058 (0)) - F (W ()
gt (y = Ty, v (y) - Fwio(y)))
LY (yo, ) 50 f
= T Dy, zo)empny (2 f) -

It follows that the family {I'™ n e Z,} is a projective system of direct connections in the
sense of §6.4.

Example 4.13. We take B'= M. x R" with M = R and let 1 : 2+ 1, = (z,(1,---,1))
—

r times
be a given constant section. We equip 7 : £ — M with the trivial direct connection I' on

E defined by I'(y, z) - 1, = 1,,. Then, for a function f : M — R, viewed at a point = in M
as an element (x, f(x)) = f(x) 1, of the fibre E,, we have I'(y,x) - (z, f(z)) = (y, f(x)). Tt
follows that

Ty, o) jn flxe = Ji (v Ty, 02 () - FWE(y)) 1,)

= Jy (y = (e (y)) 1¢§jg(y))
= (S o0 tin) Lu € JRE.
When M is the space R? equipped with the trivial connection VM given by the Levi-Civita

connection for the canonical metric on R", then 17°(y) = y + z9 — yo and the above formula
boils down to:

T (yo,20) - 52 f Lug = Jo f Ly (114)

4.7. Direct connections on a frame groupoid from Taylor expansions. Direct connections

on the frame groupoid Iso(J"E) of a jet bundle are of special interest in the context of
regularity structures. This is the gauge groupoid of the frame bundle F'(J"FE) with structure
group GL(P},), but it is not the jet prolongation of a groupoid, because the group GL(F},)
is not the jet prolongation of a structure group and the frame bundle F(J"E) is not the jet
prolongation of a principal bundle, cf. eq. (81) and eq. (77) in Example 3.4.
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Until now we have focussed our attention on direct connections on jet groupoids of frame
bundles rather than on frame groupoids of jet bundles. This paragraph is dedicated to the
latter. By means of local Taylor expansions, we build a direct connection on Iso(J"E), which
is not a jet prolongation of I'.

As in the previous section, the manifold M is equipped with an affine connection V¥,
and I' : Pair(M) »— Iso(F) is a direct connection on the frame groupoid with infinitesimal
connection V := V! see eq. (28) (for convenience, we drop the superscript T').

Taylor expansions.
Let us first assign to an element j; (f) in J; E, the Taylor local expansion at g
T /.mn C 1 dk -1
I, (i, ) (@) = T, 20) ), 5 =7 (T (xOchO(t))(f(cfco(t))))‘ [€ B, (115)
k=0 t=
where as before, ¢,,(t) is the unique geodesic curve linking zo to = = ¢, (1).

This compares with the local Taylor expansion of | , Definition 76] which uses higher
connections defined as follows. The linear derivation V.on E extends to a linear connection
V™ on (T*M)®" ® E for any n € Zsq, defined for ay,--+, o, in C°(M,T*M) and f in
C*(M, E) by

VP (@ ®@an® f)

Y@ OVNG® @ @ft @ - Qa, ®Vxf. (116)
=1
For any smooth section f of E, we set
V' f = VO (VO YOV ) ) e CF(M, (T M) @ ) (117)
and | , §2.1] (compare with | ,€q.(27)] in the case F = M x R)
Sym"[V" f] := [Sym" ® idg] (V" f) . (118)

Here (with a slight abuse of notation) on the r.h.s. we use the symmetrising map Sym"
T*M®" — Sn(T*M) defined by Sym”(a1 ®-® Oén) = % ZaeEn Qo(1) X ® Ag(n)- Note
that Sym"[V"f](X") = V" f(X,--- , X) for any X in T, M at an arbitrary point z in M.
For a smooth local section g of E around x € M, we further set
dk
D! (9) (X*) i= 5 (g (ea(0)) VREN. (119)

t=0

Lemma 4.14. The Taylor expansion eq. (115) reads

(e f)(z) = D* (2 I (20, 2)(f(2))) (expyl )™

1
k!

[ (expy) :v)@k , (120)

n
o) 3
n
o) 3

w|H

with T=(z,y) := T(y, z)™".

Proof. The first identity follows from eq. (119) and the second identity easily follows from
the composition rule for differentiation combined with the fact that Vé‘fo ¢z = 0 (compare
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with [ , 2.2 Lemmal). Indeed, for any small enough positive ¢ and any k in N, we have
o e .
T(ca (£),0) = (T (@0, o (D) f (2o (1)) = Ve, 0 (Cag (1), -+, €y (1)) (121)

= Dk (Fil(x(]a )(f)) (éxo (t)7 e 7éx0 (t))a

which at ¢ = 0 and setting X := ¢,,(0) € T,,, M, gives the following generalisation of eq. (28)

dn
(T (@0, €20 (8)) f (e (1)) lemo = V" F(X7) = D" (T (o, -)(f)) (X™) /¥ €N (122)
Inserting eq. (122) in the Taylor expansion (115) yields eq. (120). O

Example 4.15. As in Example 4.13, we take E = M x R" and M = R% We equip the
frame groupoid Iso(E) with the trivial direct connection I'(y, z) f(z) 1, = f(x)1,, where
1, = (z,(1,---,1)) is the global constant section trivial linear connection. In that case,

V! f := df so that the Taylor expansion reads

1

Hgo (]gof Li)(z) = Z - (D(xyz0) @ f(0) 1s,) (x — 20)”
P jaj<n &
ngOE
1 T
= X o) (@ - 20) | L€ B = fa} xR
jaf<n
Inspired by | , Definition 80], we set the following definition.

Definition 4.16. For any pair (o, o) in U < Pair(M), and any local section f of E in a
small neighborhood of zq, we define I'™ (y,, z,) in E¥ ® E,, by

T (yo, o) - o f = gy (y = Ty, (G, N (W) - (123)

Example 4.17. We consider the same setting as in Example 4.15, namely the trivial direct
connection I" on Iso(E) with £ = M x R" the trivial vector bundle over M = R®. In order

to compute '™ we first compute

|
0 (e —10)"],, = v (yo—x0)* " for B<a and 0°(e—wp)*|,, =0 for B> a,

(@ =B

where § < « stands for o < §; for any i € [[1,d]] and o > B when this does not hold.
Viewing an n-th jet as an n-th Taylor polynomial j f = Z\alén P@olf o with X 1=

al
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X X9, we have
T (yo, 20) - (57, f L1ay)
‘N 1 (03 o
= g (v 20 0 (@) (y —20)" | 1,
lajsn
8"‘f(xo) -n «a
= Z Oé' jyo(. - xo) ]'yO
|al<n
0 [ (20) 0% (o — 20)* |y,
= Z - U W xhlq
| Z | Yo
jajen Bl<n &4
o~ f fﬂo a—
- Z [Z 8! (a — @) 7" Xﬁ] Ly, (124)
|aj<n LB<a
(9af(x0) oz X 0® f IO a—
= Z a' (yo — .Z'O 11/0 + Z Z 5 — l'o) B X’B 1y0
la|<n ' la|<n LB<a
f=a
5 f T .
laj<n LB<a
n " f x am
= I )(yoyxo) (]mof 1wo Z [Z Bl (a 0 — o) g Xﬁ] 1y,.
‘a|<'rL B<a
In dimension 1 this reads:
T (yo, o) + (j%f Lay)
0 1 2(3/0—550) n(yo_xo)n 1 f(xo)
0 0 1 3(y0—x0) (n—l)(yo—xo)nz
— 0 0 0 1--- . . 1y
(n—i).x
" n(yo — o) ! (n—l()!O)
| 0 1 S (o)
n!

These computations generalise to sections of a vector bundle £ — M using the following
identification via the following maps (here n € N) | , Chapter IV §9, Corollary of

Theorem 7], | , Lemma 2.1]

Cov JE — @ S"(T*M)QE

 Sym"[V" f]()) -

(125)
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In a polynomial representation, this reads
drg =, Sym’[Vig] X7, (126)
j=0

where V = V! is the infinitesimal connection induced by I'. With these conventions,
T (yo, 20) (j,9) = jgy (K(e,20) g(0)) = Y, Sym? [V5, (I (e, 20) g(0))] X7. (127)

Proposition 4.18. [ ) defines a parallelism on J'E in the sense of eq. (21), and hence

a direct connection T'™ : Pair(M) + Iso(J"E) on the frame groupoid of J"E (which we
denote by the same symbol). It compares with T as follows

T (yo, ) G f) = T™(yo,z0) (i f) (128)

Z Z Sym[Ve [(f)(expy (%0)* ™"

B8
B (a — p) *

+ T (yy, mo)

laj<n LB<a

Proof.

e To show that '™ defines a direct connection, by Proposition 2.6, all we need to prove
is that '™ (29, 20) = Idp 5. So we need to check that j7 (1T, (71 f)) = ji, (f). n
order to compute j7 (Hr(jgof)) we use the local identification via the maps (125).

By definition of HF

I, (5, ) () < T, 40) 2%57 (o, (0) (e 0)

and by eq. (122), applied to V.= ¢,,(0) in T, M

V) = S (0 o e (0) Fen () oo

t=0

we have
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where we have used the definition of V% in eq. (116).
¢ To prove eq. (128), we closely follow the computation in eq. (124). As before, we set

V' = ¢,,(0) so that yo := ¢4 (1) = exp,,(V), and

ol
(a—p)!
Using the description of jets given by eq. (125) and the Taylor expansion eq. (120).,
we write

Vfo exp;ol(o)o‘ =

Ve o for B<a and V? expyl(e)*=0 for B> a.

~

T (yo, 20) - (42 f)

n Sym[Ve fl, | sa
= gnle—T@ ) ) To(expxolﬂﬁ)@
la|<n )
9(330‘)2Ea:0

Sym[V§ f]

al

= I‘(”) (y(), 1;0) j;o €T — Z

-1 Ra
eq. (127) (eprO 7)

|al<n

Sym[V2, F(V)
= M) 2 0 g a e

|la|<n |Bl<n

= T™(gp,m) Y Sym[V5, f]

a!
|a|<n
. /

XO[

Sym[Ve fl(Ve?)
+ NG 1) , o) 0 X7
yO 0 |a‘<n [ /8' o — ﬁ)

= To.20) (o, )T D (yoswo) | ] [Z

B<a

Sym[Ve fl(expzl ()"~
Ma—pl ]

la|<n

[

The following observation stresses the difference in nature between the connections I
and '™ which we recall gives rise to a direct connection on Iso(J*E).

Remark 4.19. e We have

n (Sin . . S _ k
7y (F( ) (yo, o) 'onf) = (x — T'(x, x0) Z ] Sym"[V* f](z0) (exp}! a:)® )
= yo@o Z k:_ Ym Vk ( ) (expzol y0)®

= I'(yo,z0) f(0) Z Sym [V f1(z0) (expz, yO)®k

# T'(yo,20) f(20),
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which shows that T does not prolong I

e This further shows that the connection I'™ does not satisfy condition (113) with T
replaced by I'. Thus the family (f(”),n € Z>0> does not induce a direct connection
on Iso(J®E).
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5. GEOMETRIC PRE-REGULARITY STRUCTURES FOR A VECTOR BUNDLE

In this section we discuss the geometric framework underlying regularity structures on
sections of a vector bundle of finite rank on a manifold M by means of a direct connection.
We define a geometric pre-regularity structure which keeps track of the structure group in
the form of a groupoid and its action on the vector bundle. It is described in the projective
setup adapted to the grading underlying regularity structures and inherent to perturbative
approaches to quantum field theory. The geometric pre-regularity structure comes with a
geometric pre-model which encompasses the geometric data required for a full fledged model
as defined in the context of regularity structures, leaving out the analytic requirements,
hence the prefix "pre” in front of "regularity structures”.

We revisit Dahlqvist, Diehl and Driver’s | | polynomial regularity structures in the
language of geometric polynomial structures.

5.1. The abstract setup. We work in a projective set up and refer the reader to Appendix
6 for the relevant notations.

Definition 5.1. Let M be a smooth manifold endowed with a connection V¥ (not necessarily
torsion-free) on T'M with positive injectivity radius ;.
We call geometric pre-regularity structure on M the data (A, E,G, p) where:
(1) A < R is a discrete set of indices, that we shall call homogeneities following [I114],
directed by the order relation in R, with no accumulation point and bounded from

below;
(2) £ = lim E, is a projective limit of vector bundles £, — M as in (145), called the
a€eA

model bundle;
(3) G =limG, = M is a prounipotent gauge groupoid as in (154), called the structure
acA
Lie groupoid;
(4) t: G — im _, Iso(E,) < Iso(E) is an injective morphism of prounipotent groupoids,called
the G-structure on FE, consisting of a family ¢, : G, — Iso(E,),a € A of injective
morphisms of groupoids. It is equivalently presented as a faithful linear representation

prGxu E— E, (g, a.) = plgy)(a) (129)
which preserves the projective systems of G and F.
Given a real vector bundle Ey — M of rank r, we call geometric pre-model for
(A, E,G, p)on Ey the data (I1,T):

(5) I : B — D),(-, Ep) is a family I1,, : E, — D},(_, Ey),« € A of maps from the total
space of the vector bundle E to the sheaf D, (_, Ey) | | of Eg-valued distributions
on M which is linear and continuous on the fibres. For a point z € M, I, = {I1,,,« €
A} defines a family of distributions supported in a neighborhood of z.

(6) I': Pair(M) »— G is a family T, : Pair(M) »—>G,,a € A of direct connections I', on
Ga-

It induces a direct connection ¢, o I'y, on Iso(E,), as in the commutative diagram
Pair(M) —L 5 G,

\ j (130)
Iso(E

o)
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with local maps I'?, = 1, o'y, : Pair(M) x E,+> E,,a € A. The obstruction to
I'? defining a groupoid action of Pair(M) on E, is encoded in the following non-
commutative diagram

e

Pair(M) xy E

w

Goxu B — o | (131)

o |m

E1 Dl E)

(7) We require continuity of the map = — II,, for the convergence-of distributions.

Remark 5.2. For the sake of simplicity, as in (132) we shall often drop the subscript « in
IT and I'”.

Combining the continuity assumption (7) on the map « — II, with lim I'’(yo, x¢) f(x0) =

Yyo—Zxo
f(zo) yields
lim IL,, o I (yo, xo) f = uef V.f € EY, (132)

Yo—To
which we view as a I'- invariance of 11 in the limit.
Yet, one cannot expect the exact "I'-'invariance” of 1l expressed by

on = Hyo R Pp(yOVIO)J (133)

— assumed to hold for regularity structures on R™,cf. [I114, Definition 2.1] or [[12, Definition
2.1]- to hold for regularity structures on general vector bundles.

For regularity structure on a manifold studied in | ], a transport precision of

the model (II,T") is defined, which as well as the uniform rescaling properties of 11, and the
transport regularity of I'(y, #); takes into account the discrepancy between II, and I1,I'(y, x).
The following proposition expresses the obstruction to the ”I'-invariance of I1”

Ayo,:vo (H7 Fp) = Hyo © Fp(yOa xO) - on’ V(J:Ov yO) € UA(‘TO) (134)
in terms of a curvature term for the direct connection I'”.
Proposition 5.3. With the notations of the proposition, we have

A (H7 Fp) - Ay0,960 (H7 Fp) + A»Zmyo (Hv Fp) Fp(yﬂa 5170)
I, o (Erp(yo,xo,zo) . Idzo> T (20, 20), (135)

20,20

where N

RY (z,y,2) :=T"(z,2) (2, y)T*(z,y)"" € End(E,).
If T is natural in the sense of Definition 2.19, namely if T=(y,z) := T(z,y)™" = ['(y, ),
then

Azo,:co (H, Fp)_Ayo,:vo (H7 Fp)+Azo,yo (H7 Fp) Fp(y(], ZE()) = HzOO(RFp (y07 Lo, ZO) - Idzo) FP(ZO’ $0)7

(136)
where R (z,y,x) = ['(z,2) ' T(2,y)T(y, z) is the curvature of I defined in eq. (35).
Consequently, the "T'-invariance” of 11 holds if T us flat. Conversely, if 11 is injective, "T'-
wnwvariance” of 11 implies flatness of T'.
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Proof. Let us compute the obstruction to the "I'-invariance” of II:

AZo,yo (H, Fp) = Hzo © Fp(an yO) —1I

Yo

= (HZO o I(20, o) I (Yo, ) — Ly © (yo,xo)) T (yo, 20) "
= ( (ZOa yO) Fp( 0) I, — yo zo (H Fp)) Pp(?/O, fEO)_l
= (I, (zo,yo) re( o,xo) I, T (20, %0) + Ay 2o (TLT¥) — Ay o (T, T?)) T (yo, 20)
= (H 20 0 TP (20,50) T* (yo, 20) T? (20, 20) ' — 11.,) T (20, 20) T (0, 20) !
(A

r
20, -'L'O(H I ) A 0900( )) Fp(y07x0) !

Hence,
AZ(),CC() (H7 Fp)_Ayo,xo (H, FP)+Azo,yo (H, Fp) Fp(y(b IO) = Hzoo (EFP (y07 Zo, ZO) - Idzg) 1—"D(ZOa {L‘()).

If R'” = 1d, an easy computation yields R = Id, which inserted in eq. (135) gives rise to
AZo,ﬂﬁo (H> Fp) o Ayo,ﬂﬁo (H? Fp) + AZO,yo (H7 Fp) Fp(yoa xO) = 0 for any (yOa ZO) € uA($O)2' Taking
Yo = xo then leads to A, ., (I, I'?) = 0.

Conversely, assuming " I'-invariance” of II, we have

Hzo © (EFp(y()a Lo, ZO) - Idzo) FP(Z(),LU()) =0

which implies that IT,, o (ﬁpp (o, To, 20) — Idzo) = 0 s0 that if IT is injective, then R (yo, zo, 20) =
Id,, which in turn implies I'” = Id. ]

5.2. Geometric polynomial pre-regularity structure. Underlying a geometric pre-regularity
structure (A, F, G, p) on a manifold M as in Definition 5.1, there is an abstract regularity
structure (A, T', G) which generalises Hairer’s abstract set up [I114] and relates to the polynomial
regularity structures built in [ |:

e The model space 1" is the model fibre of the vector bundle £ — M,
e The structure group G is the vertex group of the gauge groupoid G =3 M.

We now discuss polynomial regularity structures, which correspond to the case of a jet bundle
E=J"FEy— M.

Theorem 5.4. Let M be a d-dimensional smooth manifold. We consider the initial data
(Eo, Py, Go, po) where

o Ey — M s a real vector bundle with typical fibre V = R",
o Gy is a Lie group endowed with a faithful representation py on V', inducing an
inclusion v: Gy — GL(V') of Lie groups,
o Py — M s a principal Gy-bundle such that Ey = Py x¢g, V.
(1) The data (A, E,G,p) given by
o the (finite) index set A = [[0,n]] where n is a given non negative integer,
o the (finite limit) jet bundle E := lim JkEO ~ J"Ey — M of Ey,
e the (finite limit) jet prolongation Q Jkg(Po) = J"G(R) = G(W"FR)
of the gauge groupoid of the principal GO bundle P,
e the linear representation p of G on E given by the jet prolongation of py, equivalent
to an inclusion G — Iso(FE),



DIRECT CONNECTIONS ON JET GROUPOIDS 60

yields a geometric pre-reqularity structure on M in the sense of Definition 5.1, which
we call geometric polynomial pre-regularity structure. Its underlying abstmct
regularity structure is (A, T, G) where
o T =THV = J}RLV) = R[Xy, ..., X4] @V is the typical fibre of J"Ey, cf.
(54),
o G =WipGy=GL}(R) x TIGy is the vertex group of the groupoid G, cf. (56).

Proof.

(1) We first observe that the initial data includes the following structure:

e the frame bundle FM — M, which is a principal GL4(R)-bundle, together with
its associated frame groupoid Iso(TM) = G(FM) = J! Pair(M) (cf. §1.6),

e the frame bundle FEy — M of Ey — M, which is a principal GL(V) = GL,(R)-
bundle, together with its associated frame groupoid G(FEp) = Iso(Ey), which
comes with a natural faithful and linear left groupoid action (ef. §1.4) given by
the evaluation map evy : Iso(Fy) %y Fo — Eo,

e the principal bundle F; — M, which is a reduction of the frame bundle F'Ej
with structure group Gy < GL(V), together-with its gauge groupoid G(F)
which is a reduction of the frame groupoid Iso(FEy). The inclusion of groupoids
to : G(Py) — Iso(Ey) composed with evy determines a faithful left linear groupoid
action pg : G(Py) %y Eo — Ep:

G(Py) xar Eo <25 Is0(By) % v By

Y| l

(2) We now fix n € N and apply the n-jet prolongation to the initial data:

e With the notations of §3.2, let us consider the jet prolongation of the pair
groupoid J" Pair(M) =~ G(F"M), where F"M = invJ"(R% M) is the n-frame
bundle of M (which is a principal G L7 (R)-bundle with GL7(R) = invJ@ (R R%),).

e Consider the jet bundle J"E, with fibre T}V = JHR% V) = JP(R%LR") =
Py, together with its frame bundle F'J"Ey, with structure group GL(T}V) =
GL(P’f ). Its associated frame groupoid Iso(J"Ey) = G(FJ"Ey) naturally acts
on J"E, by the evaluation map ev : Iso(J"Ey) Xy J"Ey — J"Ey.

e The frame bundle F'J"Ej is not a jet prolongation (cf. Example 3.4), but it
admits a reduction to the jet bundle W™(FEy) = F"M x; J"(FEy), which
is a principal W}GL(V)-bundle with structure group given by the jet group
WPGL(V) = GLY(R) x TPGL(V) < GL(T}V'). Therefore, there is a canonical
inclusion of gauge groupoids (cf. Example 3.2)

k= (ko)™ : J"Iso(Ey) = G(W"FEg) < Iso(J"Ey) = G(F.J"E) (137)

which induces an action of J"Iso(Ey) on J"Ey by composition with ev, namely

JrIso(Eo) xar J"Ey <% Tso(J"Eo) x a J"Ey

\ l

J"Ey
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e Since Ej has a Gy-structure, the jet bundle J"Ey has a W} G-structure, where
WGy = GLI(R)x TGy so that the principal W7 GL(V')-bundle W™ F E further
reduces to the principal W} Go-bundle W" Py = F"M x; J"FBy (cf. eq. (60)).
The jet prolongation of the inclusion ¢y gives an inclusion of jet groupoids (cf.
eq. (80))

L= (10)™ : J"G(Py) = GW"Py) — J"Iso(Ey) = G(W"FEy),

and therefore an associated faithful linear groupoid action of J"G(F) on J"Ej.
This action commutes with that of J"Iso(Ey) and of Iso(J"Ey) on J"E, and it
coincides with the jet prolongation p = (po)™ of po. In other words, we have a
commutative diagram

JG(Py) % a1 J"Ey <% Jnlso(Ey) x s J"Ey <22 Tso(J™ Eg) x ar J"Eo

J"Ey

Setting G = J"G(FRy) = G(W"P,), the resulting structure (A, E, G, p) satisfies the
conditions of Definition 5.1, since the action p of the jet prolongation J"G(F,) on
the jet bundle J"FEj is itself a jet prolongation and therefore preserves the involved
projective systems.

[

For a trivial vector bundle Ey = M xR of rank 1 we get back the polynomial regularity
structures of on a Riemannian manifold. Specialising to R? equipped with the canonical
Euclidean metric yields the polynomial regularity structures of [H14].

Example 5.5. Let M be a Riemannian manifold equipped with a connection V¥ (e.g.
M = R? equipped with the-canonical metric and a Riemannian connection). If for initial
data (Ey, Py, Go, po) we choose

e the trivial vector bundle £y = M x R of rank 1,
e the frame bundle Py, = FEy with structure group Gy = GL;(R) and ¢y = Id,

then the geometric polynomial regularity structure (A, E, G, p) given in Theorem 5.2 yields
back the polynomial regularity structure of | | and in particular, that of [ 14] if
M =R?

o The typical fibre of E = J"Ej is the graded vector space T := T} R = R, [ X, ..., X4]
of real polynomials of degree n in d variables,

o The structure group is the vertex group WrGL(R) = GL}(R) x T7GL;(R) of the
jet prolongation of the frame groupoid J"Iso(Ey) = G(W"FEy) < Iso(J"Ej), which
acts as the identity on the homogeneous component of 7' of degree 0, and as an
isomorphism on the homogeneous component of T" of degree n.

The n-jet group elements in W7?GL; (R) are jet prolongations of 1-jets in W] G L, (R)
GLLYR) x TJGL,(R), where the component GL}(R) = GL4(R) encodes the Jacobian
matrix of a change of local coordinates in M around any given point.

The identification with the known polynomial structures of [[114] and | | requires
further remarks:

lle
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e For M = RY the structure group chosen in [H14] is the jet prolongation of the
subgroup (R%, +) = {1} x T}GL,(R) = W}GL,(R) resulting from the choice of fixing
the local coordinates at each point of R? (which moreover are global).

e Note the construction of the polynomial structure on a manifold M carried out in
[ ] uses the bundle @} ,S*(T*M) which amounts to @7_,S*(T*M) ® F in
the case E = M x R. We saw in eq. (54) that the n-th jet prolongation J"E~of
a real vector bundle 7 : E — M of rank r on a d-dimensional manifold M, is like

n_S¥(T*M)® E, a vector bundle modelled on @®}_,S*((R))*) @ R".

Yet their structure groups apriori differ. If E has structure group GL,(R), then the
vector bundle J"E has structure group W7 GL; (R) described in eq. (59), whereas the
vector bundle @7_,S*(T*M) ® E has structure group GL4(R) x GL.(R). However,
one can reduce the W7 GL (R) structure group of J"E to GL4(R) x GL.(R) by means
of a connection VM on M and a connection V on E via the maps defined in eq. (?7),
which yield isomorphims of vector bundles. These isomorphisms are compatible with
the canonical projections 7"_, : J*"E — J" 'E (cfr. (51)) and lead to a reduction of
J"E to the bundle ®}_,S*(T*M) ® E with structure group GL4(R) x GL,(R).

Note that a reduction of the structure group of J"E by means of a reduction
of E requires flatness | , Definition (5.1), Theorem (5.2) and Theorem (5.18)],
combined with a reduction of the frame bundle F M which requires that the manifold

carries a linear structure i.e., that it has a covering with locally constant transition
functions [I'170, Definition (7.11).and Theorem (7.12)].

Theorem 5.6. Let M, the initial data (Ey, Py, Go, po) and the geometric polynomial reqularity
structure (A, E,G, p) be as in Theorem 5.2. Assume that

e the Riemannian manifold M is equipped with a connection VM,

e the vector bundle Eyis endowed with a linear connection V associated to a connection
1-form wy € QY (Py, go) on the principal Go-bundle Py — M, where gy is the Lie
algebra of Gy,

e the groupoid G(Fy) is endowed with a direct connection Iy : Pair(M) — G(P,) whose
infinitesimal connection is wy.

Then, the data (I1,T) = {(II", ™), n € Z=o}:

o with IT" : J"Ey — OY(_, Ey) < Dy, (-, Eo) defined on the fibre above any point xg € M
by the-linear map 117 = J. Ey — C3(Usy, Eo) < Dy (Usy, Eo), where Uy, is a given
normal neighborhood of xq, by

1 odk
U506 = oo ) 3 g (T @) 099
as in eq. (115).
e and I'" : Pair(M) — J"G(Py) the direct connection
" (Yo, %0) Jio f =y (v = 15, (2, ) ()

given by T™ defined in eq. (123),
yields a geometric  pre-model for (A, E,G,p) on Eqy in the sense of Definition 5.1. In
particular, it fits into the diagram (151).
Moreover,
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(1) (cfr. | , Lemma 90]) A continuous section f of Ey is - Hélder continuous for
some vy > 0 iff it is n-times continuously differentiable with n =[] the integral part
of v and for any norm ||| and any direct connection T™ on J"Ey, there is a constant

C' such that
T (y, @) g f — gy fll < Cd(w,y)"™", VY(x,y) € Ua, (139)

where d(x,y) is the geodesic distance between x and y.
(2) The I'"-invariance of II" for any ji f built from an arbitrary local section of Ey above
any point xo € M:

implies the flatness of T'.

Proof. The fact that the family {(II",T"),n € Z-o} defines a geometric pre-model follows
from Proposition 4.18 which says that I'" indeed defines a direct connection, combined with
the continuity of the map x — II,. The latter easily follows from

lim I (o f)(x) = lim <Z %ng(yo) (exp;}(x>®")>

Yyo—To Yyo—xo
n 1 N
= Y Vb @) (expg) ()%F)
k=0 "

= 15, (o f) ()
for any local section f of Fj in a neighborhood of x.

e To prove (1) we use a local trivialisation. Let us first recall that the vector bundle
J"Ey is modelled on JG(RYR") =@;_, S*(RY)*) @ R” with d = dim(M). We
prove (139) using a local trivialisation Ejy, — ¢.(U,) x R” < R xR", (2, f.) —
(2(2), @, f.) with ¢, (2) = 0 € R?, which induces a local trivialisation of .J"E

SUEolv, | —> T (pa(Us) x R)
(2.57F) = (#a(2), i) (Ba © (02)e]))
and a local description of I'™

JE*®J"Elguxy, —> End (J"(¢.(Uy) x R7))

(2, whIL) | @al2), 0alw), 4, ) (Pa 0 (0a)e) Thy i,y (020 957 |

J

'

A2 () o (w)

with A7 o = Ido + O(|ea(y)]) € End(J"(2(Us) x R")) as a consequence of the
dlfferentlablhty of I'™ along the diagonal.
In this local trivialisation, the difference I'"(y, r) 57 f — j, f reads

= Azz(y)ojg(@x © (@x)*f) ]gpm(y) ((Di © (@I)*f)
= (Agx(y)o - IdO) Jo (@ 0 (0u)af) + Jo (P 0 (02)sf) — jzx(y) (2 0 (@a)af) -
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A norm z — [j7 f| on the vector bundle J"Ey — M induces a norm u — |j; Flos =
13510y (5 © @' f)| on the vector bundle J™(¢,(U,) x R").

With these notations, eq. (139) amounts to the existence of a constant C' such
that

176, ) (@ © (02) ) Uy 32 = 55,0 (P 0 (92)) Ty flloe < Cla(y)”™
or equivalently to the existence of a constant D such that

170 (P2 0 (@) f) = Fgui) (Pz 0 (9a)uf) o < D ()", (141)
since there is a constant C' such that

| (A%, y0 = 1do) 5 (Do 0 (a) ) < C'lpa(y)| < C la(y) 7"

for y and x near enough using the fact that 1 >~ —n > 0.
Thus, conditions (139) and (141) are equivalent. Since the latter is the y-Holder
condition

lig f = 32 flow < DIT"
in local coordinates, the assertion follows.
To prove (2), we observe that (140) reads

I, © gy, (I, (2, ) = 105, (G, /)
for any local section f of Ey above U,,. The local map g, := II} (jr f) defines a
local section of Ey over U,, and by (120) we have

n 1 _ N
I'(y, vo) Z 7 Vg, (eXpyol y) = g.(y) Y(v0,y) € UIO,Vn € Ly .
k=0 "

For n = 0, the above equation reads I'(y, vo) go(vo) = go(y). Hence I'(z,y) I'(y, vo) go(v0) =
I'(z,y) go(y) = go(2z) which in turn.implies that

T(yo, 2) T(z, ) T(y, ¥0) 90(0) = L' (0, 2) 90(2) = go(¥o)-

Since this holds for any go(yo) € Ey, (which actually coincides with f(x)), it follows
that I'(yo, 2) I'(z, ¥) I'(y, y0) = 1y, which implies the flatness of T'.

[
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6. APPENDIX: PROUNIPOTENT GAUGE GROUPOIDS WITH DIRECT CONNECTIONS

In order to keep track of the grading consistently with the analytic and the geometric
setup, we need the notion of a projective limit groupoid.

Projective limits arise in infinite dimensional geometry, typically as inverse limits of
Banach or Hilbert manifolds, Lie groups or vector bundles. Also, jet spaces, jet groups
and jet bundles naturally fit into projective systems, which is what motivates this appendix.

6.1. Projective (inverse) limits. Let C be a category and let (A, <) be a partially ordered
set of indices. An A-projective system in C is a collection (X, )aea of objects in C together
with a collection of connecting or bonding maps 72 : Xz — X, for any indices o < 3,
such that | , Chapter III, §4]

7o =1d: X, - X, and 7o T =T, Va < <. (142)

The projective limit of the family (X,)aea is an object X in C; necessarily unique and

usually denoted by lim X, or lim X,, together with a collection of connecting maps m, :
a a€A
X — X, which make the following diagrams commute (where the second one is a universal

property):

VY
X ng ¥ ql YV qa
V X and X (143)
7TB T3 T
Xz = » Xa / \
B
Xﬁ = > Xa
The projective limit exists in the category of sets | , Chapter V, §1] and can be realised

as the subset of the cartesian product | [, X, made of tuples compatible with the connecting
maps 72, namely

lim X, — {(aa) e []Xa | an = 78(ag) Yo < 5}. (144)

Using the forgetful functor to sets, the projective limit is then constructed in several basic
categories (topelogical spaces, groups, algebras, modules over a fixed ring, etc), in requiring
that the bonding maps 72 be surective morphisms in the category and showing that on the
projective limit of the underlying sets one can define the desired extra structure (topology,
group law, etc).

Example 6.1. The vector space of formal series R[[x]] is the projective limit of the projective
system (X, ),en where X, = R[x]/(2") is the quotient of the polynomial algebra by the ideal
generated by 2", with connecting maps 7, : R[x]/(z") — R[z]/(z™) induced by the identity
on R[z] for any m < n.

Example 6.2. The vector space of formal series R[[z1, - - - , z4]] in d variables is the projective
limit of the projective system (X, )nen Where X, = Rz, -+, x4]/(m"), with m := Ker(e)
corresponding to the augmentation ideal, of dimension 1, given by the kernel of the counit
€ : Rlzy,-- ,24] — R defined by zero everywhere except on R.1 where it is the identity
map.
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A prounipotent group is a projective limit G = lim G, 3 M of a projective system
(Go, 2)a<p of groups satisfying eqs. (142), (143) and eq. (144) functorially lifted to groups.

Example 6.3. The n-jet groups (see | , §12.6]) defined in eq. (45) define a projective
system :

n—1
Tpn—2

GLAR) T2 GrYR) L GLY(R) — 1,

6.2. Projective (inverse) limits of vector bundles and of principal bundles. We call
projective limit of vector bundles on M a vector bundle E obtained as projective limit
E=lmE, - M (145)
of a projective system (E,, m7),<s of vector bundles on M satisfying eqs. (142), (143) and
eq. (144) functorially lifted to vector bundles. Since the category of vector bundles over a
manifold M is equivalent to that of projective modules over the ring of smooth functions
C* (M), projective limits of vector bundles exist.
We illustrate this with projective limits of jet bundles, which are of particular interest for
this paper.

Example 6.4. (see e.g. | ]) The collection (J"E°, &!'_;)nez-, of jets J"E° of a vector
bundle E° — M together with the connecting maps 7 | +J"E° — J" 1 E° corresponding
to the canonical projections of eq. (51), form a projective system. The resulting projective
limit

JPE? = lim J"E° (146)
defines a vector bundle over M.
The projective limit
P= Lin P,—-M (147)

«

of a projective system of principal bundles {P,,a € A} on M of principal G,-bundles on M
satisfying eqgs. (142),/(143) and eq. (144) is a principal G := lim _G,-bundle 7 : P — M.

Example 6.5. Jet prolongations of a principal G’-bundle P° — M over a d-dimensional
manifold M, form a projective family {W"P° n € Z-o} for the canonical projections 7"_; :
WnPY — W1 PY% and yield a prounipotent principal bundle

WP := lim W"P°. (148)
The collection {P, := FE,,«a € A} of frame bundles of a projective system {E,,a € A} of
vector bundles is projective. Applying eq. (147) yields

Flim B, = lim FE,.

« o

Example 6.6. With the notations of eq. (146), we can apply the above equation to the
projective system {E, := J"E° n € Z-,} for some vector bundle E° — M, which yields
F(JYE®) = lim F(J"E°). (149)

n
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Remark 6.7. Eq. (67) gives rise to the following inclusions
F(J"E®) € W™(FE),ne Zsy and F(JPE®) € W*(FE"). (150)

6.3. Prounipotent groups and groupoids. The projective limit of a collection {G, =3
M, o € A} of groupoids together with a collection {77} of connecting maps which is projective
ie.,

(1) 72 : G5 — G, is a surjective morphism of groupoids

(2) 7% is the identity on G,,

(3) 7r507r6—7rgfora1104>ﬁ>”y
defines a Lie groupoid Lir_na Go =3 M, which we call a prounipotent groupoid following
the terminology used in group theory.

Example 6.8. A projective system {F,,« € A} of principal G,-bundles F, — M, gives rise
to a projective system {G(P,),a € A} of gauge groupoids and a unipotent gauge groupoid
lim G(P,) which is the gauge groupoid of the projective limit liLna G- principal bundle
lim, P,

G(lim P,) = lim G(F,): (151)

Its vertex group is the prounipotent group lim G, which corresponds to the projective limit
of the vertex groups {G,,a € A}.

Typical examples of interest in this paper are jet groupoids (J"Gy, m'_ )nez., Which form a
projective family of gauge groupoids on M and we can define the prounipotent jet prolonged
groupoid:

J*G = lim J"G 3 M.

Combining eq. (154) and eq. (148) leads to the following example of relevance in this work.

Example 6.9. Given a principal G°-bundle P° — M, we have the following identity of
prounipotent groupoids:

J*G(P°) :=1lim J"G(P°) ~ G(lim W" P"). (152)

When applied to the frame bundle P° = FE° of a vector bundle £° — M, this yields
JMso(EY) = G(W"FE") VneZsy and limJ"so(E°) ~G(limW"FE®),  (153)

since Iso(E?) = G(FE°).

We now apply eq. (154) to the corresponding projective system {P, := FE,,a € A} of
frame bundles built from a projective family {E,,a € A} of vector bundles over M. Using
again the fact that frame groupoids can be viewed as gauge groupoids of frame bundles i.e.
Iso(E,) = G(FE,), this yields a projective system of frame groupoids {Iso(E,),« € A} and
we have

P a—
o «

« o

Iso(lim E,) = G (lﬁl FEa> =1im G (FE,) = limIso(E,). (154)
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Example 6.10. Applying this to the projective system {E, := J"E° n € Z~,} yields

Iso(J®E’) = G (1@ FJ"E0> = lim G (FJ"E") = lim Iso(J"E").

n n n

Remark 6.11. We recall from eq. (150) that
Iso(J"E®) € J"Iso(E°)Vn € Z=y and Iso(J*E") < J*Iso(E"). (155)

Indeed, Iso(J"E) = G(F(J"E)), which is gauge groupoid of the frame bundle F(J"E)
with structure group GL(PGZT), is mot the jet prolongation of a groupoid, because the group
GL(P7,) is not the jet prolongation of a structure group and the frame bundle F'(J*E) is
not the jet prolongation of a principal bundle, cf. eq. (81) and eq. (77) in Example 3.4.

Recall from §1.6, that the Lie algebroid LG — M of a Lie groupoid G =3 M is given by
the normal bundle T'G,ns)/Tu(M) of M in G. From the functoriality of this construction,
it follows that the collection {£G, — M,a € A} of Lie algebroids of a projective system
{G. 3 M, a € A} of Lie groupoids together with the tangent maps T, yy72 to the connecting
maps 72, is also projective and we have

L (;n_nga> — lim £ (Ga) . (156)

« o

6.4. Direct connections on prounipotent groupoids. Projective system of connections
on a projective system of vector bundles were studied in [ |. These are characterised
by projective systems of Christoffel symbols. Here we consider projetive limits of direct
connections.

We call a collection {T', : Pair(M)+—G,,a € A} of direct connections on a projective
system {G,,a € A} of groupoids with connecting maps 72, a projective system of
connections if it is'compatible with the connecting maps in the following sense:

Tyn? =714, V(a,p)e A% (157)
CHECK: Such a projective system yields a direct connection

im T, : Pair(M) »— lim G,
on the prounipotent groupoid Liﬂla Ga.

Recall from eq. (27) that the infinitesimal connection induced by a direct connection
I : Pair(M) #> G reads 6" = DT, : TM — LG. From the functoriality of this construction,
it follows that the collection {6'= : TM — LG, a € A} of infinitesimal connections induced
by a projective system {I', : Pair(M) »— G, € A} of direct connections, defines a projective
system whose projective limit liLna ole : TM — LiLna LG, is the infinitesimal connection of
lim T', so that
«—x

lim o' = 542", (158)
4m
Natural examples are direct connections on co-jet groupoids, which we saw are inverse limits
of groupoids.
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Example 6.12. Exponential direct connections {I'™ n € Z-} (see eq. (103) in Definition
4.7) on the jet prolongations {J"G" =3 M,n € Z-o} of a Lie groupoid G° =3 M with unit
space a Riemannian manifold M equipped with a Riemannian connection, form a projective
collection since by construction we have

T =1C-V7n - yneZy,. (159)
This gives rise to a direct connection
) .= lim T™ : Pair(M) »— lim J"G°
P Pam—
on the prounipotent groupoid Lgnn Jngo.

(51"(")

Subsequently, the corresponding infinitesimal connections { ,n € Z=o} (see Proposition

4.10) form a projective system and we have

. INCOREN M€
limo" =4 .
Applying this to the projective system {J"Iso(E"),n'€ Z~o} of jet prolongations of frame
groupoids yields the projective limit exponential direct connection:
() . Pair(M) +— J®Iso( E°).
The limit direct connection '™ induces a direct connection on the smaller groupoid Iso(J* E°)
(see eq. (155)).
We end this appendix by noting that direct-connections on a family {Iso(J"E°),n € Z,}
of frame groupoids of jet bundles do not necessarily form projective systems of connections.

Counterexample 6.13. Given a vector bundle £° — M, the collection {f(”),n € N} of
direct connections built on Iso(J"E%).in eq. (123) do not obey condition (159) with T

replaced by I.
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