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DIRECT CONNECTIONS ON GROUPOIDS AND THEIR JET
PROLONGATIONS.

Abstract. Direct connections are to Lie groupoids, what connections are to principal
bundles. They can serve as a substitute for differentiation in a non smooth setup and arise
in Hairer’s regularity structures, a theory taylored to solve stochastic PDEs. We first review
the concept of groupoid and define direct connections. We show that groupoids which admit
a direct connection are built from principal bundles and focus on frame groupoids built from
frame bundles. From a direct connection on a frame groupoid, on its jet prolongation, we
construct two types of direct connections which we discuss and compare. One of these is
a projective system of direct connections compatible with the projective structure of jet
prolongations. The other one appears in polynomial regularity structures, a toy model in
the vast theory of regularity structures, which we discuss from a geometric point of view
using direct connections on groupoids.
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Introduction

This expository paper is dedicated to the study of groupoids equipped with direct connections
and to their jet prolongations. Our original motivation was to get a better geomet-
ric understanding of the theory of regularity structures developed by Hairer [H14], which
motivated our study of direct connections on jet prolongations of groupoids. We discuss the
geometric framework underlying regularity structures at the end of the paper. Beyond the
new results it presents, this article provides a pedagogical presentation on groupoids with
connections and their jet prolongations, which is accessible to non experts in one or more of
these subjects. An abridged version should be available in the near future.

Direct connections arise under various disguises in algebraic, geometric and analytic contexts:

 Direct connections were first introduced by Teleman [Te04, Te07, KT06] in the
context of non commutative geometry under the name linear direct connection. They
were built on frame groupoids in order to define the Chern character of the tangent
bundle of a smooth manifold from the geodesic distance function by means of cyclic
homology. Quoting Teleman, ”while a linear connection provides a transport of
fibers along curves, a linear direct connection provides a direct transport of fibres
from point to point”, so that ”direct connections [can] be defined in contexts where
differentiability is not available”.

 Direct connections arise as re-expansion (or transport) maps in Hairer’s regularity
structures [H14, H2] on an Euclidean vector space and were later generalised to a Rie-
mannian manifold in [DDD19]. Here again they arise in the context of singularities,
since regularity structures offer an algebraico-analytic device to transform a singular
stochastic differential equation into a fixed point problem. Hairer’s approach involves
an ad hoc Taylor expansion of the solutions at any point in space-time and a collection
of re-expansion maps which relate the values of Taylor expansions at different points.

 Direct connections on groupoids arise in [Koc89] and compare (modulo an extra
symmetry requirement which amounts to trivial torsion) with 1-forms discussed by
Kock [Koc07, Koc17] in the context of synthetic geometry, an approach to differential
geometry inspired by ideas of Grothendieck.

 For connections with trivial curvature, we recover local morphisms from the pair
groupoid to a general groupoid studied by Mackenzie in [MK05], a reference textbook
on groupoids on which much of this paper is based.

We furthermore expect direct connections to play a role in higher gauge theory when viewing
groupoids equipped with direct connections as a generalisation of principal bundles with
connections that are ubiquous in gauge theory.

The study of the jet prolongation of groupoids with connections that we undertake in
this paper was prompted by the quest for a consistent geometric framework to host the
abstract Taylor expansions that feed into Hairer’s approach. The work of Diehl, Driver
and Dahlqvist [DDD19] confirms that frame groupoids with direct connections (which the
authors call transportation maps) play a central role in a geometric approach to regularity
structures.

The paper is organised in five sections with the last one dedicated to direct connections
in the context of regularity structures, see Theorem 5.6. It relies on the previous section
which discusses direct connections on jet groupoids containing the main new results, namely
Theorems 4.5, 4.6 and 4.11. Along the way, we prove intermediate results on direct connections
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such as Proposition 2.4 and Theorem 2.16 in Section 2, which to our knowledge are new.
In Section 3, we mostly review known results on jet prolongations of groupoids, organising
them in a systematic presentation which we feel is accessible to the non-expert.

Lie groupoids and algebroids. Section 1 is a review of known results on groupoids with
a focus on gauge groupoids.

A Lie groupoid G Ñ M on a smooth manifold M is a smooth collection of elements,
called arrows, above pairs of points in a manifold, endowed with a partial associative and
unital multiplication compatible with the base points such that all arrows are invertible, all
involved maps are smooth and the projections of an arrow to its source and target points in
M are surjective submersions. Lie groupoids can then be seen as a (bi-)fibred generalisation
of Lie groups which can act on fibre bundles keeping track of both the fibre transformations
(internal symmetries) and the bundle automorphisms (global symmetries) [Wei96]. They
are therefore well suited to describe extended notions of symmetries in many contexts of
mathematics and physics [Br06, Hi71, Lan06].

We shall focus on gauge groupoids, also called Atiyah groupoids, which are locally trivial Lie
groupoids, and those among the Lie groupoids that can be equipped with a direct connection.
We recall (Proposition 1.5) the one to one correspondence between gauge groupoids and
principal bundles

P ÞÝÑ GpP q � P �G P, (1)

which sends a principal bundle P ÑM to the corresponding gauge groupoid GpP qÑM . Lie
groupoids are a generalisation of Lie groups, and as Lie groups, they are locally determined
by their infinitesimal structure, given by Lie algebroids.

To a vector bundle E ÑM corresponds a canonical groupoid IsopEqÑM whose arrows
are all possible isomorphisms between any two fibres, called the frame groupoid. The frame
groupoid coincides with the gauge groupoid of the canonical frame bundle of E Ñ M . The
Lie algebroid T linE of IsopEq consists of vertical vector fields on E which are linear and we
discuss the map that sends such a vector field to a linear derivation on E, see eq. (14) in
§1.6. This establishes an isomorphism between LpIsopEqq and the bundle DerpEq of linear
derivations on E.

In view of the applications we have in mind, we consider reduced frame groupoids obtained
as the gauge groupoid of a reduced frame bundle (Proposition 1.14). We end the section with
a short discussion on local bisections which later enter the construction of jet prolongations
of groupoids. In particular, it is useful to observe that local bisections on a gauge groupoid
amount to automorphisms of the underlying principal bundle (Example 1.15).

Direct connections on Lie groupoids. In Section 2, we introduce our main protagonists,
direct connections on groupoids, and study their properties. If the base manifold M has an
affine connection, such as the Levi-Civita connection on a Riemannian manifold, a linear
connection ∇ on the bundle E Ñ M induces a local parallel transport among fibres, along
geodesics of M , that is, a linear isomorphism τpx, yq : Ey Ñ Ex for any pair of points px, yq
of M sufficiently close. The parallel transport τ along geodesics is an instance of a general
direct connection of the gauge groupoid of E, called linear direct connection by N. Teleman
in [Te04].

We generalise Teleman’s linear direct connections to direct connections on a groupoid
G Ñ M , which are local maps Γ : PpMq �ÑG defined on a neighborhood of the identity in
the pair groupoid PpMqÑM with values in G. Groupoids with direct connection, our main
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object of study, are locally trivial (Proposition 2.4) and hence gauge groupoids GpP q built
from a principal bundle P .

Differentiating a direct connection GpP q Ñ M on a gauge groupoid along the diagonal
gives rise to a connection on the underlying principal bundle P ÑM (Proposition 2.11). It is
given by an infinitesimal connection on GpP q, namely a vector bundle morphism δΓ : TM ÝÑ
ApP q where TM is the tangent bundle ofM and ApP q the Atiyah bundle which corresponds
to the Lie algebroid of GpP q (Proposition 2.11). To construct a direct connection from an
infinitesimal connection, one can use a parallel transport along geodesics (Proposition 2.13)
built from a connection on the underlying manifold. Theorem 2.16 shows that if Γ is the
direct connection defined by a parallel transport on P , then ∇Γ coincides with the classical
connection related to the parallel transport. Yet not every direct connection is of this form
(Example 2.18), and there is no bijective correspondence between infinitesimal and direct
connections.

The curvature of a direct connection Γ : P �ÑG on a groupoid G Ñ M is an obstruction
to Γ defining a local morphism, given by ΩΓpx, y, zq � Γpz, xq�1 Γpz, yqΓpy, xq defined on
triples px, y, zq of pairwise neighboring points in M (eq. (35) in §2.7). The connection is
flat when ΩΓ � Id and flatness of connections is preserved by differentiation, as well as by
integration. There is a one-to-one correspondence between flat infinitesimal connections and
flat direct connections (modulo germ equivalence) on groupoids since flat direct connections
are entirely determined by the parallel transport induced by the underlying flat infinitesimal
connection (Proposition 2.30).

Jet prolongations of bundles and groupoids. Section 3 is dedicated to prolongations
of groupoids first considered by Ehresman [Eh55]. The n-jet prolongation of a Lie groupoid
G Ñ M is the jet space of n-jets of local bisections σ : M �ÑG (eq. (68) in §3.3). It can
be equipped with a Lie groupoid structure JnG Ñ M induced by that of G. Later, Kolár
[Kol07] showed that the jet prolongation Jn actually defines a functor on gauge groupoids
(Proposition 3.3). For a principal bundle P ÑM , we have JnGpP q � GpW nP q (eq. (73) in
Proposition 3.3). Here, W nP is the n-jet principal prolongation of P given in eq. (60) in
§3.5, which entails both the n-jet prolongation JnP of the principal bundle P and the n-th
frame bundle F nM of M defined in eq. (46) in §3.2. On the infinitesimal level, eq. (73)
yields the corresponding property for Atiyah bundles JnApP q � ApW nP q (eq. (84) in §3.9).
When P � FE is the frame bundle of a vector bundle E Ñ M , eq. (73) in Proposition 3.3
gives the description of the n-jet prolongation JnIsopEq of the groupoid IsopEq � GpFEq as
a gauge groupoid JnIsopEq � GpW nFEq � W nFE �Wn

d GLr W
nFE, see eq. (77). It is is a

proper subgroupoid of IsopJnEq, see eq. (81) in §3.8.

Direct connections on jet groupoids. In Section 4, we consider direct connections on
jet prolongations of Lie groupoids. Proposition 4.2 confirms the fact that a jet prolonged
groupoid JnG with connection is necessarily a gauge groupoid, namely JnG � GpW nP q with
G � GpP q. From a direct connection Γ on a Lie groupoid G Ñ M , we build connections
on the jet-prolongation JnG, called n-th order prolongation of Γ (see Definition 4.1), whose
composition with the jet projection map πn0 : JnG Ñ J0G � G described in §3.7, gives back
Γ.

For this purpose, we assumeM comes with an affine connection and first we build a direct
connection ∆M (see eq. (97)) on IsopTMq called exponential direct connection by means of
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the exponential (local) bisection (Definition 4.3). This uses parallel transport on TM along
small geodesics induced by the connection on M .

Taking jets of the exponential bisection gives rise to a connection ∆
pnq
M – which we call

the exponential direct connection (eq. (96) in Definition 4.4)– on the the jet prolongation
Jn PairpMq of the pair groupoid of M . In Theorem 4.5 we prove that the exponential

direct connection ∆
pnq
M is a jet prolongation of ∆M and in Theorem 4.6 that the infinitesimal

connection of ∆
pnq
M on Jn PairpMq is the exponential n-th order prolongation δ

pnq
M : TM ÝÑ

LpJn PairpMqq � JnTM (eq. (99)) of the affine connection on M used in [Kol09, §5] to
build infinitesimal connections on jet prolongations of groupoids.

A similar construction using an affine connection on the underlying manifold, yields a
direct connection Γpnq on the jet prolongation JnG of a general Lie groupoid G from a
direct connection Γ on G, see eq. (103) in Definition 4.7, which gives back eq. (96) when
G � PairpMq. Corollary 4.8 shows that Γpnq, which yields an n-th order prolongation of

Γ, factorises through ∆
pnq
M . In Theorem 4.11, we show that any flat connection on the jet

prolongation JnG of a Lie groupoid over a flat manifold, factorises through ∆
pnq
M .

Direct connections on the frame groupoid IsopJnEq of the jet bundle JnE of a vector
bundle E ÑM are of special interest in the context of regularity structures.

Specialising to a direct connection Γ on the frame groupoid G � IsopEq of a vector bundle
E Ñ M , the above construction yields a n-th order prolonged direct connection Γpnq on
JnIsopEq. This in turn induces a direct connection –again denoted by Γpnq with some abuse
of notation– on IsopJnEq � JnIsopEq. We compare it (Proposition 4.18) with another

direct connection rΓpnq given by eq. (123) in §4.7, built by means of a local Taylor expansion
following the construction in [DDD19, Definition 76]. Unlike the family of direct connections
Γpnq, n P N on IsopJnEq, n P N, which yields a projective system, the family of direct

connections rΓpnq, n P N obtained by means of Taylor expansions which are relevant in the
context of regularity structures, does not.

Regularity structures are briefly discussed in Section 5, where we propose a notion of
geometric pre-regularity structure (Definition 5.1) on a vector bundle of finite rank on a
manifoldM . It offers a geometric framework to host the algebraic data in Hairer’s regularity
structures on Rd [H14] and the polynomial regularity structures on a Riemannian manifold
built in [DDD19], leaving out the analytic aspects, hence the prefix ”pre”.

The geometric framework we propose keeps track of the structure group in the form of
a groupoid and its action on the vector bundle defined in terms of a direct connection
on the frame groupoid of this veector bundle. The underlying geometric structures are
given in the projective setup (briefly discussed in Appendix 6), and which is well suited
to keep track of the grading inherent to regularity structures and perturbative approaches
to quantum field theory. The model space T in Hairer’s regularity structure is replaced
by a projective limit E :� limÐÝ

α

Eα of vector bundles Eα Ñ M,α P A over a manifold M ,

indexed by a discrete set A bounded from below. The typical fibre of E is a graded space
T � `αPAT

α, the frame groupoid IsopEq of E is acted upon by a prounipotent gauge
groupoid GpP q :� limÐÝ

α

GpPαq Ñ M (as described in eq. (6.8)) and the structure group in

Hairer’s framework is the structure group of the principal bundle P � limÐÝ
α

Pα ÑM given as

the inverse limit of a projective system of principal bundles underlying the gauge groupoid.
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To such a geometric pre-regularity structure, we associate a geometric pre-model, leaving
out the analytic requirements for a full fledged model as defined in the context of regularity
structures, hence the prefix ”pre” in front of ”regularity structures”. As in [H14], it is given
by a pair pΠ,Γq: here, Π is a family of maps from the total space E of the vector bundle
to a sheaf D1

Mp�, E
0q of vector valued distributions, and Γ is a (not necessarily projective)

family of direct connections on the underlying gauge groupoid GpP q. In Proposition 5.3, we
express the obstruction Π � Γ � Π to the ”Γ-invariance of Π” in terms of a curvature term
(140) for Γ. In particular, this obstruction vanishes in the flat case.

Polynomial pre-regularity structures discussed in §5.2, bring together the main geometric
and analytic ingredients of the paper, namely groupoids equipped with direct connections
discussed in Section 2 and direct connections on jet prolongations discussed in Section 3.
Theorem 5.2 puts geometric polynomial regularity structures in the general framework of
geometric pre-regularity structures. There, the bundle E is the jet bundle of a vector bundle
E0 Ñ M with the index set given by A � Z¥0 and En is the n-jet prolongation JnE0 of
E0. The frame bundle of the bundle E therefore involves the frame bundles IsopJnE0q of jet
prolongations of E0. The pre-model pΠ,Γq is built along the lines of [DDD19, Definition 80],
from a Taylor expansion map, using the direct connection on IsopJnEq defined in eq. (123).
The case E0 �M�R corresponds to the polynomial regularity structure in the framework

of [H14] if M � Rd and that of [DDD19] on a Riemannian manifold M . Theorem 5.6
then revisits Dahlqvist, Diehl and Driver’s [DDD19] polynomial regularity structures in the
language of jet prolonged groupoids with direct connections. Our construction on JnE0

relates to that of [DDD19] on ΣnT �M bE0 via the isomorphism JnE � ΣnT �M bE0 given
by Eq. (125) in §4.7 induced by a connection on M .

Openings. This exploratory paper is a first step towards further possible investigations, one
of which would be to transpose the geometric constructions carried out here in the smooth
setting to the Hölder setting better suited for the study of sPDEs. Also, direct connections
on gauge groupoids viewed as an integrated version of connections on principal bundles, open
the road to the study of higher gauge theories.

Acknowledgements: The authors are very grateful to the late Kirill Mackenzie and thank
Alexander Schmeding for their very helpful comments on a preliminary version of the paper.
Youness Boutäıb is thankful for the support of the DFG within the research unit FOR 2402.
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1. Lie groupoids and Lie algebroids

Groupoids can be viewed as a fibred generalisation of groups over manifolds or as a
generalisation of groups as fibred objects over manifolds. They were introduced by Brandt
in [Bra26], who actually introduced what are now called transitive groupoids. Interest in
groupoids broadened in the 50’s when the notion of category arose, since the invertible
elements of a small category form a groupoid. As from then, the use of groupoids was
expanded by Ehresmann in various areas of mathematics, including differential geometry.
Groupoids have become central tools to host singular structures.

In this section we recall basic facts on Lie groupoids as well as on their actions on fibre
bundles, and the main examples needed in the sequel. Our main references are the standard
textbooks by K. Mackenzie [MK05], I. Moerdijk and J. Mrčun [MM03] and E. Meinrencken
[Me17], and the pedagogical introduction by A. Kumpera [Ku15]. Explicit references are
quoted for specific results. We recall the relation between principal bundles and gauge
groupoids (Proposition 1.5) and consider reduced frame groupoids obtained as the gauge
groupoid of a reduced frame bundle (Proposition 1.14). We finish this section with a
short review of (local) bisections which later enter the construction of jet-prolongations
of groupoids.

1.1. Lie groupoids. A groupoid on a manifold M is a set G, whose elements are called
arrows, together with the following structure maps:

(1) a source map s : G ÝÑM and a target map t : G ÝÑM ,
(2) a multiplication (or composition) m : G �M G ÝÑ G, pγ1, γ2q ÞÑ γ1γ2, defined on

the set G �M G � tpγ1, γ2q, spγ1q � tpγ2qu of composable arrows, assumed to be
associative,

(3) a unit map u : M Ñ G, x ÞÑ upxq �: 1x such that tp1xq � sp1xq � x for any x P M
and 1tpγq γ � γ � γ 1spγq for any γ P G,

(4) an inversion i : G ÝÑ G, γ ÞÑ γ�1 such that spγ�1q � tpγq, tpγ�1q � spγq,
γ γ�1 � 1tpγq and γ

�1 γ � 1spγq.

The induced map pt, sq : G ÝÑM�M is called the anchor. From the axioms it follows that
the source and the target are surjective maps, the unit map is injective and the inversion is
bijective. The manifold M is called the base of the groupoid and can be identified with the
set of units upMq � G. A groupoid is compactly denoted by G Ñ M and the structure
maps ps, t,m, u, iq are tacitely understood.

A group G can be seen as a groupoid GÑ � on the base manifold given by a point, with
trivial source and target maps. Hence groupoids generalise groups.

Given a groupoid G ÑM and points x, y in M , we use the following notations:

 Gx :� t�1pxq for the t-fibre of x, with restricted source map sx :� s|Gx : Gx ÑM ,
 Gy :� s�1pyq for the s-fibre of y, with restricted target map ty :� t|Gy : Gy ÑM ,
 Gxy :� Gx X Gy for the fibre of px, yq, whose arrows are often denoted γxy (or γxy ).

Similarly, for U, V �M , we set GU :� t�1pUq, GV :� s�1pV q and GUV :� GU X GV .
For any x P M , the set Gxx is a (non-empty) group with the composition of arrows and

unit 1x, called the vertex group (or the isotropy) at x. The non emptyness of the set
Gxy above two distinct points x, y in M defines an equivalence relation: x � y if and only
if Gxy whose equivalence classes are called orbits of G. The orbit of a point x in M is the
set Ox � sxpGxq � txpGxq � M . The orbit space of G, denoted M{G, is the quotient of
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M by the relation and gives a foliation of M which is possibly singular. The groupoid G is
regular if the orbits have all the same dimension, that is, the foliation is regular, and it is
transitive if it has a single orbit M . This holds if and only if the anchor map is surjective.
A groupoid G ÑM is a Lie groupoid if

(1) it is smooth i.e., if G and M are smooth manifolds
(2) and the source and target maps are surjective submersions.

This guarantees the following nice properties:

Fact 1.1. [MM03, Theorem 5.4] Let G ÑM be a Lie groupoid. Then, for any x, y in M :

(1) The unit set upMq � G, is a submanifold of G, and by assumption the set of
composable arrows G �M G is a manifold (this holds for any smooth groupoid).

(2) The vertex group Gxx is a Lie group.
(3) The fibre Gxy is a closed submanifold of G (possibly empty).
(4) The orbit Ox � txpGxq � sxpGxq is an immersed submanifold of M and the restricted

maps tx and sx are both principal Gxx-bundles on Ox.

Moreover, if G is transitive then the anchor map is a surjective submersion.

Thanks to these properties, Lie groupoids allow an infinitesimal calculus (via Lie algebroids)
analogous to that defined on Lie groups (via Lie algebras), and are suitable to study smooth
actions on fibre bundles.

However, one should keep in mind that the vertex groups Gxx and Gyy over distinct points
are not necessarily isomorphic, since the fibre Gyx can be empty and the groups can belong
to separate connected components of G, even if the base manifold M is connected.

A morphism between two groupoids is a functor between the (category-theoretic) groupoids.
We focus on morphisms over the identity map (also called morphism over M or

morphism preserving the units) between two Lie groupoids G Ñ M and G 1 Ñ M
respectively with source s, s1 and target t, t1 and the same base manifold M , namely smooth
maps ϕ : G Ñ G 1 such that

(1) s1 � ϕ � s and t1 � ϕ � t,
(2) ϕ � u � u1,
(3) ϕpγ γ1q � ϕpγqϕpγ1q for any composable γ, γ1 in G, and therefore ϕ � i � i1 � ϕ.

It is an isomorphism of Lie groupoids if ϕ is a diffeomorphism.
A subgroupoid of a Lie groupoid G Ñ M is a groupoid G 1 Ñ M together with an

injective Lie groupoid morphism ι : G 1 ãÑ G over M , giving the inclusion.

Examples 1.1. Let M be a smooth manifold.

(1) Given a Lie group G, the cartesian productM �G�M defines a Lie groupoid onM ,
called trivial groupoid with vertex group G, with source spx, g, yq � y, target
tpx, g, yq � x, composition px, g, yqpy, h, zq � px, gh, zq induced by the product on G,
unit 1x � px, 1G, xq, where 1G is the unit on G and inverse px, g, yq�1 � py, g�1, xq
with g�1 the inverse of g in G, for any x, y, z in M and g, h in G.

A Lie groupoid G Ñ M is called trivial if it is isomorphic to a trivial groupoid.
Any trivial Lie groupoid is clearly transitive.

(2) The pair groupoid of M is the trivial groupoid with trivial vertex group G � teu,
namely the cartesian product PairpMq � M �M , where arrows are pairs px, yq of
points, with source spx, yq � y, target tpx, yq � x, composition px, yq py, zq � px, zq,
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unit 1x � px, xq and inverse px, yq�1 � py, xq. The diagonal ∆M � tpx, xq, x P Mu of
M corresponds to the set of units of the pair groupoid.

For any Lie groupoid G Ñ M , the anchor map pt, sq : G ÝÑ PairpMq is a Lie
groupoid morphism over M , which maps the units of G onto the units of PairpMq,
that is, pt, sq

�
uGpMq

�
� ∆M . The anchor pt, sq : G ÝÑM �M is a local fibration.

(3) The fundamental groupoid of M is the set ΠpMq of homotopy classes rγs of
continuous paths γ : r0, 1s Ñ M with source sprγsq � γp0q, target tprγsq � γp1q,
partial composition rγs rγ̃s � rγ γ̃s induced by the concatenation of paths γ, γ̃ :
r0, 1s Ñ M such that γ̃p1q � γp0q, and inversion rγs�1 � rγ�1s induced by the
inversion of orientation. Its vertex group at a point x0 in M is the fundamental
group π1pM,x0q, see [MK05, Examples 1.1.1, 1.3.4]. One can show that it is a Lie
groupoid with the quotient topology and that it is transitive if and only if M is
connected [Me17, Example 1.10].

l

1.2. Local maps and local morphisms. In a fibre bundle, an object is local if it is defined
in an open neighborhood of a base point. For a groupoid, this notion must be adapted to the
fact that its very essence is to relate distinct base points: locality then means that the points
to be related are sufficiently close to one another, wherever they are in the base manifold.
This leads to the following definition. Since we shall only be concerned by maps over the
identity, we omit specifying it.

Definition 1.2. A local map between two (resp. Lie) groupoids G ÑM and G 1 ÑM over
a manifold M is a (resp. smooth) map ϕ : U � G ÝÑ G 1 defined on an open neighbourhood
U of the units upMq � G, which commutes with the source, the target and the units, that
is,

(1) s1 � ϕ � s and t1 � ϕ � t,
(2) ϕ � u � u1.

If U � G, we call ϕ a global map. To distinguish local from global maps at a glance, we
denote local maps by ϕ : G �ÝÑG. Local maps between Lie groupoids are assumed to be
smooth, unless otherwise specified.

A local map defined on an open set U restricts to a local map on any open subsets
U 1 � U containing upMq � G. Following Mackenzie, we call two local maps over M germ
equivalent if they agree on some neighborhood of upMq. A local map ϕ : G �ÝÑG 1 is a
local morphism of (resp. Lie) groupoids if it also preserves compositions, i.e.

(3) ϕpγ γ1q � ϕpγqϕpγ1q for any composable γ, γ1 in U whose product γ γ1 lies in U .
In this case, it also preserve inversions (resp. which are smooth), i.e. ϕpγ�1q � ϕpγq�1 for all
γ P G such that γγ�1 lies in U . We denote local morphisms by ϕ : G �ÝÑG 1, as in [MK05,
Definition 6.1.6]. A global morphism in this sense is the same as a groupoid morphism of
Section 1.1 which we shall therefore simply call morphism.

A local map between two Lie groupoids cannot always be extended to a global one, even
if it is a local groupoid morphism. Mackenzie proved in [MK05, Theorem 6.1.10] that this
is possible under rather restrictive conditions, namely when G �ÝÑG 1 is a local groupoid
morphism of locally trivial Lie groupoids over the same base manifoldM , if the source-fibres
(equivalently,the target-fibres) of G are connected and simply connected.
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1.3. Locally trivial groupoids. In practice, the Lie groupoids we are interested in are all
gauge groupoids, whose structure is simple to describe. Let πP : P ÝÑ M be a principal
bundle with structure group G acting on the fibres on the right, transitively and without
fixed points. The gauge or Atiyah groupoid of P is the quotient manifold

GpP q � P �G P :� pP � P q{ � (2)

under the equivalence relation

pp, qq � pp g, q gq @p, q P P, @g P G,

whose arrows are equivalence class of pairs pp, qq in P � P denoted rp, qs, endowed with
source and target maps given by the bundle projection, namely

sprp, qsq � πP pqq and tprp, qsq � πP ppq @p, q P P,

partial composition

rp, qs rp1, q1s � rp, q1gs for the unique g in G such that q � p1 g,

defined if πP pqq � πP pp1q, units 1x � rp, ps for any p in π�1
P pxq and inverse rp, qs�1 � rq, ps.

Example 1.3. (1) Given a Lie group G, the trivial groupoid M � G �M is clearly a
gauge groupoid for the trivial principal bundle P �M �G. This holds in particular
for the pair groupoid PairpMq whose structure group G is trivial.

(2) The fundamental groupoid ΠpMq is a gauge groupoid for the principal bundle given
by the universal covering of M [MK05, Example 1.3.4].

It is easy to verify that a gauge groupoid GpP q is trivial, i.e. isomorphic to M �G�M ,
if and only if the underlying principal bundle P Ñ M is trivial, i.e. isomorphic to M � G.
Gauge groupoids are caracterized by a very simple local structure. Let us first fix some
terminology.

Definition 1.4. [Ku15, §6, Example d)] [MK05, Definition 1.3.2] Let G Ñ M be a Lie
groupoid.

 G is locally trivial if for any x in M there exists an open neighborhood U of x in
M such that GUU is isomorphic to the trivial groupoid U � Gxx � U .

 G admits a section atlas if there exists a point x0 P M and a collection of local
sections of tx0 , i.e. an open covering tUαu of M and smooth maps σα : Uα Ñ GUα

x0
such that tx0 � σα � IdUα , called local decomposing maps. This implies that the
restriction tx0 : Gx0 ÑM is a surjective submersion, which is not a priori ensured in
a Lie groupoid.

 If G admits a section atlas tσαu based at x0, the transition functions are the maps
gαβ : Uα X Uβ Ñ Gx0x0 given by gαβpxq � σαpxq

�1σβpxq.

We now assume that the base manifold M is connected.

Proposition 1.5. [Ku15, Lemma 2] [MK05, Propositions 1.3.3 and 1.3.5] [Me17, Theorem
3.10] Let G Ñ M be a Lie groupoid on a connected manifold. The following assertions are
equivalent:

(1) G is a gauge groupoid.
(2) G is transitive (then by Theorem 1.1 the surjective anchor map is a submersion).
(3) G is locally trivial.
(4) G admits a section atlas.
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(5) The anchor map pt, sq : G Ñ M �M is a locally trivial fibre bundle with fibre Gx0x0
for a point x0 in M , and structure group Gx0x0 � Gx0x0 acting on the left on the fibre by
pg1, gq � h � g1hg�1, for any g1, g, h in Gx0x0 .

(6) (Assuming M is connected) The source map s : G �
�
xPM Gx ÑM is a locally trivial

fibration in principal G-bundles on M , with G � Gx0x0 for any choice of x0 PM . The
principal Gxx-bundle t : Gx Ñ M is called the vertex bundle of G at the point x
[MK05, §1.3].

The proof of these equivalences is based on the fact that one can define local sections for
any fibration by the implicit function theorem.

Example 1.6 (Frame groupoids). Any vector bundle πE : E ÝÑM of rank r is associated
to a principal GLrpRq-bundle π : FE ÝÑ M , called the frame bundle of E, with fibre
FxE � Iso pRr, Exq above x in M given by the set of linear isomorphisms φx : Rr Ñ Ex (the
frames of Ex), and projection πpφxq � x. The gauge groupoid of FE is called the frame
groupoid of E and denoted by

IsopEq :� GpFEqÑM. (3)

Its arrows are the linear isomorphisms φxy : Ey Ñ Ex between fibres of E, and the whole
groupoid can be described as the set

IsopEq �
¤

x,yPM

Iso pEy, Exq

with source spφyxq � y, target tpφxyq � x and partial composition φxy ψ
y
z : Ez Ñ Ex given by

the usual composition of linear maps ψyz : Ez Ñ Ey and φxy : Ey Ñ Ex. Since it is a gauge
groupoid, the frame groupoid is a transitive Lie groupoid.

l

1.4. Groupoid actions. Let G Ñ M be a Lie groupoid and Q a smooth manifold with a
smooth map φ : QÑM . We call

G �M Q :� tpγ, qq P G �Q, spγq � φpqqu �
¤
qPQ

Gφpqq � tqu.

resp.

Q�M G :� tpq, γq P Q� G, tpγq � φpqqu �
¤
qPQ

tqu � Gφpqq.

the set of composable pairs pγ, qq in G �Q, resp. pq, γq in Q� G.
A left, rep. right action of G on Q is given by a surjective submersion φ : Q Ñ M ,

together with an action map [MK05, Definition 1.6.1], [MM03, §5.3. Semi-direct products]

G �M Q ÝÑ Q

pγ, qq ÞÝÑ γ � q (4)

resp.

Q�M G ÝÑ Q

pq, γq ÞÝÑ q � γ (5)

such that φpγ � qq � tpγq, resp. φpq � γq � spγq and which is compatible with the groupoid
composition in the sense that 1φpqq � q � q for any q in Q and

γ � pγ1 � qq � pγ γ1q � q resp. pq � γ1q � γ � q � pγ1 γq
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for any composable arrows γ, γ1 in G and for any q in Q composable with γ1.
For such an action, one can form the semi-direct product groupoid of the G-action,

or translation groupoid G 
Q, resp. Q�G, which indeed defines a Lie groupoid over M .

Recall that the canonical projection π : QÑM of a locally trivial fibration is a surjective
submersion.

If π : Q Ñ M is a fibre bundle, we take φ � π and denote by ργ : Q Ñ Q the map
q ÞÑ γ � q induced by the left action. If π : E Ñ M is a vector bundle, the action ρ of G on
E is called linear whenever for any γ in G the map ργ : E Ñ E acts linearly on the fibres.
In other words, linear actions of G on E are given by groupoid morphisms G Ñ IsopEq over
M [MK05, Definition 1.7.1] [Me17, §5.3]. In this case, the bundle E is also called a linear
representation of the groupoid G. As usual, the representation is called faithful if the
corresponding groupoid morphism G Ñ IsopEq is injective.

Examples 1.7. Let E ÑM be a vector bundle on a manifold M .

(1) A faithful linear action of the pair groupoid PairpMq Ñ M on E, that is, an
injective morphism PairpMq ãÑ IsopEq of groupoids over M , is equivalent to a global
trivialization of E [Me17, §5.3].

(2) The frame groupoid IsopEq Ñ M has a natural faithful linear representation on E
given by the evaluation

ev : IsopEq �M E Ñ E, pφxy , ayq ÞÑ φxypayq, (6)

where the isomorphims φxy : Ey Ñ Ex applied to ay P Ey gives an element φxypayq in
Ex.

(3) If the structure group of the bundle E reduces to the group G, let P Ñ M be
the associated principal G-bundle, with gauge groupoid GpP q Ñ M . Then GpP q
acts linearly on E, with action ρ : GpP q �M E Ñ E given by the composition of
ρE : IsopEq �M E Ñ E and the map ι : GpP q ãÑ IsopEq of Proposition 1.14.
If E � P �G V if a vector bundle associated with a principal G-bundle Ñ M , we

consider classes rr, vs in P �G V of elements a in E with πEpaq � πP prq. The set of
composable elements is

GpP q �M E �
 
prp, qs, rr, vsq, πP pqq � πP prq

(
and the action ρ of GpP q on E is given by

ρprp, qsqprr, vsq � rp, g vs,

where g in G is the unique group element such that r � q g. A linear action of the
fundamental groupoid ΠpMq Ñ M on a E is equivalent to a flat connection on E
[Me17, §5.3].

l

1.5. Lie algebroids. A Lie algebroid on a manifold M is a vector bundle q : A Ñ M
endowed with a Lie bracket r , sA : ΓpAq � ΓpAq Ñ ΓpAq on its space of sections (that is, an
antisymmetric R-bilinear map satisfying the Jacobi identity) together with a vector bundle
map a : A Ñ TM over M called the anchor, or equivalently a C8pMq-linear map among
sections, which satisfies the Leibniz rule

rX, f Y sA � f rX, Y sA � apXqpfqY
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for any X, Y, Z in ΓpAq and f in C8pMq, that is, the bracket r , sA is a derivation. It
then follows that the anchor is a morphism of Lie algebras from C8pM,Aq to the space of
vector fields on M , i.e. a prX, Y sAq � rapXq, apY qs. The Lie algebroid A is regular if a has
constant rank, and it is transitive if a is fibrewise surjective.

A morphism between two Lie algebroids A Ñ M and A1 Ñ M on a manifold M is a
morphism of vector bundles ϕ : AÑ A1 which commutes with the anchors and preserves the
brackets. Lie algebroids together with morphisms of Lie algebroids build the category L of
Lie algebroids.

Example 1.8. If π : P Ñ M is a principal G-bundle, the group G acts on the tangent
bundle TP Ñ P with action given by the map dρg : TP ÝÑ TP tangent to the action
ρg : P Ñ P, p ÞÑ p g, for any g in G. The quotient bundle

ApP q :� TP {GÑM (7)

by this action is a Lie algebroid, called the Atiyah algebroid of P , with anchor a : ApP q Ñ
TM induced by dπ : TP Ñ TM (therefore fibrewise surjective). In fact, the space of sections
C8pM,ApP qq coincides with that of G-invariant vector fields on P and therefore it is closed
under the Lie bracket of vector fields. The quotient map χ : TP Ñ TP {G � ApP q is a
fibrewise isomorphism between the two bundles over different base manifolds.

Being transitive, the Atiyah algebroid fits into a short exact sequence of Lie algebroids
over M , called the Atiyah sequence,

0 ÝÑ Kerpaq � pP � gq{G ÝÑ ApP q � TP {G ÝÑ TM ÝÑ 0, (8)

obtained by differentiating the G-equivariant exact sequence of right G-spaces

0 ÝÑ P �G � P �M P ÝÑ P �M ÝÑ P �M ÝÑ 0,

where G acts on P �G by pp, gq � h � pph, h�1ghq for p in P and g, h in G, and then taking
the quotient by G, cf. [MK05, §3.2], [MM03, §6.4].

l

1.6. Lie algebroid of a Lie groupoid. Lie algebroids are fibred analogues of Lie algebras
over a manifold, and play for Lie groupoids the role that Lie algebras play for Lie groups.
They were introduced by J. Pradines in [Pra67] and are nowadays used to study foliations
[MM03], Poisson geometry [Ma06] and sigma models in string theory [BKS05]. There are
many interesting examples of Lie algebroids which go beyond our scope, cf. [MK05], [Me17]
and [MM03]. We are mainly concerned with the Lie algebroid defined by the tangent space
of a Lie groupoid at the units, thanks to the properties listed in Theorem 1.1.

We follow [MK05, §3.5] or [MM03, §4.1]1 and consider the vector subbundle of the tangent
bundle TG Ñ G built from the tangent spaces to the source-fibres, namely

T sG :�
¤
γPG

TγGspγq ÝÑ G.

The Lie algebroid of G is the pull-back of T sG � TG along the embedding u : M Ñ G,
that is, the collection of tangent spaces of the source-fibres at their units

LpGq :� u�pT sGq �
¤
xPM

T1xGx.

1An equivalent definition of the Lie algebroid LG is given by [Me17, §9.2] or again [MM03, §4.1] as the
normal bundle TG|upMq{TupMq of M in G (cf. [Me17, §8.2]).
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The bundle projection onto M is given by the source, which is constant on the fibres T1xGx
(and equal to x) since T sG coincides with the kernel Kerpdsq of the tangent map ds : TG Ñ
TM . The anchor is given by the composition a � dt�i : LpGq Ñ TM , where Dt : TG Ñ TM
is the tangent map of the target and i : u�pT sGq Ñ T sG � TG is the natural map on the pull-
back. The Lie bracket on the sections C8pM,LpGqq is induced via right-translation by that
of vector fields on G, which must be proven to be closed among right-invariant T sG-valued
vector fields. By construction, it satisfies the requirements of Lie algebroids.

Remark 1.9. An alternative definition consists in swapping source and target, taking
tangent spaces to the target-fibres, leading to an isomorphic Lie algebroid whose Lie-bracket
is induced via left-translation by that of vector fields on G (see e.g. [MK05, The symmetric
construction in §3.5]). In this alternative approach, one considers the pull-back of T tG � TG
along the embedding u :M Ñ G, that is, the collection of tangent spaces of the target-fibres
at their units and defines L1pGq :� u�pT tGq �

�
xPM T1xGx. The bundle projection onto M

is given by the target map, which is constant on the fibres T1xGx and the anchor is given
by the composition a � ds � i : L1pGq Ñ TM , where ds : TG 1 Ñ TM is the tangent to the
source map. There is an isomorphism of vector bundles LpGq � L1pGq, and the Lie bracket
r�, �s1 on the space C8pM,L1pGqq induced via left-translation relates to the Lie bracket r�, �s
on C8pM,LpGqq by r�, �s1 � � r�, �s.

If G is a locally trivial groupoid (that is, a gauge groupoid, see Theorem ??), then LpGq
is a transitive Lie algebroid. The converse holds true if M is connected [MK05, Corollary
3.5.18].

Example 1.10. The Lie algebroid of the gauge groupoid GpP q built from a principal bundle
P ÑM is isomorphic to the Atiyah algebroid of P [Me17, Example 9.5 (c)], i.e.

LpGpP qq � ApP q. (9)

l

Examples 1.11. Lie algebroids of gauge groupoids give rise to various explicit examples:

(1) The Lie algebroid of the pair groupoid PairpMq Ñ M is isomorphic to the tangent
bundle TM ÑM equipped with the vector field brackets and the identity TM Ñ TM
as anchor, i.e. LpPairpMqq � TM [MK05, Example 3.5.11].

(2) So is the Lie algebroid of the fundamental groupoid ΠpMq isomorphic to the tangent
bundle, LpΠpMqq � TM [Bro88].

(3) If P � M � G is the trivial principal G-bundle, and GpP q � M � G � M , then
LpM �G�Mq � ApM �Gq � TM `pM � gq, where g � LiepGq, with anchor given
by the projection to TM and bracket

rX � v, Y � ws � rX, Y sXpMq �
�
Xpwq � Y pvq � rv, wsg

�
,

where X, Y P XpMq and v, w PM � g [MK05, Example 3.5.13]. When G � t1u, this
gives back LpPairpMqq � TM .

(4) [MK05, §3.4] Let us specialise to the case when P � FE is the frame bundle of
a vector bundle π : E Ñ M whose gauge groupoid GpFEq � IsopEq is the frame
groupoid of E. Its Lie algebroid LpIsopEqq � T linE consists of linear vector fields
pξ,Xq of the bundle TE Ñ E i.e., pairs pξ,Xξq, where ξ : E Ñ TE is a vector field
on E over a vector field Xξ : M Ñ TM . Equivalently, ξ has a local flow given by a
bundle morphism F ξ

y : E Ñ E over a local flow fXt of Xξ on M . The anchor map
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a : T linE Ñ TM sends the vector field ξ on E to the vector field Xξ � dπpξq on M
and its kernel is the bundle T lin,vE of vertical vector fields on E which are linear, i.e.
ξpeq � pe,Xpeqq for any e in E, where X : EÑ E is a vector bundle morphism.
The Lie algebroid T linE of IsopEq coincides with the Atiyah algebroid ApFEq of

FE and we have the exact sequence

0 ÝÑ T lin,vE ÝÑ T linE
a
ÝÑ TM ÝÑ 0. (10)

(5) [MK05, Example 3.3.4], [MK05, Theorem 3.6.6] The Lie algebroid LpIsopEqq of the
frame groupoid IsopEq is isomorphic to the bundle DerpEq ÑM of linear derivations
on E defined as follows.
A linear derivation on E at a point x in M [ETV19, §2.1], is an R-linear map

Dx : C
8pM,Eq Ñ Ex for which there is a vector ξDx in TxM such that

Dxpλ fq � ξDxpλqfpxq � λpxqDxf @λ P C8pMq, @f P C8pM,Eq. (11)

Let DerxpEq be the linear space of linear derivations on E at a point x, then

DerpEq �
¤
xPM

DerxpEq ÑM (12)

forms a vector bundle over M , called the bundle of linear derivations on E. Its
sections are first order differential operators D : C8pM,Eq Ñ C8pM,Eq for which
there exists a vector field ξD P XpMq on M , such that eq. (11) holds for every x
in M , setting Dσpxq :� Dxpσq and ξDpxq :� ξDx . The Lie bracket on DerpEq is
the commutator bracket of operators and the anchor is the symbol map DerxpEq Q
Dx ÞÝÑ XDx P TxM . Its kernel is isomorphic to EndpExq and the Atiyah sequence in
eq. (8) reads

0 ÝÑ EndpEq ÝÑ DerpEq
a
ÝÑ TM ÝÑ 0. (13)

We follow [MK05, Proposition 3.4.4] and[L-GV, Example 2.3] to describe the
isomorphism

ρ : LpIsopEqq �
ÝÑ DerpEq, (14)

which sends a linear vector field pξ,Xq in T linE to a linear derivation Dξ in DerpEq
defined as follows. For any section f of E and for any section ϕ of E� [MK05, Eq.
(27) p.115]

xϕ,Dξpfqy � Xxϕ, fy � ξpℓϕqpfq. (15)

Here ℓϕ is the fibrewise-linear function on E corresponding to the section ϕ so that
ℓϕpfq � xϕ, fy and ξpℓϕq is again a fibrewise-linear function on E since linear vector
fields preserve the subspace of such functions.

In the remaining part of this paragraph, we consider global morphisms.
Let P Ñ M and P 1 Ñ M be two principal bundles over M with structure groups

respectively G and G1 and let GpP qÑM and GpP qÑM the corresponding gauge groupoids
as defined by eq. (2).

(1) Given a morphism φ0 : GÑ G1 of Lie groups and a morphism φ : P Ñ P 1 of principal
bundles over the identity which is φ0-equivariant, that is, φppgq � φppqφ0pgq, the map
Gpφq : P �G P Ñ P 1 �G1 P

1 given by

Gpφq
�
rp, qs

�
� rφppq, φpqqs, p, q P P, (16)
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defines a groupoid morphism

pGpPqÑMq
Gpφq
ÝÑ pGpP1qÑM 1q .

The map Gpφq is well defined since p1 � p g and q1 � q g for any g P G implies
that rφpp1q, φpq1qs � rφppqφ0pgq, φpqqφ0pgqs � rφppq, φpqqs, which clearly defines a
groupoid morphism.

(2) Conversely, a morphism of Lie groupoids ϕ : G Ñ G 1 over the identity on M induces
by restriction, a morphism φ : P :� Gx0 Ñ G 1x0 �: P

1 of principal bundles and a group
morphism φ0 : G :� Gx0x0 Ñ pG 1qx0x0 �: G

1, giving rise to a φ0-equivariant morphism
φ : P Ñ P 1, such that Gpφq � ϕ.

1.7. The Lie functor. Just as the tangent map at the identity of a morphism of Lie groups
induces a Lie algebra morphism between the corresponding Lie algebras, there exists a
tangent map at the units of a local morphism between Lie groupoids which gives rise to
a Lie algebroid morphism. More generally, one can differentiate at the units any local map
between Lie groupoids, and obtain its infinitesimal part along the diagonal.

Consider a local map ϕ over the identity between two Lie groupoids G ÑM and G 1 ÑM ,
defined on U � G. For any x P M , we denote by Dϕ|x the (target)-differential of ϕ at
the unit 1x � upxq P U given by

Dϕ|xp 9γp0qq �
d

dt
ϕ
�
γptq

�
|t�0,

where γ : p�ε, εq Ñ U X Gx is any smooth curve living in the source-fibre of x such that
γp0q � 1x.

Lemma 1.12. The differential at the units of a local map ϕ : G �ÑG 1 between two Lie
groupoids G ÑM and G 1 ÑM 1 induces a vector bundle morphism

Dϕ|M : LG ÝÑ LG 1

between their associated Lie algebroids. If ϕ is a local groupoid morphism, then Dϕ|M is a
Lie algebroid morphism.

Proof. By assumption, the differential Dϕ is defined on tangent vector fields to the source
fibres at the units, which span the fibres of the vector space KerpDsq � LG. Since ϕ preserves
the source and the target, by Definition 1.2 (1), the map Dϕ maps KerpDsq to KerpDs1q
and gives a vector bundle morphism DΦ|M : LG Ñ LG 1. The second assertion is proved in
[MK05, §3.5, (40) and (41)]. l

Recall that if G and G1 are two Lie groups with Lie algebras respectively g and g1, a Lie
algebra morphism gÑ g1 integrates to a Lie group morphism GÑ G1 if G is connected and
simply connected. The same does *not* hold true for morphisms of Lie algebroids, since
those do not always integrate to a morphism of Lie groupoids; the obstruction to integrability
is studied in [CF03].

Proposition 1.13. Let G Ñ M and G 1 Ñ M be two locally trivial Lie groupoids on the
same base manifold, and let φ : LpGq Ñ LpG 1q a morphism of Lie algebroids.

(1) [MK05, Theorem 6.2.4] If the source-fibres of G are connected and simply connected,
the morphism φ integrates to a global groupoid morphism ϕ : G Ñ G 1, that is, Dϕ|M �
φ.
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(2) [MK05, Theorem 6.2.3] In general, φ integrates to a local groupoid morphism ϕ :
G �ÑG 1, in the sense that Dϕ|M coincides with φ on some open subset U in M , in
which case ϕ is defined on an open neighborhood of the diagonal in U �U . Two such
integrated local morphisms are germ equivalent, i.e. they coincide on a neighborhood
of the diagonal.

To conclude, we have shown that the map L : G Ñ LiepGq is functorial, justifying the
terminology ”Lie functor”.

1.8. Groupoid reductions. Let G Ñ M and H Ñ M be two Lie groupoids on M . An
injective groupoid morphism I : G ãÑ H induces an injective morphism of the vertex groups
ιx : Gxx ãÑ Hx

x for any x P M . Consequently, the principal Gxx -bundle tx : Gx Ñ M (resp.
sx : Gx ÑM) reduces to the principal Hx

x-bundle tx : Hx ÑM (resp. sx : Hx ÑM). If the
map I exists, we shall say that the groupoid H reduces to G (see also [MK05, Definition
1.6.22]). The Lie algebroid LpHq then reduces as a vector bundle to the Lie algebroid LpGq
[MK05, Definition 3.3.21].

For gauge groupoids, it follows from the above discussion that a necessary condition for a
gauge groupoid GpQqÑM to reduce to a gauge groupoid GpP qÑM is that the underlying
principal bundle Q Ñ M reduces to the principal bundle P Ñ M [KN14, Chapter I, §5,
p.53]. The next proposition shows the equivalence of the two reductions.

Proposition 1.14. Let P ÑM and QÑM be two principal bundles on M .

(1) The gauge groupoid GpQq reduces to GpP q if and only if the underlying principal
bundle Q reduces to P . The reduction is given by the injective groupoid morphism
Gpιq : GpP q ãÑ GpQq induced by the injective morphism ι : P ãÑ Q of principal
bundles.

(2) In particular, the frame groupoid IsopEq of a real vector bundle E Ñ M of rank
r reduces to the gauge groupoid GpP q of a principal G-bundle, for a subgroup G of
GLrpRq, if and only if the frame bundle FE reduces to P .

Proof. The second statement follows from the first one applied to the frame bundleQ � F pEq
with structure group H � GLrpRq.

An injective morphism ι : QÑ P of a principal H-bundle to a principal G-bundle over M
is an injective smooth map which preserves the fibres and such that ιpp gq � ιppq g for any g in
G [KN14, Proposition I.5.3]. This map induces an injective morphism Gpιq : GpP q ÝÑ GpQq
of Lie groupoids over M defined in eq. (16).

Let us prove that it is injective: if rιpp1q, ιpp2qs � rιpp11q, ιpp
1
2qs, the elements p1, p

1
1 belong

necessarily to the same fibre of P and the same for p2, p
1
2, because ι preserves the source and

the target. On the one hand, there exist g1, g2 in G such that p11 � p1 g1 and p
1
2 � p2 g2 since

theG-action on P is transitive, from which it follows that ιpp11q � ιpp1q g1 and ιpp
1
2q � ιpp2q g2.

On the other hand, there is an element h P H such that ιpp11q � ιpp1qh and ιpp12q � ιpp2qh.
Since the H-action on Q is free, we have h � g1 and h � g2. Thus, h lies in G and g1 � g2.
Consequently, rp11, p

1
2s � rp1 h, p2 hs � rp1, p2s. l

1.9. Bisections. Let G ÑM be a Lie groupoid. A local bisection of G is a smooth local
section σ :M �ÑG of the source map s defined on an open subset U �M , that is, s�σ � IdU ,
whose composition with the target map t is a diffeomorphism φσ � t � σ between U and an
open subset φσpUq �M (which might not intersect U).
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If U � φσpUq �M , we call σ a global bisection or simply a bisection. The space BpGq
of global sections of G is a group with the following operations:

(1) multiplication of σ and σ1 given by pσ1 σqpxq � σ1pφσpxqq σpxq for any x PM , which
corresponds to a semidirect product law on pairs pφσ, σq.

(2) unit bisection given by the unit map u :M Ñ G of the groupoid G,
(3) inverse σ�1 given by σ�1pxq �

�
σpφ�1

σ pxqq
��1

for any x P M , where φ�1
σ1 denotes

the inverse diffeomorphism of M while the external
� ��1

denotes the inverse in the
groupoid G.

Moreover, the map

φ : BpGq Ñ DiffpMq, σ ÞÑ φσ � t � σ (17)

is a group homomorphism, because σ1  σ � pσ1 � φσqσ, seen as a pointwise groupoid
multiplication, and therefore

φσ1σ � t �
�
pσ1 � φσqσ

�
� t � pσ1 � φσq � pt � σ1q � φσ � φσ1 � φσ.

The space of local sections BlocpGq is a pseudo-group with the above operations, because the
product σ1 σ of two local sections defined respectively on two open sets U 1 and U is defined
if and only if the target space φσpUq of σ has a non-empty intersection with the source space
U 1 of σ1. In [SW15, Theorem 2.8] the authors show that for is a locally convex and locally
metrisable Lie groupoid over M which admits an adapted local addition. The map in eq.
(17) descends to a pseudo-group homomorphism

φ : BlocpGq Ñ Diff locpMq, σ ÞÑ φσ � t � σ

from local bisections of G Ñ M to the set of diffeomorphisms between open subsets of M ,
that we improperly denote by Diff locpMq.

Example 1.15. [Me17, Examples 3.5] For a gauge groupoid, global bisections are in bijection
with the automorphisms of the underlying principal bundle: BpGpP qq � AutpP q. In particular,
for the pair groupoid, bisections are in bijection with diffeomorphisms on the manifold,
i.e. BpPairpMqq � DiffpMq, and local bisections are in bijection with diffeomorphisms
defined locally on the manifold, i.e. BlocpPairpMqq � Diff locpMq via the correspondence
σpxq � pφσpxq, xq which lies in PairpMq for any x in U �M .

A smooth map ϕ : G ÝÑ G 1 between two Lie groupoids over M , that is, a global map in
the sense of Definition 1.2, induces a map

Bpϕq : BpGq ÝÑ BpG 1q, σ ÞÑ ϕ � σ. (18)

In fact, since ϕ preserves the source and the target maps, we have s1 � pϕ � σq � s � σ � IdM
and the map φϕ�σ � t1 � pϕ � σq � t � σ � φσ is a diffeomorphism on M . Moreover Bpϕq is a
group morphism if ϕ is a groupoid morphism. In fact, for any σ, σ1 in BpGq and for any x in
M we have

Bpϕqpσ1  σqpxq � ϕpσ1pφσpxqσpxqq

� ϕpσ1pφσpxqqϕpσpxqq �
�
Bpϕqpσ1q  Bpϕqpσq

�
pxq.

If ϕ : G �ÑG 1 is a (smooth) local map between two Lie groupoids G Ñ M , and G 1 Ñ M ,
the composite map ϕ � σ is only defined for a local bisection σ of G taking values in the
domain of ϕ. Assume ϕ : G �ÑG 1 is defined on a neighborhood U of the diagonal upMq in
G, where u is the unit on G and that s1 � ϕ � s, t1 � ϕ � t, where s, s1 are the source maps on
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G and G 1, t, t1 the target maps on G and G 1. Let σ be a local bisection of G with support in
an open set U � M such that σpUq � U . Then σ1 :� ϕ � σ : U Ñ G 1 defines a bisection of
G 1. Indeed, we have s1 � σ1 � s1 � ϕ � σ � s � σ � IdU and t1 � σ1 � t1 � ϕ � σ � t � σ is a local
diffeomorphism between U and an open subset of M . This way, ϕ induces a map

Blocpϕq : BlocpGq ÝÑ BlocpG 1q, σ ÞÑ ϕ � σ, (19)

between local bisections.



Un
pu
bl
ish
ed
no
te
s

DIRECT CONNECTIONS ON JET GROUPOIDS 21

2. Direct connections on Lie groupoids

The first notion of a connection on a Lie groupoid, due to C. Ehresman in 1952 [Eh52],
refers to a Lie algebroid connection on its Lie algebroid, that is, a bundle section of its
anchor map, and is nowadays called an infinitesimal connection. A notion of connection
specific to Lie groupoids was developed by A. Kock in the framework of Synthetic Differential
Geometry in the 80’s, to integrate infinitesimal representations of Lie groupoids [Koc89].
Such connections are required to preserve the units, to be invariant under inversion, and
allow a notion of curvature which measures the obstruction to preserving general composition
of arrows. A modern exposition of this approach can be found in [Koc17].

Later, linear direct connections were introduced by N. Teleman in 2004-2005 [Te04, Te07]
specifically on the frame groupoid of a vector bundle E Ñ M , in order to extract the
essence of the concept of parallel transport on E along geodesic curves in M suitable to
describe the geometric content of the Chern classes of E. In the paper [KT06], which
provides a comprehensive treatement of Teleman’s approach, direct connections are only
given for the frame groupoid of a vector bundle E. Teleman’s coauthor J. Kubarski later
proposed a generalisation to general Lie groupoids, still named linear direct connections,
in the conference talk [Kub08]. Such direct connections are assumed to preserve the units,
but are not necessarily invariant under inversion, and therefore provide a weaker version of
Kock’s connections, cf. [Koc07, §5].

In this section we present direct connections on groupoids and provide the details of
some of the proofs in the litterature. In particular, we prove that a Lie groupoid which
admits a direct connection is a gauge groupoid (Proposition 2.4), that a direct connection
induces an infinitesimal connection on its Lie algebroid (Proposition 2.11), and conversely,
if the base manifold has an affine connection, that a parallel transport on a principal bundle
gives rise to a direct connection on its gauge groupoid (Proposition 2.13). Yet, not all
direct connections are of this form (Example 2.18). We then recall the definition of the
curvature of a direct connection and the known fact that, in the flat case, there is a one
to one correspondence between direct connections and their infinitesimal connections, or,
equivalently, parallel transports on the underlying principal bundle (Proposition 2.30).

2.1. Direct connections. For a manifold M , we call diagonal domain 2 in M �M any
open neighborhood U∆ of the diagonal ∆ :� tpx, xq, x PMu �M �M .

Let M be endowed with a connection ∇ on TM . For v in TM , let cv be the geodesic with
initial data v. Let D � tv P TM | cv is defined on r0, 1su. The exponential map of pM,∇q
is defined as

exp : D ÑM , exppwq :� cwp1q .

For a point p in M we write Dp � D X TpM and expppwq � exp|Dp
pwq. The map exp gives

a diffeomorphism between what we call a diagonal exponential domain U∆ in M �M
and a neighbourhood of the zero section in TM .

Remark 2.1. A typical example is the Levi-Civita connection on a Riemannian manifold
M with positive injectivity radius, and the any diagonal domain of the form

U∆,r � tpy, xq PM �M, dpy, xq ¤ r{2u, (20)

whose width can be adjusted within the range 0   r   rinj.

2This terminology is borrowed from [DDD19, Def. 83]. They are called first neighbourhoods of the
diagonal in [Koc17, §1].
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Definition 2.2. A direct connection on a Lie groupoid G Ñ M is a smooth3 local right
inverse of the anchor map which preserves the units, that is, a local map Γ : PairpMq �ÝÑG
over M , defined on a diagonal domain U∆ �M �M , such that

(1) Γpx, yq in Gxy for all px, yq P U∆,
(2) Γpx, xq � 1x P Gxx for all x PM .

We call a direct connection global if it is defined on the whole pair groupoid PairpMq.
Two connections are called germ equivalent if they are germ equivalent as local maps,

i.e. if they agree on some common diagonal domain.

Example 2.3. Let P �M�G be the trivial principal G-bundle over a smooth manifoldM .
Let g :M Ñ G be a smooth function, and p0 : x ÞÑ px, gpxqq the corresponding global section
of P . This gives rise to a (global) direct connection Γg : PairpMq Ñ P �G P �M �G�M

Γgpy, xq � rpy, gpyqq, px, gpxqqs �
�
py, 1q, px, gpxq gpyq�1q

�
.

Lie groupoids equipped with a direct connection are gauge groupoids if the base manifold
is connected. We shall henceforth work under the assumption that the base manifold is
connected.

Proposition 2.4. A Lie groupoid G ÑM over a connected manifold which can be equipped
with a direct connection Γ : PpMq �ÑG, is a gauge groupoid.

Proof. By Theorem ??, it is enough to show that G admits a section atlas. Fix a point
x0 P M and suppose that Γ is defined on a diagonal domain U∆ � M �M . Let pUαqαPA be
an open cover of M such that

�
αPApUα � Uαq � U . Then Γ is well defined on any pair of

points laying in the same open set Uα.
We first show that for any y P M the fibre Gyx0 is not empty. Since M is connected, one

can choose a path γ : r0, 1s ÑM connecting x0 and y. Then there exist finitely many indices
α1, . . . αk such that the corresponding open sets Uαi

cover the image of the path. Order them
in such a way that the consecutive intersections are not empty. For any i � 1, ..., k, choose
a point xi P Uαi

X Uαi�1
. Then the composite arrow

Γpy, xkqΓpxk, xk�1q . . .Γpx2, x1qΓpx1, x0q

belongs to Gyx0 , and this shows the claim.
Now for every α P A choose a point xα P Uα and apply the result: the fibre Gxαx0 is not

empty and one can choose an arrow ξxαx0 P Gxαx0 . Finally, for any x P Uα, set

σαpxq � Γpx, xαqξ
xα
x0
P Gxx0 .

This gives a section atlas pσα : Uα Ñ GUα
x0
qαPA. l

Assuming that the base manifold M is connected is no restriction, since if this is not
the case one can restrict to its connected components. Thus, from now on we consider
gauge groupoids GpP qÑM associated to principal G-bundles P ÑM on a connected base
manifold.

3Non necessarily smooth direct connections are considered in [Te04, Te07].
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2.2. Direct connections on frame groupoids. In this paragraph, we specialise to a frame
groupoid IsopEqÑ M of a (finite rank) vector bundle πE : E Ñ M . It is a gauge groupoid
GpFEqÑM with vertex bundle given by the frame bundle π : FE ÑM .
We borrow from [DDD19, Definition 86] the notion of parallelism on a smooth vector

bundle E ÑM . It is a local smooth section

U :M �M �ÑE�
b E (21)

of the external tensor product E�bE ÑM�M , which is defined on a diagonal neighborhood
and such that Upx, xq � Idx for any x P M . We recall that the external tensor product
E1bE2 ÑM1�M2 of two vector bundles πi : Ei ÑMi is given by E1bE2 :� pr�1E1bpr�2E2,
where pri :M1 �M2 ÑMi is the canonical projection.
Clearly a direct connection Γ : PairpMq �Ñ IsopEq on the frame groupoid yields a parallelism.

Here is an example taken from [DDD19, Example 88].

Example 2.5. Let r be the rank of E and pUα, θαq be a trivialising system for E, with

θα : E|Uα � π�1
E pUαq

�
Ñ Uα � Rr. Let ψα : F pEq|Uα � π�1pUαq

�
Ñ Uα � GLrpRq be the

corresponding trivialisation of F pEq, given by the map p ÞÑ ψαppq :� θα � p, where a frame
p P F pEqx above a point x P Uα is seen as an isomorphism Rr Ñ Ex and θα restricts to an
isomorphism Ex Ñ txu � Rr. Then, the map Γα : Uα � Uα Ñ IsopEq|Uα defined by

Γαpy, xq :� ψ�1
α px, Idq � pψ�1

α py, Idqq�1, for x, y P Uα,

is a direct connection on IsopEq defined on the diagonal domain U∆ �
�
α Uα � Uα.

l

Conversely, a parallelism on a vector bundle yields a direct connection on its frame
groupoid.

Proposition 2.6. A parallelism U :M �M �ÑE� b E defines a direct connection

Γ : PairpMq �Ñ IsopEq

py, xq ÞÑ Upx, yq.

Proof. The parallelism sends a pair px, yq in M �M to Upx, yq in E�
x � Ey and all we need

to prove is the invertibility of the maps Upx, yq : Ex ÝÑ Ey for a pair px, yq in some local
neighborhood of the diagonal. Let us consider a point x0 inM and a trivialising neighborhood
Ux0 of x0 for E, so that E|Ux0

� Ux0 �Rr where r is the rank of E. The parallelism induces
a map Γp�, xq : Ux0 ÝÑ EndpRrq which sends an element y in Ux0 to Γpy, x0q in E

�
x0
� Ey �

EndpRnq. Since Γpx0, x0q � Idx0 , it sends x0 to IdRr which is invertible in EndpRnq. The
local inverse theorem then yields the existence of a local neighborhood Vx0 � Ux0 such that
the restriction Γp�, x0q|Vx0 is invertible, i.e Γp�, x0q|Vx0 : Vx0 ÝÑ IsopRnq. The parallelism U
therefore maps an element px, yq of the diagonal neighborhood

�
x0PM

Vx0 � Vx0 to Upx, yqin
IsopEx, Eyq which shows that Γpy, xq :� Upx, yq defines a direct connection on IsopEq.

l

2.3. Infnitesimal connections on Lie algebroids. The terminology for connections on
Lie algebroids is motivated by that of principal (or Ehresman) connections on principal
bundles.
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Definition 2.7. [MK05, Definition 5.2.5] A connection on a Lie algebroid LÑM is a
splitting of the anchor in the exact sequence of vector bundles:

0 ÝÑ Kerpaq
ι
ãÑ L a

ÝÑ TM ÝÑ 0, (22)

i.e., a vector bundle map δ : TM Ñ L such that a � δ � IdTM .

It yields an isomorphism of vector bundles

TM �Kerpaq
�
ÝÑ L

pX, kq ÞÝÑ δpXq � ιpkq. (23)

Example 2.8. [MK05, §5.3] If L � ApP q � TP {G for some principal G-bundle P Ñ M ,
the exact sequence (8) yields the Atiyah exact sequence

0 ÝÑ P �G g
ι
ãÑ ApP q

a
ÝÑ TM ÝÑ 0 (24)

since the anchor map on ApP q coincides with the differential Tπ|M : TP Ñ TM of the
canonical projection π : P ÑM and a connection on the Lie algebroid ApP q is an infinites-
imal connection on P .

Example 2.9. We now specialise to the frame bundle P � FE and the Lie algebroid of
derivations L :� DerpEq (see Example 1.11 (5)) whose anchor is given by a : D ÞÑ XD with
kernel EndpEq. Consequently, there is an exact sequence of vector bundles (see eq. (25))

0 ÝÑ Kerpaq � EndpEq ÝÑ DerpEq
a
ÝÑ TM ÝÑ 0 (25)

which yields an isomorphism of vector bundles

TM � EndpEq
�
ÝÑ DerpEq

pX,Lq ÞÝÑ δpXq � L. (26)

2.4. Infinitesimal connections induced by direct connections.

Definition 2.10. If G Ñ M is a Lie groupoid, we call infinitesimal connection on G, a
connection on its Lie algebroid LpGq.

A Lie algebroid admitting a connection is necessarily transitive (the anchor is surjective)
and therefore it is the Atiyah algebroid ApP q � TP {G of a principal G-bundle P Ñ M .
Conversely, any transitive Lie algebroid admits a connection, cf. also [MK05, Corollary
5.2.7]. Consequently, we henceforth consider Atiyah algebroids L � ApP q.

Proposition 2.11. Let GpP q Ñ M be a gauge groupoid endowed with a direct connection
Γ : PairpMq �ÑGpP q. Then the differential of Γ along the diagonal defines an infinitesimal
connection

δΓ � DΓ|M : TM Ñ ApP q

9cxp0q ÞÑ δΓp 9cxp0qq �
d

dt
Γpcxptq, xq|t�0, (27)

where cx : r0, 1s ÑM is a smooth curve with initial point x � cxp0q.

Proof. Applying Lemma 1.12 to G1 � PairpMq, G2 � G, and ϕ � Γ, we build the infinitesimal
connection from the differential of Γ

δΓ :� DΓ|M : TM ÝÑ LG.
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The differential of Γ along the diagonal is then computed by fixing a source point x P
M and differentiating Γ with respect to the target variable at x. Since LpPairpMqq �
TM , the differential DΓ|M at x is indeed defined on the tangent space TxM . The vector
d
ds
Γpcxpsq, xq|s�0 in eq. (27) belongs to the tangent space of the source fibre GpP qx at the point

Γpx, xq � 1x. Consequently, the map δΓ takes values in the Lie algebroid LpGpP qq � ApP q.
Finally, δΓ yields a splitting of the anchor a � dt|T1xGx � dπ : ApP q Ñ TM , which brings
d
ds
Γpcxpsq, xq

��
s�0

back to the derivative of the target of Γpcxpsq, xq at s � 0, which is precisely
9cxp0q. l

This statement also provides an independent proof of the fact that a Lie groupoid on a
connected manifold equipped with a direct connection is a gauge groupoid, cf. Proposition
2.4. Indeed, since a direct connection on a G induces a connection on LpGq, the latter is
transitive and hence an Atiyah algebroid ApP q. If the base manifoldM is connected, this Lie
algebroid then necessarily integrates to the gauge groupoid GpP q [MK05, Corollary 3.5.18].
Hence, G � GpP q is a gauge groupoid.

We now specialise to the frame groupoid IsopEq � GpFEq of a vector bundle E ÑM .

Proposition 2.12. Let E ÑM be a vector bundle whose frame groupoid IsopEq is equipped
with a direct connection Γ. Let X P TxM and let cx : r0, 1s Ñ M be a smooth curve in M
starting at cxp0q � x and set 9cxp0q � X P TxM . The expression

∇Γ
Xpfq :�

d

dt

�
Γ�1px, cxptqq fpcxptqq

� ��
t�0
, (28)

defined for any local smooth section f of E on a neighborhood U of x, gives rise to a linear
derivation f ÞÑ ∇Γ

Xf on E. Together with the infinitesimal connection

δΓpXqpfq �
d

dt
pΓpcxptq, xq fpxqq

��
t�0

P Ex

it yields a decomposition of the tangent map Dxf : TxM Ñ TfpxqE to f at any point x in M :

DxfpXq � δΓpXqpfq �∇Γ
Xf (29)

into a vertical part ∇Γ
Xf and a horizontal part δΓpXqf .

Equivalently, we have

Xxϕ, fy � δpXqpℓϕqf � xDδpXqpfq, ϕy @ϕ P E�
x . (30)

Proof. The map

∇Γ
X : f ÞÝÑ

d

dt

�
Γ�1px, cxptqq fpcxptqq

� ��
t�0

clearly defines a linear derivation on E. From the fact that Γpcxptq, xqΓ
�1pcxptq, xq � Idcxptq

for all times t it follows that

DxfpXq �
d

dt
fpcxptqq

��
t�0

�
d

dt

�
Γpcxptq, xqΓ

�1px, cxptqq fpcxptqq
� ��
t�0

�
d

dt
pΓpcxptq, xq fpxqq

��
t�0

�
d

dt

�
Γ�1px, cxptqq fpcxptqq

� ��
t�0

� δΓpXqf �∇Γ
Xf.
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Note that ξ � δΓpXq lies in the Atiyah algebroid ApFEq � T linE of the frame bundle
FE. Proposition 5.3.5 in [MK05] applied to the frame bundle then gives the following
identification

∇Γ
Xpfq � DδΓpXqpfq � ρpδΓXqpfq,

with ρ : ApFEq ÝÑ DerpEq as in eq. (14). Inserting this in eq. (15) gives eq. (30).
l

2.5. Direct connections defined by parallel transport. We now explore the relation
between parallel transport and direct connections.

Proposition 2.13. Given a smooth manifold M endowed with an affine connection and
the gauge groupoid GpP q Ñ M of a principal G-bundle π : P Ñ M endowed with a
principal connection, the parallel transport τ on P along small geodesics on M defines a
direct connection Γτ on GpP q.

Proof. The parallel transport τcpy, xq along any curve r0, 1s Q t Ñ cptq P M joining x to y
can be seen as an element of the subset Py �G Px of the gauge groupoid GpP q � P �G P , by
means of the identification

τcpy, xq ÞÝÑ Γτcpy, xq � rτcpy, xqpp0q, p0s for any choice of p0 P Px.

This is well defined in Py �G Px since for any other element p10 P Px, there exists a unique
element g in G such that p10 � p0g. The equality rτcpy, xqpp

1
0q, p

1
0s � rτcpy, xqpp0q, p0s follows

from the G-equivariance of τcpy, xq.
Since M is endowed with an affine connection pairs of points in the exponential diagonal

domain are linked by a unique geodesic. When the curve c is the geodesic cyx joining x
and y we shall set τpy, xq :� τcpy, xq. This notational convention will apply to any parallel
transport along geodesics linking any pair of points px, yq in an exponential diagonal domain
U∆. The parallel transport τpy, xq along the unique geodesic linking x and y defines a direct
connection px, yq ÞÝÑ Γτ py, xq. l

Here is a first trivial example.

Example 2.14. On the trivial Lie groupoid GpP q � M � G � M , for P � M � G,
the horizontal distribution Hpx,gqP � TxM gives the parallel transport τcpy, xqpx, gq �
py, gq along any curve c linking x to y, and therefore the direct connection Γpy, xq �
rpy, 1Gq, px, 1Gqs of Example 2.3 with G � t1u. l

Example 2.15. With the notations of Example 2.3, any element p P P can be written
p � px, gpxqhq for a unique h in G and the g-valued map defined on P by ωpx, gpxqhq :�
gpxq�1 dgpxq yields a principal connection on P . The direct connection Γg is induced by the
corresponding parallel transport.

In Proposition 2.11, we saw that a direct connection Γ on GpP q induces an infinitesimal
connection δΓ : TM Ñ ApP q and hence a horizontal distribution in TP . We now show that
if Γ is the direct connection defined by a parallel transport on P , as in Proposition 2.13,
then δΓ coincides with the infinitesimal connection induced by the parallel transport.

Theorem 2.16. Let P Ñ M be a principal G-bundle with an infinitesimal connection
δ : TM Ñ ApP q and consider the direct connection Γδ on GpP q defined by the parallel
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transport along small geodesics induced by δ. Then, δ coincides with the associated infinites-
imal connection

δp 9cxp0qq �
d

dt
Γδpcxptq, xq

��
t�0
. (31)

Here, as before cx : r0, 1s ÑM is a smooth curve with initial point cxp0q � x.

Proof. Given an infinitesimal connection δ : TM Ñ ApP q and its parallel transport τc along
small geodesics c, consider the associated direct connection Γδ : PairpMq �ÑGpP q given by
Γδpy, xq � rτcpy, xqppq, ps for any choice of p P Px. With some abuse of notation, we denote
by τpcxptq, xqppq the parallel transport of p P Px to the fibre above cxptq along the curve cx
with initial point cxp0q � x.

The infinitesimal connection δΓ
δ
: TM Ñ ApP q of the direct connection Γδ reads

δΓ
δ

p 9cxp0qq �
d

dt
Γδpcxptq, xq

��
t�0

�
d

dt
rτpcxptq, xqppq, ps

��
t�0
.

By uniqueness of the horizontal lift, the tangent vector at t � 0 to the curve γptq �
τpcxptq, xqppq gives the value of δp 9cxp0qq. Taking into account the action of G on TP , which

makes the choice of p irrelevant, one can identify δΓ
δ
p 9cxp0qq to the class of 9γp0q in TP {G

from which it follows that

δΓ
δ

p 9cxp0qq � χP p 9γp0qq � δp 9cxp0qq,

for any 9cxp0q P TxM . l

The above proposition shows how infinitesimal connections can be integrated to direct
connections. However, as we shall see in the next section the correspondence between
direct connection and infinitesimal connection is not one-to-one. This constrasts with path
connections on groupoids, cf. [MK05] that integrate infinitesimal connections along paths in
the base manifold. If the base manifold is connected, path connections are proven to be in
one to one corespondence with infinitesimal connections [MK05, Theorem 6.3.5].

We now specialise to the frame groupoid FE Ñ M of a vector bundle E Ñ M equipped
with a linear connection ∇. The associated parallel displacement on E (or parallel
transport) along a curve r0, 1s Q t Ñ cptq P M from the point x � cp0q P M to the point
y � cp1q P M , is the map τcpy, xq : Ex Ñ Ey, e0 ÞÑ ep1q where r0, 1s Q t ÞÑ eptq P E solves
the equation ∇

9cptqe � 0 for any t P r0, 1s with ep0q � e0.
As before, when the curve c is the geodesic cyx which links x to y we shall simply write

τpy, xq : Ex ÝÑ Ey. (32)

This notational convention will apply to any parallel transport along geodesics linking two
specified points.

We have ∇Xpfq �
d
dt
pτ�1pcxptq, xq fpcxptqqq

��
t�0

.
The parallel transport on vector bundles is considered by Teleman in [Te04, Te07], and

appears in [DDD19] under the name parallelism, see eq. (21).

Corollary 2.17. [KT06, Remark 2] Let M be a smooth Riemannian manifold endowed with
a connection with positive injectivity radius and let E Ñ M be a vector bundle equipped
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with a linear connection. The induced parallel transport τ on E along small geodesics of M
defines a direct connection:

Γτ : U∆ ÝÑ IsopEq, py, xq ÞÑ τpy, xq. (33)

on the frame groupoid IsopEqÑM .

Proof. Let r0, 1s Q t Ñ cptq in M be a curve joining x to y in M . The fact that the
parallel transport τcpy, xq : Ex Ñ Ey is a linear isomorphism of the fibres follows from the
vector space structure of V and from the fact that it is invertible (with inverse given by the
horizontal lift e�1ptq along the inverse curve c�1ptq � cp1 � tq). Therefore τcpy, xq in IsopEq
for any curve c and any two points py, xq for which it is defined. On a manifold M endowed
with an affine connection, for any two points x and y in an exponential diagonal domain U∆,
letting c be the unique geodesic linking them yields the map τpy, xq in IsopEqyx (as before we
drop the mention of the geodesic) which in turn gives rise to the direct connection (33). l

We borrow from [KT06] an easy and illustrative example.

Example 2.18. [KT06, Example 5] Let M � R with points x, global vector field Bx �
d
dx

on M , flat linear connection ∇M
Bx
pfpxq Bxq � f 1pxq Bx and geodesics given by the segments

parametrized by x.
Let E � M � R be the trivial bundle on M � R, with global section e1 : M Ñ E, x ÞÑ

e1pxq � px, 1q in Ex. A linear connection ∇ : ΓpTMq b ΓpEq Ñ ΓpEq on E (necessarily
flat) is given by its Christoffel symbol k P C8pMq such that ∇Bxe1 � k e1. The induced
parallel transport of a vector ξ0 e1pxq P Ex along a geodesic from x to y is the isomorphism
of vector space τpy, xq : Ex Ñ Ey which assigns to a vector ξ0 e1pxq P Ex the vector ξpyq �
eKpyq�Kpxqξ0 P Ey, where Kpxq �

³
�kpxq dx. The direct connection on IsopEq induced by ∇

is the global map Γ∇ : PairpMq Ñ IsopEq given by

Γ∇py, xq : Ex Ñ Ey, e1pxq ÞÑ τpy, xq e1pxq � eKpyq�Kpxq e1pyq. (34)

In contrast, the two smooth maps

 αpy, xq e1pxq � epy�xq�py�xq
2
e1pyq,

 βpy, xq e1pxq � epy�xq�py�xq
3
e1pyq,

define linear isomorphisms Ex Ñ Ey such that αpx, xq � Id|Ex and βpx, xq � Id|Ex which
yield (global) direct connections on IsopEq. But they are not parallel transports, since they
are not of the form eq. (34). l

2.6. Curvature of direct connections. Given two (small) geodesics α and β onM , from x
to y and from y to z respectively, the compositon β�α is not necessarily the geodesic from x to
z. The parallel transport τc along geodesics defined by a principal connection on a principal
bundle P ÑM , then, does not necessarily satisfy the identity τc2pz, yq � τc1py, xq � τc3pz, xq.
For the direct connection Γτ on the groupoid GpP q induced by the parallel transport as in
eq. (33), this identity amounts to Γτ being a morphism of groupoids. In this section we
introduce a curvature for a direct connection, which measures the obstruction to it being
a groupoid morphism. Our definition slightly differs from that given by N. Teleman and
J. Kubarski in [Te04, Te07, KT06, Kub08], and by A. Kock in [Koc07, Koc17], but it is
equivalent.
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Definition 2.19. Let Γ : PairpMq �ÝÑG be a direct connection defined on a diagonal domain
U∆. For any x PM , we set

U1
∆pxq � ty PM | px, yq, py, xq P U∆u �M

and IΓp , xq : U1
∆pxq ÝÑ Gxx , y ÞÑ IΓpy, xq :� Γpx, yqΓpy, xq. We call Γ natural if IΓpy, xq �

1x for all x PM and for all y P U1
∆pxq. Similarly, for any x PM , we set

U2
∆pxq � tpz, yq PM �M | py, xq, pz, yq, pz, xq P U∆u �M �M

and call curvature of Γ at x the map RΓp , , xq : U2
∆pxq ÝÑ Gxx given by

RΓpz, y, xq :� Γpz, xq�1 Γpz, yqΓpy, xq P Gxx , pz, yq P U2
∆pxq. (35)

The direct connection Γ is flat if RΓpz, y, xq � 1x for any x PM and for any pz, yq P U2
∆pxq.

This is equivalent to the condition Γpz, yqΓpy, xq � Γpz, xq for any x P M and any pz, yq P
U2
∆pxq, or, equivalently, that Γ : PairpMq �ÑG is a local groupoid morphism.

Remark 2.20. A flat direct connection Γ satisfies

1x � Γpx, yqΓpy, xq @x PM, @y P U1
∆pxq, (36)

as a consequence of the fact that Γpx, xq � 1x. Indeed, if eq. (35) holds, then for any x PM
and any y P U1

∆pxq we have px, yq P U2
∆pxq and

1x � Γpx, xq�1Γpx, yqΓpy, xq � Γpx, yqΓpy, xq.

Example 2.21. A direct connection Γτ given by a parallel transport as in eq. (34) of
Example 2.18 satisfies condition eq. (36). The direct connections α and β in Example 2.18
have non trivial curvature, yet whereas β satifies eq. (36), the direct connection α does not.
l

Example 2.22. Note that a direct connection of the form

Γpy, xq � σpyqσpxq�1, (37)

for some smooth section σ : U ÞÑ Gx and some given point x PM , defines a flat connection.

Given a principal bundle P ÑM with structure groupG with Lie algebra g, the curvature
form of an infinitesimal connection δ : TM Ñ ApP q is the two form Ωδ in Ω2pM, gq defined

by ΩδpX1, X2q :� rδpX̃1q, δpX̃2qsApP q � δ
�
rX̃1, X̃2sXpMq

	
for any Xi P TxM, i � 1, 2 and any

vector field extension X̃i of Xi. So the flatness of the infinitesimal connection δ amounts to
it being a morphism of Lie algebroids.

Remark 2.23. For the relation between the curvature RΓ of a direct connection Γ on a
groupoid G and the curvature Ω∇δ of the corresponding infinitesimal connection ∇Γ : TM Ñ
LpGq, we refer to [KT06, Lemma 11] for frame groupoids and [KT06, Theorem 12] for general
locally trivial Lie groupoids.

2.7. Flat direct connections. A direct connection Γ : PairpMq �ÑG is flat if and only if it
is a local groupoid morphism. Such maps have been extensively studied by K. Mackenzie in
[MK05, Chapter 6], in particular for what concerns the relationship with their infinitesimal
Lie algebroid morphisms. We collect here some relevant results, the first of which is a
description of the structure of a Lie groupoid which admits a flat direct connection.
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Definition 2.24. A Lie groupoid G Ñ M is called flat if it is locally trivial and it admits
an atlas of local decomposition maps σα : Uα Ñ GUα

x (cf. Definition 1.4) whose transition
functions gαβ : Uα X Uβ Ñ Gxx given by gαβpxq � σαpxq

�1 σβpxq are locally constant, i.e.
constant on each connected component.

In essence, the subsequent statement is a reformulation of [MK05, Example 6.1.7] in terms
of direct connections. We call a Lie groupoid flat if it admits a section atlas (see Definition
1.4) with constant transition functions in which case we call the groupoid flat.

Proposition 2.25. A Lie groupoid on a connected base admits a flat direct connection if
and only if it is flat. In that case, it is locally exact, namely there is an open covering tUαu
of M and a section atlas σα : Uα Ñ GxUα

with constant transition functions such that the flat
connection Γ reads

Γ|Uα�Uαpy, xq � σαpyqσ
�1
α pxq. (38)

Proof. (ñ) Assume there exists a local morphism Γ: U∆ �ÝÑG defined on a diagonal domain
U∆, in which case G is locally trivial by Proposition 2.4. We choose an open covering tUαu
of M such that

�
αpUα � Uαq � U∆ andt x P M . For every α, fix a point xα P Uα together

with an arrow ξα P Gxαx (which exists by the local triviality of G). Then the collection of
σαpxq :� Γpx, xαq ξα builds a section atlas with constant transition functions. Moreover, for
fixed α, the map

GUα
Uα

ÝÑ Uα � Gxx � Uα
γ ÞÝÑ ptpγq, σαptpγqq

�1γσαpspγqq, spγqq

is an isomorphism under which, for all x, y P Uα, we have

Γpy, xq � py, 1x, xq. (39)

(ð) Conversely, let σα : Uα Ñ GxUα
be a section atlas with constant transition functions

gαβpxq � σβpxq
�1 σαpxq on the intersection UαXUβ, and let us set U∆ :�

�
αpUα�Uαq. The

map Γ : U∆ Ñ G given by eq. (38) is well defined. Indeed, the transition maps gαβ being
constant on the intersection Uαβ :� Uα X Uβ, for px, yq P U

2
αβ we have

Γ|Uα�Uαpy, xq
�
Γ|Uβ�Uβ

py, xq
��1

� σαpyqσ
�1
α pxqσβpxqσ

�1
β pyq

� σβpyqσ
�1
β pyqσαpyq gβ αpxqσ

�1
β pxq

� σβpyq gα,βpyq gβ αpxqσ
�1
β pxq.

That Γ|Uα�Uα defines a morphism is easily verified.

Example 2.26. With the notations of Example 2.3, the Lie groupoid GpP q �M �G�M
is flat and the direct connection Γgpx, yq � rpy, 1q, px, gpxq gpyq�1qs is of the form (37) and
hence flat, which we can also see directly since

Γgpz, yqΓgpy, xq �
�
pz, 1q, px, gpxq gpzq�1q

�
� Γgpz, xq.

Example 2.27. The fundamental groupoid ΠpMq on a connected manifold M has constant
transition maps. Hence, by Proposition 2.25, it admits a flat direct connection Γ0 : PairpMq �ÝÑΠpMq.
It can be constructed as follows. Let tUαu be a cover ofM by simply connected open subsets,
then U∆ �

�
αpUα � Uαq defines a diagonal domain. For any px, yq P U∆, we define Γ0px, yq

as the homotopy class of any path in U∆ connecting x and y. This is well defined as any two
paths in Uα are homotopic. l
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The importance of the direct connection Γ0 lies in a factorisation result shown in MK,
which we reformulate here in the language of direct connections.

Proposition 2.28. [MK05, Prop. 6.1.8] Let M be connected.

(1) The flat direct connection Γ0 : PairpMq �ÝÑΠpMq is uniquely determined up to germ
equivalence.

(2) Any flat direct connection Γ : PairpMq �ÝÑG on a locally trivial Lie groupoid G onM
factorises in a unique way through Γ0, i.e. there exists a unique groupoid morphism

H : ΠpMq Ñ G, (40)

such that Γ � H � Γ0.

Remark 2.29. Clearly, the first assertion follows from the second one applied to G � ΠpMq.

There is a one-to-one correspondence between flat infinitesimal connections and flat direct
connections, a known fact [MK05, Corollary 6.2.7] that we briefly spell out for the sake of
completeness.

Proposition 2.30. Let G ÑM be a locally trivial Lie groupoid.

(1) The infinitesimal connection δΓ defined by a flat direct connection Γ on G is flat.
(2) Conversely, a flat infinitesimal connection δ : TM Ñ LpGq integrates to a flat direct

connection Γδ on G, which is unique up to germ equivalence.

In particular, a direct connection is flat if and only if its infinitesimal connection is flat.

Proof. The first assertion follows from Lemma 1.12 applied to the local map Γ : PairpMq �ÑG
since DΓM � δΓ. The flateness of the infinitesimal connection induced by a flat direct
connection follows from the Lie algebroid morphism property of the tangent map along the
diagonal to a local groupoid morphism [MK05, §3.5]. The second assertion follows from part
(2) of Proposition 1.13, including the uniqueness up to germ equivalence.

l

Example 2.31. [MK05, Example 6.1.7] We have LpΠpMqq � LpPpMqq � TM , so the
identity map Id : TM ÝÑ LpPpMqq lifts to a flat connection on ΠpMq i.e., a morphism

τ : PairpMq �ÝÑΠpMq, (41)

which is unique modulo germ equivalence. This is the flat direct connection on ΠpMq of
Example 2.27 and Proposition 2.28.

The following assertion is a straightforward consequence of Proposition 2.30.

Corollary 2.32. Let M be a smooth manifold endowed with an affine connection.

(1) If ω is a principal connection on a principal bundle P Ñ M and Γ is the direct
connection on GpP qÑM induced by the parallel transport on P , then ω is flat as a
principal connection if and only if Γ is flat as a direct connection.

(2) If ∇ is a linear connection on a vector bundle E ÑM and Γ is the direct connection
on IsopEq Ñ M induced by the parallel transport on E, then ∇ is flat as a linear
connection if and only if Γ is flat as a direct connection.
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3. Jet prolongation of bundles and groupoids

Jet prolongations of groupoids were first considered by Ehresman [Eh55] and later revisited
by Kolár [Kol07]. In this section we briefly review jets of smooth functions and sections,
which are coordinate free objects, and their coordinate dependent representation via Taylor
polynomials. We recall the main notations and facts on jets of local sections of vector and
principal bundles, referring to the book [KMS] by I. Kolář, P. Michor and J. Slovak for details.
We then turn to jet prolongations of groupoids bisections. and discuss the functoriality of
the jet prolongation of gauge groupoids (see eq. (73)) and their Lie algebroids (see eq. (88)).
Specialising to frame groupoids of vector bundles, we further compare the jet prolongation
of a frame groupoid of a vector bundle with the frame groupoid of the jet prolongation of a
vector bundle.

Throughout this section we work in the category of smooth manifoldsM with smooth local
maps f :M ÑM 1. Following our previous conventions, we denote by f :M �ÑM 1 a smooth
local map defined on some open subset of M , and call it simply a local map. Similarly, we
denote by f : M ��ÑM 1 a smooth local map between M and M 1 which is invertible with
smooth inverse, that is, a diffeomorphism between two open subsets U � M and V � M 1,
and call it simply a locally defined diffeomorphism.

3.1. Jets and Taylor polynomials of smooth local functions. Let M and M 1 be two
smooth manifolds of dimension respectively d and d1. Given a local map f :M �ÑM 1 defined
around a point x PM , the n-jet of f in x, denoted by jnxf , is the equivalence class of local
maps from M to M 1 having the same contact of order n of f in x, that is, the same value
and the same derivatives in x up to order n. Jets of functions can be defined for any integer
order n ¥ 0, and J0pM,M 1q �M �M 1.

Denote by Jnx pM,M 1qy the space of n-jets of local maps f : M �ÑM 1 defined around x
and such that y � fpxq. We further set

Jnx pM,M 1q :�
¤
yPM 1

Jnx pM,M 1qy, JnpM,M 1q :�
¤

px,yqPM�M 1

Jnx pM,M 1qy.

As equivalence classes, jets are by definition independent of local coordinates in M and in
M 1, but a representative of a jet involves derivatives which do depend on the choice of local
coordinates.

Given a choice of coordinates on M and on M 1, the identification of a local map f :
M �ÑM 1 fixing fpxq � y to its local coordinates expression f̃ : Rd �ÑRd1 , fixing f̃p0q � 0,
yields an isomorphism [KMS, §12.6] between Jnx pM,M 1qy and the real vector space

Lnd,d1 :� Jn0 pR
d,Rd1q0 �

nà
k�1

SkppRdq�q b Rd1 � RnrX1, ..., Xds b Rd1 (42)

of dimension
��
d�n
d

�
� 1

�
d1 which prolongs the matrix space L1

d,d1 � Md,d1pRq for n � 1 and

contains the matrix coefficents ajα �
1
|α|!
Bαf̃ jp0q P R.

3.2. Higher frame bundle and higher tangent bundle. Jet composition is a key operation
allowing us to express the invariance of jets under change of local coordinates. For two local
maps f :M �ÑM 1 around x and f 1 :M 1 �ÑM2 around fpxq PM 1, the jet composition of
jnxf and jnfpxqf

1 is the n-jet [KMS, §12.3]

jnfpxqf
1 � jnxf � jnx pf

1 � fq. (43)
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The jet composition is associative, unital, with a two-sided unit 1x :� jnx IdM, and preserves
the inversion, that is, if h : M ��ÑM 1 is a locally defined diffeomorphism, then pjnxhq

�1 �
jnhpxqh

�1.
As a consequence, we can identify the jets of locally defined diffeomorphisms h :

M ��ÑM 1 with the invertible jets from M to M 1, that is, with the jet space

invJnpM,M 1q :� set of invertible n-jets jnxh P J
npM,M 1q with respect to

jet composition,
(44)

and consider the n-jet group or n-differential group in dimension d [KMS, §12.6]

GLndpRq :� invLnd,d � invJn0 pR
d,Rdq0 (45)

� group of n-jets at 0 of locally defined diffeomorphisms h : Rd ��ÑRd

preserving 0, with jet composition.

We have GL0
dpRq � t1GLdpRqu and the first jet group yields the general linear group GL1

dpRq �
GLdpRq, where a jet j10h P GL

1
dpRq is identified to the differential dh0 P GLdpRq.

The effect on jet spaces of the choice of local coordinates on M is ruled by the n-frame
bundle of M [KMS, §12.12] [Kol09, §1]

F nM :� invJn0 pR
d,Mq

πn
0ÝÑM (46)

� set of n-jets at 0 of locally defined diffeomorphisms φ : Rd ��ÑM .

This is a principal GLndpRq-bundle with right action given by the jet composition jn0φ�j
n
0 h �

jn0 pφ � hq, where φ : Rd ��ÑM is a locally defined diffeomorphism around 0, which represents
a choice of local coordinates on M around φp0q � x, and h : Rd ��ÑRd is locally defined
diffeomorphism preserving 0, which represents a change of local coordinates on M at x.
We have F 0M � M � t1u and the usual frame bundle corresponds to the 1-frame bundle
F 1M � F pTMq, since a jet j10φ P F 1M is equivalent to the pair pφp0q, dφ0q P FM where

φp0q � x PM and where the differential dφ0 : Rd �
Ñ TxM determines a linear frame of TM

at x.
The effect on jets of reading a local map f : M Ñ M 1 in local coordinates on M , is

governed on M 1 by the n-tangent bundle of M 1 in dimension d, also called the space of
n-velocities on M 1 in dimension d [KMS, §12.8],

T ndM
1 :� Jn0 pR

d,M 1q
πn
0ÝÑM 1. (47)

The n-jet group GLndpRq acts on the left on T ndM
1 by jet composition with the inverse

diffeomorphism, that is jn0 h � j
n
0 f̄ � jn0 pf̄ � h

�1q where f̄ : Rd �ÑM 1 is a local map around 0
and h : Rd ��ÑRd is locally defined diffeomorphism preserving 0. In particular, in dimension
d � 1, the n-tangent bundle of M

T nM :� Jn0 pR,Mq
πn
0ÝÑM, (48)

is a jet prolongation of the usual tangent bundle TM � J1
0 pR,Mq of vectors tangent to

curves on M .
Combining the above ingredients yields a description of the jet bundle JnpM,M 1q ÑM as

the fibre bundle associated to the n-frame bundle of M with fibre given by n-tangent space
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of M 1 in dimension d, that is (see e.g. [KMS, §12.12])

JnpM,M 1q � F nM �GLn
d pRq T

n
dM

1 (49)

� trjn0φ, j
n
0 f̄ s | φ : Rd ��ÑM, f̄ : Rd �ÑM 1u

jnxf ÞÑ rjn0φ, j
n
0 f̄ s such that f̄ � f � φ.

The bundle projection JnpM,M 1q ÑM 1 is then inherited from that of the fibre T ndM
1.

3.3. Jet prolongation of fibre bundles. The n-jet bundle of a fibre bundle π : E ÑM
is the subset

JnE :� set of n-jets of smooth local sections f :M �ÑE of E (50)

of the jet space JnpM,Eq, which enjoys the following properties:

 JnE is a closed submanifold of JnpM,Eq [KMS, §12.16],
 the anchor restricts to a bundle map which coincides with the target projection,
namely πn0 : JnE ÑM �M E � E,

 the source πn : JnE ÑM commutes with πn0 and π, and is locally trivial [Sa09, §6.2],
 the partial jet projections descend to the spaces JkE with 1 ¤ k ¤ n� 1.

The (source) jet projection πn : JnE Ñ M is a fibre bundle, while the target jet bundle
πn0 : JnE Ñ E is again a filtered tower of affine bundles

JnE
πn
n�1
Ñ Jn�1E

πn�1
n�2
Ñ � � �

π2
1Ñ J1E

π1
0Ñ J0E � E, (51)

A smooth map ϕ : E ÝÑ E 1 between two fibre bundles π : E ÑM , π1 : E 1 ÑM 1 induces
a smooth map between their n-jet prolongation

Jnϕ : pπn : JnE ÑMq ÝÑ
�
π1
n
: JnE 1 ÑM 1

�
, jnxσ ÞÑ Jnϕpjnxσq :� jnx pϕ � σq. (52)

If π : E Ñ M is a vector bundle of rank r with typical fibre given by a vector space
V � Rr, then the source jet projection πn : JnE ÑM is also a vector bundle [KMS, §12.17].
The fibre of JnE is modelled (in the affine filtered sense and for given local coordinates) on

Jn0 pR
d, V q � T nd V, (53)

where d is the dimension of M . Equivalently, the fibre is modelled on the real vector space

P n
d,r :� T nd Rr � Jn0 pR

d,Rrq � Rr`Lnd,r (54)

�
nà
k�0

SkppRdq�q b Rr � RnrX1, ..., Xds b Rr

of dimension
�
d�n
d

�
r, that is, the space of Rr-valued polynomials in d variables.

3.4. Jet prolongation of structure groups. We saw that the jet bundle of a vector
bundle E Ñ M with fibre Rr bundle JnE Ñ M has fibre P n

d,r � T nd pRrq (see eq. (54)). Its
structure group is given by the subgroup of GLpP n

d,rq which hosts the transition functions
g̃αβ of JnE, defined on the intersection Uαβ � UαXUβ of overlapping charts in a trivializing
atlas tUα �Mu of E.

Such maps are naturally described as jets of the transitions functions gαβ of E. If E has
structure group G � GLrpRq, then the structure group of JnE contains the jets in 0 of local
maps g : Rd �ÑG, that is, the jets jn0 g in the n-tangent space T nd G (defined as in eq. (47)
with M 1 � G)), together with the jets in 0 of locally defined diffeomorphisms h : Rd ��ÑRd
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fixing the point 0 P Rd, that is, the jets jn0 h in the n-jet group GLndpRq, cf. eq. (45). Since
G is a Lie group, the space T nd G is also a Lie group, with the operation

jn0 g � j
n
0 g

1 � jn0 pgg
1q (55)

induced on two smooth local maps g, g1 : Rd �ÑG by the pointwise product gg1 in G.
Furthermore, the action of the diffeomorphism h on the variable of g becomes a right action
of GLndpRq on T nd G by jet composition. Both contributions, from jn0 h in GLndpRq and from
jn0 g in T nd G, must be taken into account to describe the jets of transition functions of E.

Finally, the structure group of JnE reduces to the the semidirect product [KMS, §15.2]

W n
d G :� GLnd 
 T nd G �

 
pjn0 h, j

n
0 gq | h

�

ü�Rd g
�ÝÑG

(
, (56)

called the n-jet prolongation of G in dimension d, with usual semidirect group law�
jn0 h, j

n
0 g
�
�
�
jn0 h

1, jn0 g
1
�
:�

�
jn0 h � j

n
0 h

1,
�
jn0 g � j

n
0 h

1
�
jn0 g

1
	

(57)

�
�
jn0 ph � h

1q, jn0 ppg � h
1qg1q

	
,

which makes use of both the jet composition (43) and the group operation (55).
The transition functions of E can also be seen as G-equivariant maps

Uβ |Uαβ
�GÑ Uα|Uαβ

�G, px, 1q ÞÑ
�
x, gαβpxq

�
,

and the jet prolongation group W n
d G can be viewed as the jet space [KMS, §15.2]:

W n
d G � set of n-jets at p0, 1q P Rd�G of G-equivariant locally defined

diffeomorphisms ϕ : Rd�G ��ÑRd�G which preserve 0 P Rd. (58)

Here, a pair pjn0 h, j
n
0 gq P GLnd 
 T nd G is mapped to the jet jnp0,1qϕ of the G-equivariant

locally defined diffeomorphism defined by ϕpx, 1q � phpxq, gpxqq and therefore, ϕpx, aq �
phpxq, gpxqaq for any a P G.

Example 3.1. In particular, if G � GLrpRq, there is an inclusion of groups

W n
d GLrpRq � GLndpRq 
 T nd GLrpRqãÑGLpP n

d,rq, (59)

which assigns to the pair of jets pjn0 h, j
n
0 gq the linear invertible map on P n

d,r � Jn0 pR
d,Rrq

acting on the jet jn0 f̄ � f̄p0q � jn0 f̃ of a smooth local function f̃ : Rd �ÑRr (the local
coordinates expression of a section of E) in adding the term gp0q � f̄p0q to the n-jet at 0 of
the function

ph, gq � f̃ :� pg � f̃q � h�1 � pg � h�1q � pf̃ � h�1q

explicitly given by
�
ph, gq � f̃

�
pxq � g

�
h�1pxq

�
� f̃

�
h�1pxq

�
on x P Rd.

l

3.5. Jet prolongation of principal bundles. Let π : P ÑM be a principal bundle with
fibre given by a Lie group G. According to eqs. (49) and (53), the jet bundle JnP Ñ M
of smooth local sections of P has typical fibre modelled on the higher tangent Lie group
T nd G. However, JnP is not a principal T nd G-bundle since we need a jet prolongation of P
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with structure group given by the jet prolongation group W n
d G � GLnd 
 T nd G. Instead, we

consider the jet space [KMS, §15.4], [Kol09, Formula (33)]

W nP :� F nM
π
� JnP � tpjn0φ, j

n
xpq | φp0q � xu , (60)

which describes the jets of local sections of P together with a choice of local coordinates
allowing to realise its transition functions as actual elements of a matrix group. An element
of W nP can equivalently be represented as

pjn0φ, j
n
xpq � jn0 p̄

M P-�
p

π

	

Rd

6

�

φ
�

���
���*

� p̄

(61)

where p̄ � p � φ : Rd �ÑP is such that p̄p0q � ppxq.
The Lie group T nd G acts on this jet space by�

jn0φ, j
n
xp
�
� jn0 g :�

�
jn0φ, j

n
x

�
ppg � φ�1q

�	
,

where g : Rd �ÑG is a smooth local map defined around 0. It can be prolonged to an action
of the jet group W n

d G � GLnd 
 T nd G as�
jn0φ, j

n
xp
�
�
�
jn0 h, j

n
0 g
�
:�

�
jn0 pφ � hq, j

n
x

�
ppg � pφ � hq�1qq

�	
,

which is proved to be a principal action. The bundle W nP is therefore a principal W n
d G-

bundle, called the n-principal prolongation of P .
In analogy with the alternative presentation of the structure group W n

d G given in (58),
the bundle W nP can alternatively be defined as the jet space [KMS, §15.3]

W nP � set of n-jets at p0, 1q of bundle automorphisms Rd�G �ÑP
above base maps Rd �ÑM

, (62)

with bundle projection to M given by the projection to M of the jet target to P .
One can further check that a morphism ϕ : P1 Ñ P2 of two principal bundles induces a

morphism of principal bundles W nϕ : W nP1 Ñ W nP2.

3.6. Associated jet bundles and reduction of jet groups. Let P Ñ M be a principal
G-bundle and let E � P �G V be an associated fibre bundle with fibre V . It is shown in
[KMS, §15.5] that JnE is the fibre bundle associated to W nP with fibre T nd V , that is,

JnE � W nP �Wn
d G

T nd V. (63)

Since E � P �G V , we have
T nd E � T nd P �Wn

d G
T nd V,

and hence

JnE � F nM
π
�GLn

d pRq T
n
d E � F nM

π
�GLn

d pRq T
n
d P �Wn

d G
T nd V � W nP �Wn

d G
T nd V.

Example 3.2. Let us consider a vector bundle E of rank r, with typical fibre Rr and
structure group GLrpRq, from which we can build three interesting jet bundles:

(1) On one hand, the jet bundle JnE is a vector bundle with typical fibre T nd Rr � P n
d,r,

and its frame bundle F pJnEq can be viewed as an associated principal GLpP n
d,rq-

bundle:
JnE � F pJnEq �GLpPn

d,rq
P n
d,r.



Un
pu
bl
ish
ed
no
te
s

DIRECT CONNECTIONS ON JET GROUPOIDS 37

(2) On the other hand, the principal GLrpRq-bundle associated to E is the frame bundle
FE such that E � FE �GLrpRq Rr. The existence of its principal jet prolongation
W nFE verifying the identity (63), namely JnE � W nFE �Wn

d GLrpRq P
n
d,r, says that

the structure group of JnE can always be reduced to W n
d GLrpRq � GLpP n

d,rq, and
therefore we have

F pJnEq � W nFE �Wn
d GLrpRq GLpP

n
d,rq. (64)

(3) Finally, if the structure group of E can be reduced to G � GLrpRq, so that there is
a principal G-bundle P ÑM such that E � P �GRr, then by eq. (63) the structure
group of JnE can be further reduced to W n

d G � W n
d GLrpRq and we have

JnE � W nP �Wn
d G

P n
d,r,

and hence

W nFE � W nP �Wn
d G

W n
d GLrpRq, (65)

F pJnEq � W nP �Wn
d G

GLpP n
d,rq. (66)

Note that there is a proper inclusion of groups

W n
d G � W n

d GLrpRq � GLpP n
d,rq,

and therefore a proper inclusion of bundles

W nP � W nFE � F pJnEq. (67)

3.7. Jet prolongation of groupoids. Following [Eh55], [Kol07, §1], [Me17, §4.5], we recall
the definition of the jet prolongation of a Lie groupoid G ÑM by means of local bisections
defined in §1.9. The n-jet prolongation of G is the jet space

JnG :� set of n-jets of local bisections σ :M �ÑG , (68)

together with the structure of a Lie groupoid on M induced by that of G:
(1) source and target maps sn, tn : JnG Ñ M given respectively by the surjective

submersions snpjnxσq � x and tnpjnxσq � t
�
σpxq

�
for any x PM ,

(2) the multiplication jnx1σ
1jnxσ � jnx

�
σ1  σ

�
defined if only if x1 � φσpxq, where  is the

semidirect product of bisections given in Section 1.9,
(3) unit unpxq � 1x � jnxu, where u :M Ñ G is the unit map of G,
(4) inverse pjnxσq

�1 � jn
φ�1
σ pxq

σ�1 where σ�1 is the inverse local bisection as given above.

Since G is a fibered manifold on M by the source map, the jet prolongation JnG enjoys the
same properties as the jet bundle of a fibre bundle described in Section 3.3. In particular:

 JnG is a closed submanifold of the jet space JnpM,Gq [KMS, §12.16],
 the natural projection πn0 : JnG Ñ G, jnxσ ÞÑ σpxq is locally trivial,
 the jet projections πkk�1 : JkG Ñ Jk�1G, jkxσ ÞÑ jk�1

x σ, for any 1 ¤ k ¤ n, give a
filtered tower of affine bundles [KMS, §12.11] similar to (51)

JnG Ñ Jn�1G Ñ � � � Ñ J1G Ñ J0G � G, (69)

carrying each a Lie groupoid structure over M .
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Furthermore, the natural projection πn0 : JnG Ñ G is a groupoid morphism. In fact, for any
σ, σ1 in BlocpGq and for any x in M such that σ1 is defined in x1 � φσpxq, we have

πn0 pj
n
x1σ

1 jnxσqq � πn0 pj
n
x pσ

1  σqq � pσ1  σqpxq

� σ1px1qσpxq � πn0 pj
n
x1σ

1q πn0 pj
n
xσq.

Given a smooth map ϕ : G ÝÑ G 1 between two Lie groupoids over M , and using the map
Blocpϕq of eq. (19), we define a smooth map between their n-jet prolongation Lie groupoids
by setting

Jnϕ : JnG ÝÑ JnG 1, jnxσ ÞÑ Jnϕpjnxσq :� jnx pϕ � σq. (70)

If ϕ is a groupoid morphism, then Jnϕ is also a groupoid morphism, because Blocpϕq is a
morphism of pseudo-groups (cf. Paragraph 1.9).

Thanks to the locality of the notion of jet, eq. (70) actually extends to any local map
ϕ : G �ÑG 1 defined on an open neighborhood U of the diagonal upMq in G, where u is the
unit on G. Explicitly, by (19), the map ϕ induces a map

BUpGq ÝÑ Bφ�1
σ pUqpG

1q, σ ÞÑ ϕ � σ, (71)

for any open subset U �M chosen small enough so that upUq lies in U and we build a local
map Jnϕ : JnG �Ñ JnG 1 defined on any open neighborhood Un of the diagonal unpMq �
tjnxu, x PMu in JnG such that πn0

�
Un

�
� U as follows.

An element in Un is the jet jnxσ of a local bisection σ of G defined in a neighborhood of
x such that πn0 pj

n
xσq � σpxq P U . The domain Ux of σ should be chosen small enough so

that the image σpUxq � G is contained in U . Note that with the Fréchet topology induced
by the supremum norm in all derivatives of order no larger than n on compact subsets, the
union

�
xPM Ujnxσ of open neighborhoods of the point unpxq � jnxu in JnG gives rise to a

neighborhood Un of the diagonal in JnG with the property that πn0
�
Un

�
lies in U .

We set
Jnϕpjnxσq :� jnx pϕ � σ

��
U 1x
q. (72)

Proposition 3.3. [Kol07] The n-jet prolongation of a gauge groupoid GpP qÑM is isomorphic
to the gauge groupoid of the n-jet principal bundle W nP , namely

JnGpP q � GpW nP q. (73)

Furthermore, the jet prolongation of a morphism ϕ : GpP1q Ñ GpP2q yields a morphism
jnϕ : GpW nP1q to GpW nP2q of gauge groupoids.

Proof. This result is proved in [Kol07, §4, after eq. (15)] for all natural functors. l

Examples 3.4. Proposition 3.3 gives rise to several examples:

(1) For P �M �G we have GpM �Gq �M �G�M , and

JnpM �G�Mq � GpW npM �Gqq �
�
F nM �GLn

d
F nM

�
� T nd G, (74)

(2) Specialising to the gauge groupoid of the trivial bundle P �M � t1u yields the pair
groupoid PairpMq � GpM � t1uq. Since T nd pt1uq � t1u, eq. (74) with G � t1u yields

Jn PairpMq � invJnpM,Mq � GpF nMq � F nM �GLn
d pRq F

nM, (75)

which is confirmed by W npM � t1uq � F nM (cf. eq. (46)).
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For n � 1, since GL1
d � GLdpRq and F 1M � F pTMq is a frame bundle, the 1-jet

groupoid is a frame groupoid [Me17, Example 1.12]

J1 PairpMq � GpFMq � IsopTMq. (76)

(3) The frame groupoid IsopEq of a vector bundle E with rank r is the gauge groupoid
of the frame bundle FE with fibre GLr :� GLrpRq. It follows from eq.(73) that

JnIsopEq � GpW nFEq � W nFE �Wn
d GLr W

nFE. (77)

(4) Suppose that the vector bundle E of rank r admits a reduction of its structure group
to a subgroup G � GLrpRq and further to the trivial group t1u � GLrpRq (which
forces E to be trivializable, i.e. E � M � Rr). Then its frame bundle FE admits a
reduction first to a principal G-bundle P , and further to the trivial principal bundle
M � t1u, which yields a sequence of gauge subgroupoids

GpM � t1uq � PairpMq � GpP q � GpFEq � IsopEq.

The jet bundle JnE has structure group GLpP n
d,rq, frame bundle F pJnEq and frame

groupoid IsopJnEq. Applying the n-jet prolongation to all ingredients yields a sequence
of subgroups

W n
d t1u � GLndpRq � W n

d G � GLndpRq 
 T nd G (78)

� W n
d GLr � GLndpRq 
 T nd GLr

� GLpP n
d,rq,

which in turn induces a sequence of reduced principal bundles

W npM � t1uq � F nM � W nP � F nM
π
� JnP (79)

� W nFE � F nM
π
� JnFE

� F pJnEq,

where P is the reduced frame bundle FE with structure group G. We finally get a
sequence of subgroupoids

GpF nMq � Jn PairpMq � GpW nP q � JnGpP q (80)

� GpW nFEq � JnIsopEq

� GpF pJnEqq � IsopJnEq.

l

3.8. The frame groupoid of a jet prolonged vector bundle. The frame groupoid
IsopJnEq of the jet bundle JnE of a vector bundle π : E Ñ M plays a central role in the
context of regularity structures. It is the gauge groupoid of the frame bundle F pJnEq, which
is a principal GLpP n

d,rq-bundle and IsopJnEq contains JnIsopEq � GpW nFEq as a proper
subgroupoid.

Indeed,

W n
d GLr � GLndpRq 
 T nd GLr � GLpP n

d,rq, W nFE � F nM
π
� JnFE � F pJnEq
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and by eqs. (64) and (73) we have

IsopJnEq � GpF pJnEqq � F pJnEq �GLpPn
d,rq

F pJnEq

� W nFE �Wn
d GLr F pJ

nEq (81)

� W nFE �Wn
d GLr GLpP

n
d,rq �Wn

d GLr W
nFE.

This shows that JnIsopEq is a proper subgroupoid of IsopJnEq, with inclusion given by

rA,Bs� ÞÑ rA, 1, Bs� for A,B P W nFE,

where 1 is the unit in the group GLpP n
d,rq and where the equivalence relations are

pAH,Bq � pA,B H�1q and pAH,G,BH 1q � pA,HGpH 1q�1, Bq

for any A,B P W nFE, G P GLpP n
d,rq and H,H

1 P W n
d GLr.

3.9. Jet prolongation of Lie algebroids. The n-jet bundle of a Lie algebroid L Ñ TM
is the vector bundle JnLÑM of its underlying vector bundle LÑM . It turns out [Ku15,
Proposition 1] [Me17, Example 6.11] that this jet bundle is again a Lie algebroid JnLÑ TM ,
with anchor and bracket given by

apjnxXq � apXxq and rjnxX, j
n
xY s � jnx prX, Y sLq (82)

for any smooth sections X, Y of L and any x in M .
If ϕ : LÑ L1 is a smooth map between Lie algebroids, there exists a jet prolongation

Jnϕ : JnLÑ JnL1, jnxX ÞÑ JnϕpjnxXq :� jnx pϕ �Xq. (83)

If ϕ is a morphism of Lie algebroids, by (82) the map Jnϕ is also a morphism of Lie algebroids.
Hence Jn is a functor on the category of Lie algebroids.

The n-jet prolongation of the Atiyah algebroid ApP q ÑM of a principal bundle P ÑM
is isomorphic to the Atiyah algebroid of its n-jet principal bundle W nP [Kol08, §2 Eq. (8)]

JnApP q � ApW nP q. (84)

Specialising (83) to L � ApP q, we see that the n-th jet prolongation defined in eq. (83)
applied to the morphism of vector bundles Apϕq : ApP1q Ñ ApP2q, with P1 Ñ M and
P2 Ñ M two principal bundles, gives rise to the map JnApϕq : JnApP1q Ñ ApP2q, which
coincides with ApW nϕq : ApW nP1q Ñ ApW nP2q.

Example 3.5. In particular:

(1) If P �M�t1u is the trivial principal bundle with trivial fibre, we have ApM�t1uq �
TM and W npM �t1uq � F nM , therefore [Kol09, Proposition 1], [Kol08, §2 Eq. (6)]

JnTM � ApF nMq. (85)

The case n � 1 is particularly important for connections, and gives a sequence of key
isomorphisms induced by eqs. (85), (9), (76) and Example 1.11 (4):

J1TM � ApFMq � LpJ1 PairpMqq � LpIsopTMqq � DerpTMq. (86)

(2) If P � M � G is the trivial principal G-bundle, then ApM � Gq � TM ` pM � gq
and W npM �Gq � F nM �π T nd G, therefore

Jn
�
TM ` pM � gq

�
� ApF nM �π T nd Gq. (87)



Un
pu
bl
ish
ed
no
te
s

DIRECT CONNECTIONS ON JET GROUPOIDS 41

(3) If P � FE is the frame bundle of a vector bundle E Ñ M , then ApP q � DerpEq is
the Lie algebroid of derivations of E and W npFEq � F nM �π JnFE, therefore

JnDerpEq � A
�
F nM �π JnFE

�
.

l

If G is a Lie groupoid and LG its Lie algebroid, there is an isomorphism of Lie algebroids
[Ku15, Proposition 1 and Theorem 1], [Me17, Example 9.5 (e)]

L
�
JnG

�
� JnLpGq. (88)

Furthermore, the n-th jet prolongation jnϕ of a morphism ϕ : G1 Ñ G2 of two groupoids
induces by differentiation a morphism on their n-th jet prolongations Dpjnϕq|M : LpJnG1q Ñ
LpJnG2q.

Example 3.6. (1) For P � M � t1u, we have on one side GpM � t1uq � PairpMq
hence JnGpM � t1uq � Jn PairpMq � GpF nMq by eq. (75), and on the other side
LpPairpMqq � TM hence JnLpPairpMqq � JnTM , giving a sequence of isomorphisms
[Kol08, §2. (6)]

LpJn PairpMqq � LpGpF nMqq � ApF nMq � JnTM. (89)

The case n � 1 reproduces the isomorphisms of eq. (86).
(2) For P �M �G we have GpM �Gq �M �G�M , LpM �G�Mq � TM `pM � gq

and (by eq. (74)) JnpM �G�Mq �
�
F nM �GLn

d
F nM

�
� T nd G so that

L
�
JnpM �G�Mq

�
� Jn

�
TM ` pM � gq

�
,

which is consistent with eq. (87).
(3) If P � FE if a frame bundle, then GpFEq � IsopEq is the frame groupoid of E,

LpIsopEqq � DerpEq and we have

L
�
JnIsopEq

�
� JnDerpEq.

l
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4. Direct connections on jet groupoids

In this section, we build direct connections on jet prolongations JnG of Lie groupoids from
a direct connection Γ on a Lie groupoid G, by means of an affine connection on the underlying
manifold. Building blocks of the construction are the exponential (local) bisection (Definition
4.3) and the related exponential direct connection ∆M in eq. (97) on the frame groupoid
GpFMq � IsopTMq, both of which use the parallel transport on TM induced by the affine
connection on M . Taking jets of the exponential bisection gives rise to the exponential

direct connection ∆
pnq
M (eq. (96) in Definition 4.4) on the jet prolongation Jn PairpMq of

the pair groupoid PairpMq of M . In Theorem 4.5 we prove that the exponential direct

connection ∆
pnq
M is a jet prolongation of ∆M and in Theorem 4.6 that the infinitesimal

connection of ∆
pnq
M on Jn PairpMq is the exponential n-th order prolongation δ

pnq
M : TM ÝÑ

LpJn PairpMqq � JnTM (eq. (99)) of the affine connection on M used in [Kol09, §5] to
build infinitesimal connections on jet prolongations of groupoids. A similar construction
yields a direct connection Γpnq on the jet prolongation JnG of a general Lie groupoid G from
a direct connection Γ on G, see eq. (103) in Definition 4.7, which gives back eq. (96) when
G � PairpMq. Corollary 4.8 shows that Γpnq, which yields an n-th order prolongation of

Γ, factorises through ∆
pnq
M . In Theorem 4.11, we show that any flat connection on the jet

prolongation JnG of a Lie groupoid over a flat manifold, factorises through ∆
pnq
M . Direct

connections on the frame groupoid IsopJnEq of a jet bundle are of special interest in the
context of regularity structures. This is the gauge groupoid of the frame bundle F pJnEq
with structure group GLpP n

d,rq, but it is not the jet prolongation of a groupoid. While this
section mainly focusses on direct connections on jet groupoids of frame bundles, we dedicate
§4.7 to frame groupoids of jet bundles. Inspired by [DDD19], we build a direct connectionrΓpnq on IsopJnEq, which is not a jet prolongation of Γ by means of local Taylor expansions,
and compare it with Γpnq in Proposition 4.18.

4.1. Higher order direct connections. Let G ÑM be a Lie groupoid with n-jet prolongation
groupoid JnG.

Definition 4.1. We call n-th order direct connection on G a direct connection on the
n-jet groupoid JnG, that is, a local map

Σ : PairpMq �Ñ JnG, (90)

such that

(1) Σpx, yq P pJnGqxy for all px, yq P U∆,

(2) for all x PM , Σpx, xq � unpxq the unit in pJnGqxx.
If πn0 : JnG Ñ J0G � G is the jet projection described in §3.7, the composite map

Σ0 � πn0 � Σ : PairpMq �ÑG (91)

is a direct connection on G, that we shall call 0-th order projection of Σ.
Viceversa, given a direct connection Γ on G, we call n-th order prolongation of Γ any

direct connection Γpnq on JnG such that pΓpnqq0 � πn0 � Γ
pnq � Γ.

Proposition 4.2. If a jet groupoid JnG admits a direct connection, then JnG is the gauge
groupoid of a jet prolonged principal bundle, that is,

JnG � GpW nP q (92)



Un
pu
bl
ish
ed
no
te
s

DIRECT CONNECTIONS ON JET GROUPOIDS 43

for some principal bundle P ÑM such that G � GpP q.

Proof. By Proposition 2.4, we know that if JnG admits a direct connection Σ, then JnG �
GpQq for some principal bundle Q Ñ M . Since the existence of Σ on JnG implies the
existence of the direct connection Σ0 on G, again by Proposition 2.4, G is the gauge groupoid
of a principal bundle P ÑM . By eq. (73) we then necessarily have Q � W nP . l

In the sequel we construct a jet prolongation

PairpMq Q py, xq �ÑΓpnqpy, xq P pJnGqyx
on the jet groupoid JnG of a direct connection Γ : PairpMq �ÑG on a given groupoid G.

4.2. Exponential direct connection on the jet pair groupoid. Assuming that the
manifoldM is endowed with an affine connection ∇M , we first build an exponential bisection
on PairpMq.

Definition 4.3. For any x in M , let Ux denote an open neighborhood of x chosen in such
a way that any two points in Ux are linked by a unique geodesic. For any z in Ux, let
expz : V0z � TzM Ñ M denote the exponential map along geodesics and let τMpz, xq :
TxM Ñ TzM be the parallel transport determined by ∇M along the geodesic czx linking x
to z. For any choice of y in Ux, we call exponential bisection from x to y the local
bisection, denoted by πyx : z ÞÑ pφyxpzq, zqq, defined on Ux by the diffeomorphism

φyx : Ux ÑM, z ÞÑ expz
�
τMpz, xq

�
exp�1

x pyqlooomooon
PTxM

��
, (93)

which clearly sends x to y.
The exponential bisection πyx which is smooth in py, xq, is the unique local bisection on

PairpMq with the following properties

(1) πyxpxq � py, xq,
(2) if y � x then πyxpzq � pz, zq for any z P Ux,
(3) the local vector field Ux Q z ÞÑ exp�1

z

�
φyxpzq

�
P TzM is parallel.

The last assertion follows from the fact the integral curve r0, 1s Q t ÞÑ expxptXq of any
X P V0x � TxM coincides with the geodesic cyx linking x to y � expxpXq, then:

(4) for any z in Ux, t ÞÑ φ
cyxptq
x pzq is the integral curve of τM

cyx
X in TzM , i.e. for any t we

have

φc
y
xptq
x pzq � expz

�
τMpz, xqptXq

�
� expz

�
t τMpz, xqX

�
, (94)

(5) and in particular

d

dt

��
t�0
φc

y
xptq
x pzq � τMpz, xqX. (95)

We use the exponential bisection to construct a connection on Jn PairpMq.

Definition 4.4. Let U �
�
xPM Ux�Ux be the diagonal domain covered by uniformly normal

neighborhoods as in Definition 4.3. We call exponential n-th order direct connection

on PairpMq the local map ∆
pnq
M : PairpMq �Ñ Jn PairpMq defined on any py, xq in U by

∆
pnq
M py, xq � jnx

�
z ÞÑ πyxpzq

�
. (96)
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Eq. (96) says that the bisection πyx is a “jet primitive” for the groupoid direct connection

∆
pnq
M .

Note that ∆
pnq
M is a jet prolongation to Jn PairpMq of the trivial connection Id on PairpMq.

Also, by eq. (76) we have J1 PairpMq � IsopTMq from which it follows that Jn PairpMq �

Jn�1IsopTMq. We now show how ∆
pnq
M can be viewed as a jet prolongation of a direct

connection on the frame groupoid GpFMq � IsopTMq of M . The direct connection on
IsopTMq is built along the lines of Corollary 2.17 applied to the vector bundle E � TM by
means of the parallel transport along small geodesics induced by the affine connection ∇M :

∆M : PairpMq �Ñ IsopTMq (97)

given by ∆Mpy, xq �
�
τFMpy, xqpψxq, ψx

�
for any choice of a frame ψx in FxM , cf. §2.5.

Theorem 4.5. The exponential n-th order direct connection ∆
pnq
M on Jn PairpMq is a jet

prolongation of the direct connection ∆M defined in eq. (97).

Proof. For given py, xq in PairpMq, the exponential bisection z ÞÑ πyxpzq � pφyxpzq, zq is
a smooth map defined in the neighborhood Ux of x, therefore its n-jet at x belongs to
the jet groupoid Jn PairpMq and lies in the fibre above πyxpxq � py, xq. Since φxxpzq �
expz

�
τMpz, xq exp�1

x pxq
�
� expzp0q � z, we have jnxφ

x
x � jnx IdUx � IdUxpxq � x and therefore

∆
pnq
M px, xq � unpxq is the unit 1x in the jet groupoid Jn PairpMq. Hence the map ∆

pnq
M defined

by eq. (96) is a direct connection on Jn PairpMq.

For n � 1, we have ∆
p1q
M py, xq � j1xπ

y
x �

�
py, xq, dpφyxqx

�
, where the differential at x of the

diffeomorphism z ÞÑ φyxpzq precisely gives the parallel transport τMpy, xq along the geodesic

linking x to y and hence ∆
p1q
M � ∆M . l

4.3. Exponential infinitesimal connection on the jet pair groupoid. We show that

the infinitesimal connection induced by the direct connection ∆
pnq
M in Definition 4.4 coincides

with the jet prolongation of the infinitesimal connection of ∆M .
An affine connection ∇M on M amounts to an infinitesimal connection

δM : TM Ñ DerpTMq � LpIsopTMqq

on the frame groupoid IsopTMq. By eq. (86) we have DerpTMq � J1TM . According to
[Mik07, §3] or [Kol09, §5], if ∇M is torsion-free then δM can be prolonged to an n-th order
Lie algebroid connection

δ
pnq
M : TM ÝÑ JnTM � ApF nMq � LpJn PairpMqq, (98)

called the exponential n-th order prolongation of δM . On a vector X in TxM , it is
defined as the n-jet

δ
pnq
M pXq :� jn0x

�
D expxp rXq	 , (99)

where D expx : T pTxMq Ñ TM is the differential of expx in a neighborhood of the null

vector 0x in TxM and rX is the vector field on TxM obtained by translation of X.

Note that δ
p0q
M pXq � D expxpX̃q � δMpXq.
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Theorem 4.6. The infinitesimal connection δ∆
pnq
M of the exponential n-th order direct connection

∆
pnq
M on Jn PairpMq is the exponential n-th prolongation δ

pnq
M given in eq. (99) and we have

δ∆
pnq
M pXq � δ

pnq
M pXq � jnx

�
z ÞÑ τMpz, xqX

�
(100)

for any X in TxM .
Eq. (100) says that the parallel transport along small geodesics is a “jet primitive” for the

Lie algebroid infinitesimal connection δ
pnq
M .

Proof. Let us fix a point x in M and a vector X in TxM , and show eq. (100). The jet

in eq. (99) is computed for the function TxM Q v ÞÑ pD expxqvp rXpvqq, where pD expxqv :
TvpTxMq Ñ TexpxpvqM is defined on a vector Yv in TvpTxMq by the derivative

pD expxqvpYvq �
d

dt

��
t�0

expxpvptqq.

Here, t ÞÑ vptq P TxM is the integral curve for Yv (i.e. such that d
dt

��
t�0
vptq � Yv) such that

vp0q � v. Since TxM is a vector space, for any v in TxM there is a canonical isomorphism
of vector spaces

TxM
�
ÝÑ T0xpTxMq

�
ÝÑ TvpTxMq

which identifies X in TxM first to the vector 0x �X in T0xpTxMq and then, by translation,
to the vector v �X in TvpTxMq. A generic vector Yv in TvpTxMq is therefore necessarily of
the form X̃pvq � v�X for some X in TxM , and its integral curve through v is vptq � v�tX.
We have

pD expxqvp rXpvqq � d

dt

��
t�0

expxpv � tXq

� τM
�
expxpvq, x

�
X P TexpxpvqM,

where c is the geodesic linking x to expxpvq, and eq. (99) gives

δ
pnq
M pXq � jn0x

�
v ÞÑ τM

�
expxpvq, x

�
X
�
. (101)

On the other hand, setting y � expxpXq in Ux and denoting as before by t ÞÑ cyxptq �
expxptXq the geodesic linking x to y we find that

δ∆
pnq
M pXq �

d

dt

��
t�0

∆
pnq
M pcyxptq, xq �

d

dt

��
t�0
jnx
�
z ÞÑ σc

y
xptq
x pzq

�
�

d

dt

��
t�0
jnx
�
z ÞÑ φc

y
xptq
x pzq

�
in LpJn PairpMqqx

� jnx

�
z ÞÑ

d

dt

��
t�0
φc

y
xptq
x pzq



. (102)

We have used the fact that the derivatives in t and in the coordinates of z commute since all
the maps are smooth and the variables t and z are mutually independent. Now, according

to eq. (94), for any z in Ux the curve t ÞÑ φ
cyxptq
x pzq is the integral curve of the vector

τMpz, xqX P TzM . From eq. (95) it then follows that

δ∆
pnq
M pXq � jnx

�
z ÞÑ τMpz, xqX

�
.
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Setting z � expxpvq, we see that this formula and eq. (101) coincide, thus proving eq. (100).
l

4.4. Exponential direct connections on jet prolonged groupoids. LetM be equipped
with an affine connection ∇M . In this paragraph we prove that any direct connection on
a Lie groupoid G Ñ M can be prolonged to the jet groupoid JnG using the exponential
bisection πyx of PairpMq given in Definition 4.3.

Definition 4.7. Let Γ : PairpMq �ÑG be a direct connection defined on a diagonal domain
V �M�M and let U �

�
xPM Ux�Ux be the diagonal domain covered by uniformly normal

neighborhoods as in Definition 4.3.
We call exponential n-th order prolongation of Γ the local map Γpnq : PairpMq �Ñ JnG

defined by
Γpnqpy, xq � jnx pΓ � π

y
xq P J

nGyx (103)

for any py, xq P V X U .

Corollary 4.8. The exponential n-th prolongation Γpnq : PairpMq �Ñ JnG of Γ indeed defines
a direct connection on the jet groupoid which prolongs Γ. Moreover, it is compatible with the
filtration on JnG

πnn�1Γ
pnq � Γpn�1qπnn�1, (104)

where πnn�1 : JnG Ñ Jn�1G are the canonical projections and it factorises through ∆
pnq
M ,

namely for any two points x, y in an exponential neighborhood of the diagonal of M , we have

Γpnqpy, xq � jnpy,xqΓ �∆
pnq
M py, xq. (105)

Proof. We only need to check eq. (104). For a local bisection σ of G defined in a neighborhood
of x, we have

πnn�1

�
Γpnqpy, xqjnxσ

�
� πnn�1 pj

n
x pΓ � π

y
xqq � jn�1

x pΓ � πyxq � Γpn�1qpy, xqjn�1
x σ.

l

Remark 4.9. The family tΓpnq, n P Z¥0u is a projective system of direct connections in the
sense of §6.4.

We now show that the infinitesimal connection δΓ
pnq

of Γpnq factorises through δ
pnq
M �

jnx
�
z ÞÑ τMpz, xq

�
defined in eq. (99).

Proposition 4.10. (1) The infinitesimal connection of Γpnq can be expressed in terms of
the infinitesimal connection of Γ as follows

δΓ
pnq

pXq � jnx
�
z ÞÑ δΓ

�
τMpz, xqX

��
, (106)

for any X in TxM . As expected, δΓ
pnq

is therefore a jet prolongation of δΓ.

(2) Moreover, δΓ
pnq

factorises through the exponential infinitesimal connection δ
pnq
M : TM Ñ

JnTM of eq. (98) as follows

δΓ
pnq

� JnδΓ � δ
pnq
M , (107)

where Jn is given by (70).

Proof.
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(1) Let us fix a point x in M , a vector X in TxM together with its integral curve
cyxptq � expxptXq for t in r0, 1s, where we have set y :� expxpXq. The infinitesimal
connection of Γpnq is computed using eq. (27) in §2.4. Since the derivatives in t
commute with the partial derivatives with respect to the local coordinates in M and
in TM , we have

δΓ
pnq

pXq �
d

dt

��
t�0

Γpnqpcyxptq, xq

�
d

dt

��
t�0
jnx

�
z ÞÑ Γ � σc

y
xptq
x pzq

	
� jnx

�
z ÞÑ

d

dt

��
t�0

Γpφc
y
xptq
x pzq, zq

	
(108)

� jnx

�
z ÞÑ δΓpτMpz, xqXq

	
,

where as before τMpz, xq is the parallel transport along the geodesic czx linking x to

z. The last equality follows from the fact that d
dt

��
t�0
φ
cyxptq
x pzq � τMpz, xqX P TzM

(cfr. eq. (95)). This proves eq. (106).

For n � 0, eq. (106) says that δΓ
p0q
pXq � δΓpτMpx, xqXq � δΓpXq, therefore δΓ

pnq

is indeed a jet prolongation of δΓ.

(2) Let us now compute jnxδ
Γ � δ

pnq
M pXq using the expression (101). Choosing a vector

v P TxM , we set z � expxpvq and let as before czx denote the geodesic from x to z.
Then t ÞÑ expxpv � tXq is the integral curve of the vector τMpexpxpvq, xqX, so that

jnxδ
Γ � δ

pnq
M pXq � jnxδ

Γ
�
jn0
�
v ÞÑ τMpexpxpvq, xqX

�	
� jn0

�
v ÞÑ δΓ

�
expxpv � tXq

�	
� jn0

�
v ÞÑ

d

dt

��
t�0

Γpexpxpv � tXq, xq
	

�
d

dt

��
t�0
jn0

�
v ÞÑ Γpexpxpv � tXq, xq

	
�

d

dt

��
t�0
jnx

�
z ÞÑ Γpexpzpτ

Mpz, xqtXq, xq
	

� jnx

�
z ÞÑ

d

dt

��
t�0

Γpφc
y
xptq
x pzq, xq

	
� δΓ

pnq

pXq

on the grounds of eq. (108). This proves eq. (107).

l

4.5. The flat case. Let G be a Lie groupoid. A flat infinitesimal connection

δ : TM � LpFMq ÝÑ LG

i.e., a morphism of Lie algebroids, can be prolonged to a morphism of Lie algebroids

Jnδ : JnTM � LpF nMq Ñ JnLpGq.
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By Proposition 1.13, since LpJn PairpMqq � LpF nMq � JnTM , the map Jnδ integrates to
a (uniquely defined) local morphism

Γnδ : Jn PairpMq �Ñ JnG. (109)

If moreover M is equipped with a flat connection, the corresponding infinitesimal flat

connection TM
δ
pnq
MÝÑ LpJnpPairpMqqq defined in eq. (98) canonically integrates to the flat

direct connection ∆
pnq
M .

The resulting composition

Γnδ �∆
pnq
M : PpMq �Ñ JnG

defines a direct connection on JnG, which is flat as a composition of local groupoid morphisms.
The following theorem confirms via a straightforward algebraic argument, that this composition
yields back the direct connection Γpnq (cfr. eq. (105)). By similar algebraic arguments, in the

flat case, ∆
pnq
M is shown to correspond to the direct connection induced by parallel transport

on F nM . We conjecture that this latter realisation only takes place if the underlying
connection on M is flat.

Theorem 4.11. Let M be a manifold equipped with a flat connection.

(1) The exponential direct connection ∆
pnq
M defined in eq. (96) is a flat direct connection

induced by the parallel transport on F nM along small geodesics determined by δ
pnq
M

defined in eq. (99).

(2) Let rΓn : PairpMq �Ñ JnG be a flat direct connection on JnG, whose infinitesimal

connection δ
rΓn

factorises δ
rΓn
� Jnδ � δ

pnq
M through the infinitesimal connection δ

pnq
M of

eq. (99) by means of the n-th jet prolongation Jnδ of a flat infinitesimal connection

δ on G. In that case, rΓn also factorises i.e.rΓn � Γnδ �∆
pnq
M , (110)

with ∆
pnq
M as in eq. (96) and Γnδ as in eq. (111) so that the corresponding diagramme

commutes:

PairpMq� JnpPairpMqq

JnpGpP qq

∆
pnq
M

rΓn Γnδ

Figure 1. Connections on jet prolongations of gauge groupoids

(3) Consequently, the direct connection Γpnq on JnG defined in eq. (103) factorises

through ∆
pnq
M defined in eq. (96)

Γpnq � ΓnδΓ �∆
pnq
M , (111)

where δΓ is the (flat) infinitesimal connection of Γ as defined in eq. (27).
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The above identifications of direct connections hold on some exponential neighborhood of the
diagonal of M .

Remark 4.12. Eq. (111) gives an alternative interpretation of eq. (105) when the direct
connection is flat and the underlying manifold is equipped with a flat connection.

Proof. The proof uses Proposition 2.30, which says that a flat infinitesimal connection
integrates to a unique direct connection modulo germ equivalence. It enables us to identify
direct connections on some exponential neighborhood of the diagonal of M , identifications
which we shall not specify in the proof.

(1) Formula (100) in Theorem 4.5 tells us that δ∆
pnq
M � δ

pnq
M , which is flat as can be seen

from its expression in terms of parallel transport of the underlying flat connection
on M . Since a flat infinitesimal connection integrates to a unique direct connection

modulo germ equivalence (cfr. Proposition 2.30), and δ
pnq
M is the infinitesimal connection

of the direct connection on F nM defined by the parallel transport along small

geodesics determined by δ
pnq
M , the statement follows.

(2) Since δ is flat, by eq. (111) its n- th jet prolongation Jnδ integrates to a flat connection

Γnδ . By Part (1) of the theorem, ∆
pnq
M is flat so that the composition Γnδ �∆

pnq
M is flat.

Eq. (110) then follows from the uniqueness (cfr. Proposition 2.30) of a flat direct

connection with a given infinitesimal connection, here δΓ̃
n
.

(3) Eq. (111) follows from eq. (110) applied to the (flat) infinitesimal connection δ :� δΓ.

l

4.6. Direct connections on a jet frame groupoid from jet prolongations. We consider
the case where G � IsopEqÑM is the frame groupoid of a smooth vector bundle π : E ÑM .
Direct connections on the jet groupoid JnIsopEq are best described as linear operators acting
on the jet bundle JnE. For this, we first describe the inclusion ρ : JnIsopEq ãÑ IsopJnEq.

An element in JnIsopEq is the jet jnx0σ of a local bisection σ : Ux0 Ñ IsopEq defined on an
open neighborhood Ux0 of a point x0 in M , that is, a smooth map such that σpxq in IsopEqyx
for any x in Ux0 , where y � φσpxq is the image of x by the diffeomorphism φσ � t � σ of
M defined on Ux0 associated to σ. This means that, for any x in Ux0 , σpxq : Ex Ñ Ey is a
linear isomorphism between fibres of E above φσ-related points.
The image ρpjnx0σq in IsopJnEq is a linear isomorphism ρpjnx0σq : J

n
x0
E Ñ Jny0E between

fibres of JnE above φσ-related points, where we set y0 � φσpx0q, defined on the jet jnx0f P
Jnx0E of a smooth local section f of E around x0 as

ρpjnx0σqpj
n
x0
fq :� jny0

�
y ÞÑ σ

�
φ�1
σ pyq

�
� f

�
φ�1
σ pyq

�	
(112)

� jnx0

�
x ÞÑ σpxq � fpxq

	
� jny0φ

�1
σ ,

where φ�1
σ is the inverse diffeomorphism of φσ and where we denote by � the linear action

of σpxq on fpxq P Ex, as in eq. (??), and by � the jet composition as in eq. (43). The map
ρ will be usually omitted, and the linear action defined by eq. (112) will be simply denoted
by jnx0σ � j

n
x0
f .

Assume that the manifold M is equipped with an affine connection ∇M , and let Γ :
PairpMq �Ñ IsopEq be a direct connection on the frame groupoid, defined on a diagonal
domain U in PairpMq. Then, for any py0, x0q in U , Γpy0, x0q : Ex0 Ñ Ey0 is a linear
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isomorphism. As before, we denote by � the action of Γpy0, x0q on any element ex0 in Ex0 ,
that is, we write

Ex0 Q ex0 ÞÝÑ Γpy0, x0q � ex0 P Ey0 .

From Γ we can build the exponential direct connection on JnIsopEq as in eq. (103).
Namely, for py0, x0q P U , we consider the exponential bisection πy0x0 and its associated

diffeomorphism φy0x0 given in Definition 4.3. Then, according to eq. (112), Γpnqpy0, x0q is
the linear isomorphism Jnx0E Ñ Jny0E acting as

Γpnqpy0, x0q � j
n
x0
f � jny0

�
y ÞÑ Γpy, ψx0y0 pyqq � fpψ

x0
y0
pyqq

	
� jnx0

�
x ÞÑ Γpφy0x0pxq, xq � fpxq

	
� jny0ψ

x0
y0
,

where f is a local section of E around x0 and ψx0y0 is the inverse diffeomorphism of φy0x0 .
This jet prolongation is compatible with the filtration on JnE, i.e.

πnn�1Γ
pnq � Γpn�1qπnn�1, (113)

where πnn�1 : J
nE Ñ Jn�1E was defined in eq. (51). Indeed,

πnn�1

�
Γpnqpy0, x0q � j

n
x0
f
�

� πnn�1

�
jny0

�
y ÞÑ Γpy, ψx0y0 pyqq � fpψ

x0
y0
pyqq

��
� jn�1

y0

�
y ÞÑ Γpy, ψx0y0 pyqq � fpψ

x0
y0
pyqq

�
� Γpn�1qpy0, x0q � j

n�1
x0

f

� Γpn�1qpy0, x0q � π
n
n�1

�
jnx0f

�
.

It follows that the family tΓpnq, n P Z¥0u is a projective system of direct connections in the
sense of §6.4.

Example 4.13. We take E � M � Rr with M � Rd and let 1 : x ÞÑ 1x � px, p1, � � � , 1qloooomoooon
r times

q

be a given constant section. We equip π : E Ñ M with the trivial direct connection Γ on
E defined by Γpy, xq � 1x � 1y. Then, for a function f : M Ñ R, viewed at a point x in M
as an element px, fpxqq � fpxq1x of the fibre Ex, we have Γpy, xq � px, fpxqq � py, fpxqq. It
follows that

Γpnqpy0, x0q � j
n
x0
f 1x0 � jny0

�
y ÞÑ Γpy, ψx0y0 pyqq � fpψ

x0
y0
pyqq1y

�
� jny0

�
y ÞÑ fpψx0y0 pyqq1ψx0

y0
pyq

	
�

�
jnx0f � j

n
y0
ψx0y0

�
1y0 P J

n
y0
E.

WhenM is the space Rd equipped with the trivial connection ∇M given by the Levi-Civita
connection for the canonical metric on Rn, then ψx0y0 pyq � y� x0� y0 and the above formula
boils down to:

Γpnqpy0, x0q � j
n
x0
f 1x0 � jnx0f 1y0 . (114)

4.7. Direct connections on a frame groupoid from Taylor expansions. Direct connections
on the frame groupoid IsopJnEq of a jet bundle are of special interest in the context of
regularity structures. This is the gauge groupoid of the frame bundle F pJnEq with structure
group GLpP n

d,rq, but it is not the jet prolongation of a groupoid, because the group GLpP n
d,rq

is not the jet prolongation of a structure group and the frame bundle F pJnEq is not the jet
prolongation of a principal bundle, cf. eq. (81) and eq. (77) in Example 3.4.
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Until now we have focussed our attention on direct connections on jet groupoids of frame
bundles rather than on frame groupoids of jet bundles. This paragraph is dedicated to the
latter. By means of local Taylor expansions, we build a direct connection on IsopJnEq, which
is not a jet prolongation of Γ.
As in the previous section, the manifold M is equipped with an affine connection ∇M ,

and Γ : PairpMq �Ñ IsopEq is a direct connection on the frame groupoid with infinitesimal
connection ∇ :� ∇Γ, see eq. (28) (for convenience, we drop the superscript Γ).

Taylor expansions.
Let us first assign to an element jnx0pfq in J

n
x0
E, the Taylor local expansion at x0

ΠΓ
x0
pjnx0fqpxq � Γpx, x0q

ņ

k�0

1

k!

dk

dtk
�
Γ�1px0, cx0ptqqpfpcx0ptqqq

���
t�0

P Ex, (115)

where as before, cx0ptq is the unique geodesic curve linking x0 to x � cx0p1q.
This compares with the local Taylor expansion of [DDD19, Definition 76] which uses higher

connections defined as follows. The linear derivation ∇ on E extends to a linear connection
∇pnq on pT �Mqbn b E for any n P Z¥0, defined for α1, � � � , αn in C8pM,T �Mq and f in
C8pM,Eq by

∇pnq
X pα1 b � � � b αn b fq

�
ņ

j�1

α1 b � � � b∇M
X αj b � � � b αn b f � α1 b � � � � � � b αn b∇Xf. (116)

For any smooth section f of E, we set

∇nf :� ∇pnq
�
∇pn�1q

�
� � �∇p1qp∇fq � � �

��
P C8pM, pT �Mqbn�1 b Eq (117)

and [JL14, §2.1] (compare with [DDD19, eq.(27)] in the case E �M � R)
Symnr∇nf s :� rSymn b idEs p∇nfq . (118)

Here (with a slight abuse of notation) on the r.h.s. we use the symmetrising map Symn :
T �Mbn Ñ SnpT �Mq defined by Symnpα1 b � � � b αnq :�

1
n!

°
σPΣn

ασp1q b � � � b ασpnq. Note
that Symnr∇nf spXnq � ∇nfpX, � � � , Xq for any X in TxM at an arbitrary point x in M .

For a smooth local section g of E around x PM , we further set

Dk pgq pXkq :�
dk

dtk
pg pcx0ptqqq

��
t�0

@k P N . (119)

Lemma 4.14. The Taylor expansion eq. (115) reads

ΠΓ
x0
pjnx0fqpxq � Γpx, x0q

ņ

k�0

1

k!
Dk

�
z ÞÑ Γ�1px0, zqpfpzqq

� �
exp�1

x0
x
�bk

� Γpx, x0q
ņ

k�0

1

k!
∇kf

�
exp�1

x0
x
�bk

, (120)

with Γ�1px, yq :� Γpy, xq�1.

Proof. The first identity follows from eq. (119) and the second identity easily follows from
the composition rule for differentiation combined with the fact that ∇M

9cx0
9cx0 � 0 (compare
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with [JL14, 2.2 Lemma]). Indeed, for any small enough positive t and any k in N, we have

Γpcx0ptq, x0q
dk

dtk
�
Γ�1px0, cx0ptqqfpcx0ptqq

�
� ∇k

cx0 ptq
fp 9cx0ptq, � � � , 9cx0ptqq (121)

� Dk
�
Γ�1px0, �qpfq

�
p 9cx0ptq, � � � , 9cx0ptqq,

which at t � 0 and setting X :� 9cx0p0q P Tx0M , gives the following generalisation of eq. (28)

dn

dtn
�
Γ�1px0, cx0ptqq fpcx0ptqq

�
|t�0 � ∇nfpXnq � Dn

�
Γ�1px0, �qpfq

�
pXnq @n P N . (122)

Inserting eq. (122) in the Taylor expansion (115) yields eq. (120). l

Example 4.15. As in Example 4.13, we take E � M � Rr and M � Rd. We equip the
frame groupoid Iso(E) with the trivial direct connection Γpy, xq fpxq1x � fpxq1y, where
1x � px, p1, � � � , 1qq is the global constant section trivial linear connection. In that case,
∇Γf :� df so that the Taylor expansion reads

ΠΓ
x0
pjnx0f 1x0qloooomoooon

PJn
x0
E

pxq �
¸
|α|¤n

1

α!
pΓpx, x0q B

αfpx0q1x0q px� x0q
α

�

�� ¸
|α|¤n

1

α!
Bαfpx0q px� x0q

α

�1x P Ex � txu � Rr .

Inspired by [DDD19, Definition 80], we set the following definition.

Definition 4.16. For any pair px0, y0q in U � PairpMq, and any local section f of E in a

small neighborhood of x0, we define rΓpnqpy0, x0q in E�
x0
b Ey0 by

rΓpnqpy0, x0q � jnx0f :� jny0
�
y ÞÑ ΠΓ

x0
pjnx0fqpyq

�
. (123)

Example 4.17. We consider the same setting as in Example 4.15, namely the trivial direct
connection Γ on Iso(E) with E � M � Rr the trivial vector bundle over M � Rd. In order

to compute rΓpnq we first compute

Bβp�x0q
α|y0 �

α!

pα � βq!
py0�x0q

α�β for β ¤ α and Bβp�x0q
α|y0 � 0 for β ¡ α,

where β ¤ α stands for αi ¤ βi for any i P rr1, dss and α ¡ β when this does not hold.

Viewing an n-th jet as an n-th Taylor polynomial jnx0f �
°
|α|¤n

Bαpx0qf
α!

Xα with Xα :�
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Xα1
1 � � �Xαd

d , we have

rΓpnqpy0, x0q � �jnx0f 1x0�
� jny0

��y ÞÑ ¸
|α|¤n

1

α!
Bαfpx0q py � x0q

α

�1y0

�
¸
|α|¤n

Bαfpx0q

α!
jny0p � x0q

α 1y0

�
¸
|α|¤n

Bαfpx0q

α!

�� ¸
|β|¤n

Bβp � x0q
α|y0

β!
Xβ

�1y0

�
¸
|α|¤n

�¸
β¤α

Bαfpx0q

β! pα � βq!
py0 � x0q

α�βXβ

�
1y0 (124)

�

�� ¸
|α|¤n

Bαfpx0q

α!
py0 � x0q

αXα

�
looooooooooooooooooomooooooooooooooooooon

β�α

1y0 �
¸
|α|¤n

�¸
β α

Bαfpx0q

β! pα � βq!
py0 � x0q

α�βXβ

�
1y0

� jnx0f 1y0 �
¸
|α|¤n

�¸
β α

Bαfpx0q

β! pα � βq!
py0 � x0q

α�βXβ

�
1y0

� Γpnqpy0, x0q �
�
jnx0f 1x0

�
�

¸
|α|¤n

�¸
β α

Bαfpx0q

β! pα � βq!
py0 � x0q

α�βXβ

�
1y0 .

In dimension 1 this reads:

rΓpnqpy0, x0q � �jnx0f 1x0�

�

���������

1 y0 � x0 py0 � x0q
2 � � � � � � py0 � x0q

n

0 1 2 py0 � x0q � � � � � � n py0 � x0q
n�1

0 0 1 3 py0 � x0q � � � pn� 1q py0 � x0q
n�2

0 0 0 1 � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � npy0 � x0q
� � � � � � � � � � � � 0 1

���������

�����������

fpx0q
f 1px0q
� � �
� � �
� � �

f pn�1qpx0q
pn�1q!
f pnqpx0q

n!

�����������
� 1x0

These computations generalise to sections of a vector bundle E Ñ M using the following
identification via the following maps (here n P N) [Pa65, Chapter IV §9, Corollary of
Theorem 7], [JL14, Lemma 2.1]

Sn∇,∇M : JnE ÝÑ `n
k�0S

kpT �Mq b E

jnxf ÞÝÑ
�
fpxq,∇fpxq, � � � , Symkr∇kf spxq, � � � , Symnr∇nf spxq

�
. (125)
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In a polynomial representation, this reads

jnxg �
ņ

j�0

Symjr∇j
xgsX

j, (126)

where ∇ � ∇Γ is the infinitesimal connection induced by Γ. With these conventions,

Γpnqpy0, x0qpj
n
x0
gq � jny0pΓp, x0q gpx0qq �

ņ

j�0

Symjr∇j
y0
pΓp, x0q gpx0qqsX

j. (127)

Proposition 4.18. rΓpnq defines a parallelism on JnE in the sense of eq. (21), and hence

a direct connection rΓpnq : PairpMq �Ñ IsopJnEq on the frame groupoid of JnE (which we
denote by the same symbol). It compares with Γpnq as followsrΓpnqpy0, x0q �jnx0f� � Γpnqpy0, x0q pj

n
y0
fq (128)

� Γpn�1qpy0, x0q

�� ¸
|α|¤n

�¸
β α

Symr∇α
x0
spfqpexp�1

x0
py0qq

α�β

β! pα � βq!
Xβ

��.
Proof.

 To show that rΓpnq defines a direct connection, by Proposition 2.6, all we need to prove

is that rΓpnqpx0, x0q � IdJn
x0
E. So we need to check that jnx0

�
ΠΓ
x0
pjnx0fq

�
� jnx0pfq. In

order to compute jnx0
�
ΠΓpjnx0fq

�
we use the local identification via the maps (125).

By definition of ΠΓ
x0

ΠΓ
x0
pjnx0fqpxq � Γpx, x0q

ņ

k�0

1

k!

dk

dtk
�
Γ�1px0, cx0ptqqpfpcx0ptqqq

���
t�0

and by eq. (122), applied to V � 9cx0p0q in Tx0M

∇k
x0
fpV kq �

dk

dtk
�
Γ�1px0, cx0ptqq fpcx0ptqq

�
|t�0,

we have

∇k
x0

�
x ÞÑ ΠΓpjnx0fq

�
pV kq

� ∇k
x0

�
x ÞÑ Γpx, x0q

ņ

j�0

∇jf

j!
pexp�1

x0
xqbj

�
pV kq

�
dk

dtk

�
ņ

j�0

dj

dtj
�
Γ�1px0, cx0ptqq fpcx0ptqq

� ptV qbj
j!

�
|t�0

�
ķ

j�0

dk

dtk
�
Γ�1px0, cx0ptqq fpcx0ptqq

�
|t�0

pV kq

since

�
dk

dtk
ptV qbj



|t�0

� δk�j k!V
bk

�
�
∇k
x0
f
�
pV kq,
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where we have used the definition of ∇k
x0

in eq. (116).
 To prove eq. (128), we closely follow the computation in eq. (124). As before, we set
V :� 9cx0p0q so that y0 :� cx0p1q � expx0pV q, and

∇β
x0
exp�1

x0
pqα �

α!

pα � βq!
V α�β for β ¤ α and ∇β

x0
exp�1

x0
pqα � 0 for β ¡ α.

Using the description of jets given by eq. (125) and the Taylor expansion eq. (120) ,
we writerΓpnqpy0, x0q � �jnx0f�

� jny0

�������x ÞÑ Γpx, x0q
¸
|α|¤n

Symr∇α
x0
f s

α!
pexp�1

x0
xqbαlooooooooooooooooomooooooooooooooooon

gpx0qPEx0

������
�

eq. p127q
Γpnqpy0, x0q j

n
x0

��x ÞÑ ¸
|α|¤n

Symr∇α
x0
f s

α!
pexp�1

x0
xqbα

�.
� Γpnqpy0, x0q

¸
|α|¤n

¸
|β|¤n

Symr∇α
x0
f spV α�βq

β! pα � βq!
Xβ

� Γpnqpy0, x0q
¸
|α|¤n

Symr∇α
x0
f s

α!looooooooomooooooooon
β�α

Xα

� Γpn�1qpy0, x0q
¸
|α|¤n

�¸
β α

Symr∇α
x0
f spV α�βq

β! pα � βq!
Xβ

�

� Γpnqpy0, x0qpj
n
x0
fq � Γpn�1qpy0, x0q

�� ¸
|α|¤n

�¸
β α

Symr∇α
x0
f spexp�1

x0
py0qq

α�β

β! pα � βq!
Xβ

��
l

The following observation stresses the difference in nature between the connections rΓpnq
and Γpnq, which we recall gives rise to a direct connection on IsopJ8Eq.

Remark 4.19.  We have

πn0

�rΓpnqpy0, x0q � jnx0f	 � j0y0

�
x ÞÑ Γpx, x0q

ņ

k�0

1

k!
Symkr∇kf spx0q

�
exp�1

x0
x
�bk�

� Γpy0, x0q
ņ

k�0

1

k!
Symkr∇kf spx0q

�
exp�1

x0
y0
�bk

� Γpy0, x0q fpx0q �
ņ

k�1

1

k!
Symkr∇kf spx0q

�
exp�1

x0
y0
�bk

� Γpy0, x0q fpx0q,
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which shows that Γ̃pnq does not prolong Γ.

 This further shows that the connection rΓpnq does not satisfy condition (113) with Γ

replaced by rΓ. Thus the family
�rΓpnq, n P Z¥0

	
does not induce a direct connection

on IsopJ8Eq.
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5. Geometric pre-regularity structures for a vector bundle

In this section we discuss the geometric framework underlying regularity structures on
sections of a vector bundle of finite rank on a manifold M by means of a direct connection.
We define a geometric pre-regularity structure which keeps track of the structure group in
the form of a groupoid and its action on the vector bundle. It is described in the projective
setup adapted to the grading underlying regularity structures and inherent to perturbative
approaches to quantum field theory. The geometric pre-regularity structure comes with a
geometric pre-model which encompasses the geometric data required for a full fledged model
as defined in the context of regularity structures, leaving out the analytic requirements,
hence the prefix ”pre” in front of ”regularity structures”.

We revisit Dahlqvist, Diehl and Driver’s [DDD19] polynomial regularity structures in the
language of geometric polynomial structures.

5.1. The abstract setup. We work in a projective set up and refer the reader to Appendix
6 for the relevant notations.

Definition 5.1. LetM be a smooth manifold endowed with a connection∇M (not necessarily
torsion-free) on TM with positive injectivity radius rM .

We call geometric pre-regularity structure on M the data pA,E,G, ρq where:
(1) A � R is a discrete set of indices, that we shall call homogeneities following [H14],

directed by the order relation in R, with no accumulation point and bounded from
below;

(2) E � limÐÝ
αPA

Eα is a projective limit of vector bundles Eα Ñ M as in (145), called the

model bundle;
(3) G � limÐÝ

αPA

Gα ÑM is a prounipotent gauge groupoid as in (154), called the structure

Lie groupoid;
(4) ι : G ãÑ limÐÝαPA

IsopEαq � IsopEq is an injective morphism of prounipotent groupoids,called

the G-structure on E, consisting of a family ια : Gα ãÑ IsopEαq, α P A of injective
morphisms of groupoids. It is equivalently presented as a faithful linear representation

ρ : G �M E ÝÑ E, pgxy , axq ÞÑ ρpgxy qpaxq (129)

which preserves the projective systems of G and E.

Given a real vector bundle E0 Ñ M of rank r, we call geometric pre-model for
pA,E,G, ρq on E0 the data pΠ,Γq:

(5) Π : E Ñ D1
Mp , E0q is a family Πα : Eα Ñ D1

Mp , E0q, α P A of maps from the total
space of the vector bundle E to the sheaf D1

Mp , E0q [Tr06] of E0-valued distributions
onM which is linear and continuous on the fibres. For a point x PM , Πx � tΠαx , α P
Au defines a family of distributions supported in a neighborhood of x.

(6) Γ : PairpMq �ÑG is a family Γα : PairpMq �ÑGα, α P A of direct connections Γα on
Gα.
It induces a direct connection ια � Γα on IsopEαq, as in the commutative diagram

PairpMq� Gα

IsopEαq

Γ

ι�Γ ι , (130)
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with local maps Γρα � ια � Γα : PairpMq � Eα �ÑEα, α P A. The obstruction to
Γρα defining a groupoid action of PairpMq on Eα is encoded in the following non-
commutative diagram

PairpMq �M E

Gα �M E E

E D1
Mp , E0q

Γρ

pr2

Γα�id

ρα

pr2 ΠαRΓα

Πα

(131)

(7) We require continuity of the map x ÞÝÑ Πx for the convergence of distributions.

Remark 5.2. For the sake of simplicity, as in (132) we shall often drop the subscript α in
Π and Γρ.

Combining the continuity assumption (7) on the map x ÞÑ Πx with lim
y0Ñx0

Γρpy0, x0qfpx0q �

fpx0q yields
lim
y0Ñx0

Πy0 � Γ
ρpy0, x0qf � Πx0f @ f P Eα, (132)

which we view as a Γ- invariance of Π in the limit.
Yet, one cannot expect the exact ”Γ- invariance” of Π expressed by

Πx0 � Πy0 � Γ
ρpy0, x0q, (133)

– assumed to hold for regularity structures on Rn, cf. [H14, Definition 2.1] or [H2, Definition
2.1]– to hold for regularity structures on general vector bundles.

For regularity structure on a manifold studied in [DDD19], a transport precision of
the model pΠ,Γq is defined, which as well as the uniform rescaling properties of Πx and the
transport regularity of Γpy, xq, takes into account the discrepancy between Πx and ΠyΓpy, xq.

The following proposition expresses the obstruction to the ”Γ-invariance of Π”

∆y0,x0pΠ,Γ
ρq :� Πy0 � Γ

ρpy0, x0q � Πx0 , @px0, y0q P U∆px0q (134)

in terms of a curvature term for the direct connection Γρ.

Proposition 5.3. With the notations of the proposition, we have

∆z0,x0pΠ,Γ
ρq �∆y0,x0pΠ,Γ

ρq �∆z0,y0pΠ,Γ
ρqΓρpy0, x0q

� Πz0 �
� rRΓρ

py0, x0, z0q � Idz0

	
Γρpz0, x0q, (135)

where rRΓρ

pz, y, xq :� Γρpx, zqΓρpz, yqΓρpx, yq�1 P EndpExq.

If Γ is natural in the sense of Definition 2.19, namely if Γ�1py, xq :� Γpx, yq�1 � Γpy, xq,
then

∆z0,x0pΠ,Γ
ρq�∆y0,x0pΠ,Γ

ρq�∆z0,y0pΠ,Γ
ρqΓρpy0, x0q � Πz0�

�
RΓρ

py0, x0, z0q � Idz0
�
Γρpz0, x0q,

(136)
where RΓρ

pz, y, xq � Γpz, xq�1 Γpz, yqΓpy, xq is the curvature of Γρ defined in eq. (35).
Consequently, the ”Γ-invariance” of Π holds if Γ is flat. Conversely, if Π is injective, ”Γ-
invariance” of Π implies flatness of Γ.
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Proof. Let us compute the obstruction to the ”Γ-invariance” of Π:

∆z0,y0pΠ,Γ
ρq � Πz0 � Γ

ρpz0, y0q � Πy0

� pΠz0 � Γ
ρpz0, y0qΓ

ρpy0, x0q � Πy0 � Γ
ρpy0, x0qq Γ

ρpy0, x0q
�1

� pΠz0 � Γ
ρpz0, y0qΓ

ρpy0, x0q � Πx0 �∆y0,x0pΠ,Γ
ρqq Γρpy0, x0q

�1

� pΠz0 � Γ
ρpz0, y0qΓ

ρpy0, x0q � Πz0 Γ
ρpz0, x0q �∆z0,x0pΠ,Γ

ρq �∆y0,x0pΠ,Γ
ρqq Γρpy0, x0q

�1

�
�
Πz0 � Γ

ρpz0, y0qΓ
ρpy0, x0qΓ

ρpz0, x0q
�1 � Πz0

�
Γρpz0, x0qΓ

ρpy0, x0q
�1

� p∆z0,x0pΠ,Γ
ρq �∆y0,x0pΠ,Γ

ρqq Γρpy0, x0q
�1.

Hence,

∆z0,x0pΠ,Γ
ρq�∆y0,x0pΠ,Γ

ρq�∆z0,y0pΠ,Γ
ρqΓρpy0, x0q � Πz0�

� rRΓρ

py0, x0, z0q � Idz0

	
Γρpz0, x0q.

If RΓρ
� Id, an easy computation yields rRΓρ

� Id, which inserted in eq. (135) gives rise to
∆z0,x0pΠ,Γ

ρq �∆y0,x0pΠ,Γ
ρq �∆z0,y0pΠ,Γ

ρqΓρpy0, x0q � 0 for any py0, z0q P U∆px0q
2. Taking

y0 � x0 then leads to ∆z0,x0pΠ,Γ
ρq � 0.

Conversely, assuming ”Γ-invariance” of Π, we have

Πz0 �
� rRΓρ

py0, x0, z0q � Idz0

	
Γρpz0, x0q � 0

which implies that Πz0�
� rRΓρ

py0, x0, z0q � Idz0

	
� 0 so that if Π is injective, then rRΓρ

py0, x0, z0q �

Idz0 which in turn implies Γρ � Id. l

5.2. Geometric polynomial pre-regularity structure. Underlying a geometric pre-regularity
structure pA,E,G, ρq on a manifold M as in Definition 5.1, there is an abstract regularity
structure pA, T,Gq which generalises Hairer’s abstract set up [H14] and relates to the polynomial
regularity structures built in [DDD19]:

 The model space T is the model fibre of the vector bundle E ÑM ,
 The structure group G is the vertex group of the gauge groupoid G ÑM .

We now discuss polynomial regularity structures, which correspond to the case of a jet bundle
E � JnE0 ÑM .

Theorem 5.4. Let M be a d-dimensional smooth manifold. We consider the initial data
pE0, P0, G0, ρ0q where

 E0 ÑM is a real vector bundle with typical fibre V � Rr,
 G0 is a Lie group endowed with a faithful representation ρ0 on V , inducing an
inclusion ι : G0 ãÑ GLpV q of Lie groups,

 P0 ÑM is a principal G0-bundle such that E0 � P0 �G0 V .

(1) The data pA,E,G, ρq given by
 the (finite) index set A � rr0, nss where n is a given non negative integer,
 the (finite limit) jet bundle E :� limÐÝkPA

JkE0 � JnE0 ÑM of E0,

 the (finite limit) jet prolongation G :� limÐÝkPA
JkGpP0q � JnGpP0q � GpW nP0q

of the gauge groupoid of the principal G0-bundle P0,
 the linear representation ρ of G on E given by the jet prolongation of ρ0, equivalent
to an inclusion G ãÑ IsopEq,
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yields a geometric pre-regularity structure on M in the sense of Definition 5.1, which
we call geometric polynomial pre-regularity structure. Its underlying abstract
regularity structure is pA, T,Gq where
 T � T nd V � Jn0 pR

d, V q � RnrX1, ..., Xds b V is the typical fibre of JnE0, cf.
(54),

 G � W n
d G0 � GLndpRq 
 T nd G0 is the vertex group of the groupoid G, cf. (56).

Proof.

(1) We first observe that the initial data includes the following structure:
 the frame bundle FM ÑM , which is a principal GLdpRq-bundle, together with
its associated frame groupoid IsopTMq � GpFMq � J1 PairpMq (cf. §1.6),

 the frame bundle FE0 ÑM of E0 ÑM , which is a principal GLpV q � GLrpRq-
bundle, together with its associated frame groupoid GpFE0q � IsopE0q, which
comes with a natural faithful and linear left groupoid action (cf. §1.4) given by
the evaluation map ev0 : IsopE0q �M E0 Ñ E0,

 the principal bundle P0 Ñ M , which is a reduction of the frame bundle FE0

with structure group G0 � GLpV q, together with its gauge groupoid GpP0q
which is a reduction of the frame groupoid IsopE0q. The inclusion of groupoids
ι0 : GpP0q ãÑ IsopE0q composed with ev0 determines a faithful left linear groupoid
action ρ0 : GpP0q �M E0 Ñ E0:

GpP0q �M E0 IsopE0q �M E0

E0

ι0�id

ρ0 ev0

.
(2) We now fix n P N and apply the n-jet prolongation to the initial data:

 With the notations of §3.2, let us consider the jet prolongation of the pair
groupoid Jn PairpMq � GpF nMq, where F nM � invJnpRd,Mq is the n-frame
bundle ofM (which is a principalGLndpRq-bundle withGLndpRq � invJn0 pR

d,Rdq0).
 Consider the jet bundle JnE0 with fibre T nd V � Jn0 pR

d, V q � Jn0 pR
d,Rrq �

P n
d,r, together with its frame bundle FJnE0, with structure group GLpT nd V q �
GLpP n

d,rq. Its associated frame groupoid IsopJnE0q � GpFJnE0q naturally acts
on JnE0 by the evaluation map ev : IsopJnE0q �M JnE0 Ñ JnE0.

 The frame bundle FJnE0 is not a jet prolongation (cf. Example 3.4), but it
admits a reduction to the jet bundle W npFE0q � F nM �M JnpFE0q, which
is a principal W n

d GLpV q-bundle with structure group given by the jet group
W n
d GLpV q � GLndpRq 
 T nd GLpV q � GLpT nd V q. Therefore, there is a canonical

inclusion of gauge groupoids (cf. Example 3.2)

κ � pκ0q
pnq : JnIsopE0q � GpW nFE0q ãÑ IsopJnE0q � GpFJnE0q (137)

which induces an action of JnIsopE0q on J
nE0 by composition with ev, namely

JnIsopE0q �M JnE0 IsopJnE0q �M JnE0

JnE0

κ�id

ev
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 Since E0 has a G0-structure, the jet bundle JnE0 has a W n
d G0-structure, where

W n
d G0 � GLndpRq
T nd G0 so that the principalW

n
d GLpV q-bundleW

nFE0 further
reduces to the principal W n

d G0-bundle W
nP0 � F nM �M JnP0 (cf. eq. (60)).

The jet prolongation of the inclusion ι0 gives an inclusion of jet groupoids (cf.
eq. (80))

ι � pι0q
pnq : JnGpP0q � GpW nP0q ãÑ JnIsopE0q � GpW nFE0q,

and therefore an associated faithful linear groupoid action of JnGpP0q on J
nE0.

This action commutes with that of JnIsopE0q and of IsopJnE0q on J
nE0 and it

coincides with the jet prolongation ρ � pρ0q
pnq of ρ0. In other words, we have a

commutative diagram

JnGpP0q �M JnE0 JnIsopE0q �M JnE0 IsopJnE0q �M JnE0

JnE0

ι�id

ρ

κ�id

ev

Setting G � JnGpP0q � GpW nP0q, the resulting structure pA,E,G, ρq satisfies the
conditions of Definition 5.1, since the action ρ of the jet prolongation JnGpP0q on
the jet bundle JnE0 is itself a jet prolongation and therefore preserves the involved
projective systems.

l

For a trivial vector bundle E0 � M � R of rank 1 we get back the polynomial regularity
structures of on a Riemannian manifold. Specialising to Rd equipped with the canonical
Euclidean metric yields the polynomial regularity structures of [H14].

Example 5.5. Let M be a Riemannian manifold equipped with a connection ∇M (e.g.
M � Rd equipped with the canonical metric and a Riemannian connection). If for initial
data pE0, P0, G0, ρ0q we choose

 the trivial vector bundle E0 �M � R of rank 1,
 the frame bundle P0 � FE0 with structure group G0 � GL1pRq and ι0 � Id,

then the geometric polynomial regularity structure pA,E,G, ρq given in Theorem 5.2 yields
back the polynomial regularity structure of [DDD19] and in particular, that of [H14] if
M � Rd

 The typical fibre of E � JnE0 is the graded vector space T :� T nd R � RnrX1, ..., Xds
of real polynomials of degree n in d variables,

 The structure group is the vertex group W n
d GL1pRq � GLndpRq 
 T nd GL1pRq of the

jet prolongation of the frame groupoid JnIsopE0q � GpW nFE0q � IsopJnE0q, which
acts as the identity on the homogeneous component of T of degree 0, and as an
isomorphism on the homogeneous component of T of degree n.
The n-jet group elements inW n

d GL1pRq are jet prolongations of 1-jets inW 1
dGL1pRq �

GL1
dpRq
T 1

dGL1pRq, where the component GL1
dpRq � GLdpRq encodes the Jacobian

matrix of a change of local coordinates in M around any given point.

The identification with the known polynomial structures of [H14] and [DDD19] requires
further remarks:
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 For M � Rd, the structure group chosen in [H14] is the jet prolongation of the
subgroup pRd,�q � t1u�T 1

dGL1pRq � W 1
dGL1pRq resulting from the choice of fixing

the local coordinates at each point of Rd (which moreover are global).
 Note the construction of the polynomial structure on a manifold M carried out in
[DDD19] uses the bundle `n

k�0S
kpT �Mq which amounts to `n

k�0S
kpT �Mq b E in

the case E � M � R. We saw in eq. (54) that the n-th jet prolongation JnE of
a real vector bundle π : E Ñ M of rank r on a d-dimensional manifold M , is like
`n
k�0S

kpT �Mq b E, a vector bundle modelled on `n
k�0S

kppRdq�q b Rr.
Yet their structure groups apriori differ. If E has structure group GLrpRq, then the

vector bundle JnE has structure groupW n
d GLnr pRq described in eq. (59), whereas the

vector bundle `n
k�0S

kpT �Mq b E has structure group GLdpRq � GLrpRq. However,
one can reduce theW n

d GLnr pRq structure group of JnE to GLdpRq�GLrpRq by means
of a connection ∇M onM and a connection ∇ on E via the maps defined in eq. (??),
which yield isomorphims of vector bundles. These isomorphisms are compatible with
the canonical projections πnn�1 : J

nE Ñ Jn�1E (cfr. (51)) and lead to a reduction of
JnE to the bundle `n

k�0S
kpT �Mq b E with structure group GLdpRq �GLrpRq.

Note that a reduction of the structure group of JnE by means of a reduction
of E requires flatness [Fr76, Definition (5.1), Theorem (5.2) and Theorem (5.18)],
combined with a reduction of the frame bundle FM which requires that the manifold
carries a linear structure i.e., that it has a covering with locally constant transition
functions [Fr76, Definition (7.11) and Theorem (7.12)].

Theorem 5.6. LetM , the initial data pE0, P0, G0, ρ0q and the geometric polynomial regularity
structure pA,E,G, ρq be as in Theorem 5.2. Assume that

 the Riemannian manifold M is equipped with a connection ∇M ,
 the vector bundle E0 is endowed with a linear connection ∇0 associated to a connection
1-form ω0 P Ω1pP0, g0q on the principal G0-bundle P0 Ñ M , where g0 is the Lie
algebra of G0,

 the groupoid GpP0q is endowed with a direct connection Γ0 : PairpMq Ñ GpP0q whose
infinitesimal connection is ω0.

Then, the data pΠ,Γq � tpΠn,Γnq, n P Z¥0u:

 with Πn : JnE0 Ñ C8
Mp , E0q � D1

Mp , E0q defined on the fibre above any point x0 PM
by the linear map Πn

x0
: Jnx0E0 Ñ C8

MpUx0 , E0q � D1
MpUx0 , E0q, where Ux0 is a given

normal neighborhood of x0, by

Πn
x0
pjnx0fqpxq � Γ0px, x0q

ņ

k�0

1

k!

dk

dtk
�
Γ�1
0 px, cxptqqpfpcxptqqq

���
t�0

, (138)

as in eq. (115).
 and Γn : PairpMq Ñ JnGpP0q the direct connection

Γnpy0, x0q j
n
x0
f :� jny0

�
y ÞÑ Πn

x0
pjnx0fqpyq

�
given by rΓpnq defined in eq. (123),

yields a geometric pre-model for pA,E,G, ρq on E0 in the sense of Definition 5.1. In
particular, it fits into the diagram (131).

Moreover,
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(1) (cfr. [DDD19, Lemma 90]) A continuous section f of E0 is γ- Hölder continuous for
some γ ¡ 0 iff it is n-times continuously differentiable with n � rγs the integral part
of γ and for any norm } � } and any direct connection Γn on JnE0, there is a constant
C such that

}Γnpy, xq jnxf � jny f} ¤ C dpx, yqγ�n, @px, yq P U∆, (139)

where dpx, yq is the geodesic distance between x and y.
(2) The Γn-invariance of Πn for any jnx0f built from an arbitrary local section of E0 above

any point x0 PM :

Πn
y0

�
Γnpy0, x0q � j

n
x0
f
�
� Πn

x0

�
jnx0f

�
, @y0 P Ux0 @n P Z¥0 (140)

implies the flatness of Γ.

Proof. The fact that the family tpΠn,Γnq, n P Z¥0u defines a geometric pre-model follows
from Proposition 4.18 which says that Γn indeed defines a direct connection, combined with
the continuity of the map x ÞÑ Πx. The latter easily follows from

lim
y0Ñx0

Πn
y0
pjy0fqpxq � lim

y0Ñx0

�
ņ

k�0

1

k!
∇k

0fpy0q
�
exp�1

y0
pxqbk

��

�
ņ

k�0

1

k!
∇k

0fpx0q
�
exp�1

x0
pxqbk

�
� Πn

x0
pjx0fqpxq

for any local section f of E0 in a neighborhood of x0.

 To prove (1) we use a local trivialisation. Let us first recall that the vector bundle
JnE0 is modelled on Jn0 pR

d,Rrq �
Àn

k�0 S
kppRdq�q b Rr with d � dimpMq. We

prove (139) using a local trivialisation E|Ux Ñ φxpUxq � Rr � Rd�Rr, pz, fzq ÞÑ

pφxpzq,Φxfzq with φxpxq � 0 P Rd, which induces a local trivialisation of JnE0

JnE0|Ux ÝÑ JnpφxpUxq � Rrq

pz, jnz fq ÞÝÑ
�
φxpzq, j

n
φxpzq pΦx � pφxq�fq

�
and a local description of Γn

JnE�
b JnE|Ux�Ux ÝÑ End pJnpφxpUxq � Rrqqq

ppz, wq,Γnzwq ÞÝÑ

����φxpzq, φxpwq, jnφxpzqpΦx � pφxq�q Γ
n
zw j

n
φxpwq

�
φ�x � Φ

�1
x

�looooooooooooooooooooooooomooooooooooooooooooooooooon
An

φxpzqφxpwq

���,
with Anφxpyq 0

� Id0 � Op|φxpyq|q P EndpJnpφxpUxq � Rrqq as a consequence of the
differentiability of Γn along the diagonal.
In this local trivialisation, the difference Γnpy, xq jnxf � jny f reads

jnφxpyqpΦx � pφxq�qΓ
n
yx j

n
xf � jnφxpyq pΦx � pφxq�q j

n
y f

� Anφxpyq 0 j
n
0 pΦx � pφxq�fq � jnφxpyq pΦx � pφxq�fq

�
�
Anφxpyq 0 � Id0

�
jn0 pΦx � pφxq�fq � jn0 pΦx � pφxq�fq � jnφxpyq pΦx � pφxq�fq .
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A norm z ÞÑ }jnz f} on the vector bundle JnE0 ÑM induces a norm u ÞÑ }jnu f̃}φ,Φ :�

}jnφ�1puqpφ
�
x � Φ

�1
x f̃q} on the vector bundle JnpφxpUxq � Rrq.

With these notations, eq. (139) amounts to the existence of a constant C such
that

}jnφxpyqpΦx � pφxq�qΓ
n
yx j

n
xf � jnφxpyq pΦx � pφxq�q j

n
y f}φ,Φ ¤ C |φxpyq|

γ�n,

or equivalently to the existence of a constant D such that

}jn0 pΦx � pφxq�fq � jnφxpyq pΦx � pφxq�fq }φ,Φ ¤ D |φxpyq|
γ�n, (141)

since there is a constant C 1 such that

}
�
Anφxpyq 0 � Id0

�
jn0 pΦx � pφxq�fq} ¤ C 1 |φxpyq| ¤ C 1 |φxpyq|

γ�n

for y and x near enough using the fact that 1 ¡ γ � n ¥ 0.
Thus, conditions (139) and (141) are equivalent. Since the latter is the γ-Hölder

condition
}jn0 f̃ � jnz f̃}φ,Φ ¤ D |z|γ�n

in local coordinates, the assertion follows.
 To prove (2), we observe that (140) reads

Πn
y0
� jny0

�
Πn
x0
pjnx0fq

�
� Πn

x0
pjnx0fq

for any local section f of E0 above Ux0 . The local map gn :� Πn
x0
pjnx0fq defines a

local section of E0 over Ux0 and by (120) we have

Γpy, y0q
ņ

k�0

1

k!
∇kgn

�
exp�1

y0
y
�bk

� gnpyq @py0, yq P U
2
x0
, @n P Z¥0 .

For n � 0, the above equation reads Γpy, y0q g0py0q � g0pyq. Hence Γpz, yqΓpy, y0q g0py0q �
Γpz, yq g0pyq � g0pzq which in turn implies that

Γpy0, zqΓpz, yqΓpy, y0q g0py0q � Γpy0, zq g0pzq � g0py0q.

Since this holds for any g0py0q P Ey0 (which actually coincides with fpx0q), it follows
that Γpy0, zqΓpz, yqΓpy, y0q � 1y0 , which implies the flatness of Γ.

l
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6. Appendix: Prounipotent gauge groupoids with direct connections

In order to keep track of the grading consistently with the analytic and the geometric
setup, we need the notion of a projective limit groupoid.

Projective limits arise in infinite dimensional geometry, typically as inverse limits of
Banach or Hilbert manifolds, Lie groups or vector bundles. Also, jet spaces, jet groups
and jet bundles naturally fit into projective systems, which is what motivates this appendix.

6.1. Projective (inverse) limits. Let C be a category and let pA,¤q be a partially ordered
set of indices. An A-projective system in C is a collection pXαqαPA of objects in C together
with a collection of connecting or bonding maps πβα : Xβ Ñ Xα for any indices α ¤ β,
such that [McL97, Chapter III, §4]

παα � Id : Xα Ñ Xα and πβα � π
γ
β � πγα @α ¤ β ¤ γ. (142)

The projective limit of the family pXαqαPA is an object X in C, necessarily unique and
usually denoted by limÐÝ

α

Xα or limÐÝ
αPA

Xα, together with a collection of connecting maps πα :

X Ñ Xα which make the following diagrams commute (where the second one is a universal
property):

X

Xβ Xα

πβ πα

πβ
α

and

@Y

X

Xβ Xα

@ qβ @ qα
D! q

πβ πα

πβ
α

. (143)

The projective limit exists in the category of sets [McL97, Chapter V, §1] and can be realised
as the subset of the cartesian product

±
αXα made of tuples compatible with the connecting

maps πβα, namely

limÐÝ
α

Xα �
!
paαq P

¹
α

Xα | aα � πβαpaβq @α ¤ β
)
. (144)

Using the forgetful functor to sets, the projective limit is then constructed in several basic
categories (topological spaces, groups, algebras, modules over a fixed ring, etc), in requiring
that the bonding maps πβα be surective morphisms in the category and showing that on the
projective limit of the underlying sets one can define the desired extra structure (topology,
group law, etc).

Example 6.1. The vector space of formal series Rrrxss is the projective limit of the projective
system pXnqnPN where Xn � Rrxs{pxnq is the quotient of the polynomial algebra by the ideal
generated by xn, with connecting maps πnm : Rrxs{pxnq Ñ Rrxs{pxmq induced by the identity
on Rrxs for any m ¤ n.

Example 6.2. The vector space of formal series Rrrx1, � � � , xdss in d variables is the projective
limit of the projective system pXnqnPN where Xn � Rrx1, � � � , xds{pmnq, with m :� Kerpϵq
corresponding to the augmentation ideal, of dimension 1, given by the kernel of the counit
ϵ : Rrx1, � � � , xds Ñ R defined by zero everywhere except on R .1 where it is the identity
map.
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A prounipotent group is a projective limit G � limÐÝα
Gα Ñ M of a projective system

pGα, π
β
αqα¤β of groups satisfying eqs. (142), (143) and eq. (144) functorially lifted to groups.

Example 6.3. The n-jet groups (see [KMS, §12.6]) defined in eq. (45) define a projective
system :

GLndpRq
πn
n�1
ÝÑ Gn�1

d pRq
πn�1
n�2
ÝÑ � � � ÝÑ GL1

dpRq Ñ 1,

6.2. Projective (inverse) limits of vector bundles and of principal bundles. We call
projective limit of vector bundles on M a vector bundle E obtained as projective limit

E � limÐÝ
α

Eα ÑM (145)

of a projective system pEα, π
β
αqα¤β of vector bundles on M satisfying eqs. (142), (143) and

eq. (144) functorially lifted to vector bundles. Since the category of vector bundles over a
manifold M is equivalent to that of projective modules over the ring of smooth functions
C8pMq, projective limits of vector bundles exist.

We illustrate this with projective limits of jet bundles, which are of particular interest for
this paper.

Example 6.4. (see e.g. [FF03]) The collection pJnE0, πnn�1qnPZ¥0 of jets JnE0 of a vector
bundle E0 Ñ M together with the connecting maps πnn�1 : JnE0 Ñ Jn�1E0 corresponding
to the canonical projections of eq. (51), form a projective system. The resulting projective
limit

J8E0 :� limÐÝ
n

JnE0 (146)

defines a vector bundle over M .

The projective limit

P � limÐÝ
α

Pα ÑM (147)

of a projective system of principal bundles tPα, α P Au on M of principal Gα-bundles on M
satisfying eqs. (142), (143) and eq. (144) is a principal G :� limÐÝα

Gα-bundle π : P ÑM .

Example 6.5. Jet prolongations of a principal G0-bundle P 0 Ñ M over a d-dimensional
manifold M , form a projective family tW nP 0, n P Z¥0u for the canonical projections πnn�1 :
W nP 0 Ñ W n�1P 0 and yield a prounipotent principal bundle

W8P 0 :� limÐÝ
n

W nP 0. (148)

The collection tPα :� FEα, α P Au of frame bundles of a projective system tEα, α P Au of
vector bundles is projective. Applying eq. (147) yields

F limÐÝ
α

Eα � limÐÝ
α

FEα.

Example 6.6. With the notations of eq. (146), we can apply the above equation to the
projective system tEn :� JnE0, n P Z¥0u for some vector bundle E0 ÑM , which yields

F pJ8E0q � limÐÝ
n

F pJnE0q. (149)
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Remark 6.7. Eq. (67) gives rise to the following inclusions

F pJnE0q � W npFE0q, n P Z¥0 and F pJ8E0q � W8pFE0q. (150)

6.3. Prounipotent groups and groupoids. The projective limit of a collection tGα Ñ
M,α P Au of groupoids together with a collection tπβαu of connecting maps which is projective
i.e.,

(1) πβα : Gβ Ñ Gα is a surjective morphism of groupoids
(2) παα is the identity on Gα,
(3) πβα � π

γ
β � πγα for all α ¥ β ¥ γ.

defines a Lie groupoid limÐÝα
Gα Ñ M , which we call a prounipotent groupoid following

the terminology used in group theory.

Example 6.8. A projective system tPα, α P Au of principal Gα-bundles Pα ÑM , gives rise
to a projective system tGpPαq, α P Au of gauge groupoids and a unipotent gauge groupoid
limÐÝα

GpPαq which is the gauge groupoid of the projective limit limÐÝα
Gα- principal bundle

limÐÝα
Pα :

GplimÐÝ
α

Pαq � limÐÝ
α

GpPαq. (151)

Its vertex group is the prounipotent group limÐÝα
Gα which corresponds to the projective limit

of the vertex groups tGα, α P Au.

Typical examples of interest in this paper are jet groupoids pJnGn, πnn�1qnPZ¥0 which form a
projective family of gauge groupoids onM and we can define the prounipotent jet prolonged
groupoid:

J8G :� limÐÝ
n

JnG ÑM.

Combining eq. (154) and eq. (148) leads to the following example of relevance in this work.

Example 6.9. Given a principal G0-bundle P 0 Ñ M , we have the following identity of
prounipotent groupoids:

J8GpP 0q :� limÐÝ
n

JnGpP 0q � GplimÐÝ
n

W nP 0q. (152)

When applied to the frame bundle P 0 � FE0 of a vector bundle E0 ÑM , this yields

JnIsopE0q � GpW nFE0q @n P Z¥0 and limÐÝ
n

JnIsopE0q � GplimÐÝ
n

W nFE0q, (153)

since IsopE0q � GpFE0q.

We now apply eq. (154) to the corresponding projective system tPα :� FEα, α P Au of
frame bundles built from a projective family tEα, α P Au of vector bundles over M . Using
again the fact that frame groupoids can be viewed as gauge groupoids of frame bundles i.e.
IsopEαq � GpFEαq, this yields a projective system of frame groupoids tIsopEαq, α P Au and
we have

IsoplimÐÝ
α

Eαq � G

�
limÐÝ
α

FEα

�
� limÐÝ

α

G pFEαq � limÐÝ
α

IsopEαq. (154)
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Example 6.10. Applying this to the projective system tEn :� JnE0, n P Z¥0u yields

IsopJ8E0q � G

�
limÐÝ
n

FJnE0

�
� limÐÝ

n

G
�
FJnE0

�
� limÐÝ

n

IsopJnE0q.

Remark 6.11. We recall from eq. (150) that

IsopJnE0q � JnIsopE0q @n P Z¥0 and IsopJ8E0q � J8IsopE0q. (155)

Indeed, IsopJnEq � GpF pJnEqq, which is gauge groupoid of the frame bundle F pJnEq
with structure group GLpP n

d,rq, is not the jet prolongation of a groupoid, because the group
GLpP n

d,rq is not the jet prolongation of a structure group and the frame bundle F pJnEq is
not the jet prolongation of a principal bundle, cf. eq. (81) and eq. (77) in Example 3.4.

Recall from §1.6, that the Lie algebroid LG Ñ M of a Lie groupoid G Ñ M is given by
the normal bundle TG|upMq{TupMq of M in G. From the functoriality of this construction,
it follows that the collection tLGα Ñ M,α P Au of Lie algebroids of a projective system
tGα ÑM,α P Au of Lie groupoids together with the tangent maps T|upMqπ

β
α to the connecting

maps πβα, is also projective and we have

L

�
limÐÝ
α

Gα

�
� limÐÝ

α

L pGαq . (156)

6.4. Direct connections on prounipotent groupoids. Projective system of connections
on a projective system of vector bundles were studied in [Ga88]. These are characterised
by projective systems of Christoffel symbols. Here we consider projetive limits of direct
connections.

We call a collection tΓα : PairpMq �ÑGα, α P Au of direct connections on a projective
system tGα, α P Au of groupoids with connecting maps πβα, a projective system of
connections if it is compatible with the connecting maps in the following sense:

Γα π
β
α � πβα Γβ, @pα, βq P A2. (157)

CHECK: Such a projective system yields a direct connection

limÐÝ
α

Γα : PairpMq �Ñ limÐÝ
α

Gα

on the prounipotent groupoid limÐÝα
Gα.

Recall from eq. (27) that the infinitesimal connection induced by a direct connection
Γ : PairpMq �ÑG reads δΓ � DΓ|M : TM Ñ LG. From the functoriality of this construction,
it follows that the collection tδΓα : TM ÝÑ LGα, α P Au of infinitesimal connections induced
by a projective system tΓα : PairpMq �ÑGα, α P Au of direct connections, defines a projective
system whose projective limit limÐÝα

δΓα : TM Ñ limÐÝα
LGα is the infinitesimal connection of

limÐÝα
Γα so that

limÐÝ
α

δΓα � δ
limÐÝα

Γα . (158)

Natural examples are direct connections on 8-jet groupoids, which we saw are inverse limits
of groupoids.
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Example 6.12. Exponential direct connections tΓpnq, n P Z¥0u (see eq. (103) in Definition
4.7) on the jet prolongations tJnG0 Ñ M,n P Z¥0u of a Lie groupoid G0 Ñ M with unit
space a Riemannian manifold M equipped with a Riemannian connection, form a projective
collection since by construction we have

πnn�1 Γ
pnq � Γpn�1q πnn�1 @n P Z¥0 . (159)

This gives rise to a direct connection

Γp8q :� limÐÝ
n

Γpnq : PairpMq �Ñ limÐÝ
n

JnG0

on the prounipotent groupoid limÐÝn
JnG0.

Subsequently, the corresponding infinitesimal connections tδΓ
pnq
, n P Z¥0u (see Proposition

4.10) form a projective system and we have

limÐÝ
n

δΓ
pnq

� δΓ
p8q

.

Applying this to the projective system tJnIsopE0q, n P Z¥0u of jet prolongations of frame
groupoids yields the projective limit exponential direct connection:

Γp8q : PairpMq �Ñ J8IsopE0q.

The limit direct connection Γp8q induces a direct connection on the smaller groupoid IsopJ8E0q
(see eq. (155)).

We end this appendix by noting that direct connections on a family tIsopJnE0q, n P Z¥0u
of frame groupoids of jet bundles do not necessarily form projective systems of connections.

Counterexample 6.13. Given a vector bundle E0 Ñ M , the collection trΓpnq, n P Nu of
direct connections built on IsopJnE0q in eq. (123) do not obey condition (159) with Γ

replaced by rΓ.
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[Kol08] I. Kolář, Connections on principal prolongations of principal bundles, Diff. Geom. and its Appl.,

Proc. in Honour of Leonhard Euler, Olomouc, Aug. 2007, World Scientific (2008) 279–291.
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