Measure-theoretic rejection sampling

Adam Jones

20 February, 2014

Proposition. Suppose that μ, v and ρ are probability measures on a measurable space (E, \mathscr{E}); that $\{\mu, \nu\} \ll \rho$; and that there is some $M>0$ with the property that

$$
\begin{equation*}
\frac{\mathrm{d} \mu}{\mathrm{~d} \rho} \leq M \frac{\mathrm{~d} v}{\mathrm{~d} \rho}, \quad \rho-a . s \tag{1}
\end{equation*}
$$

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space on which $X \sim v$ and $U \sim \operatorname{Unif}([0,1])$ are defined and independent. Then μ is the conditional law of X given the event

$$
\begin{equation*}
\frac{\mathrm{d} \mu}{\mathrm{~d} \rho}(X) \geq M U \frac{\mathrm{~d} v}{\mathrm{~d} \rho}(X) \tag{2}
\end{equation*}
$$

Proof. (Firstly, note that (1) implies that $\mu \ll v$, and that the event (2) occurs with positive probability.) Fix a set $A \in \mathscr{E}$ and observe that

$$
\mathbb{P}\left(X \in A \left\lvert\, \frac{\mathrm{d} \mu}{\mathrm{~d} \rho}(X) \geq M U \frac{\mathrm{~d} v}{\mathrm{~d} \rho}(X)\right.\right)=\frac{\psi(A)}{\psi(E)}
$$

where ψ is defined to be

$$
\begin{aligned}
\psi(A) & :=\mathbb{P}\left(X^{-1}(A) \cap\left\{\frac{\mathrm{d} \mu}{\mathrm{~d} \rho}(X) \geq M U \frac{\mathrm{~d} v}{\mathrm{~d} \rho}(X)\right\}\right) \\
& =\int_{A} \mathbb{P}\left(\frac{\mathrm{~d} \mu}{\mathrm{~d} \rho}(x) \geq M U \frac{\mathrm{~d} v}{\mathrm{~d} \rho}(x)\right) v(\mathrm{~d} x) \\
& =\int_{A \cap\{\mathrm{~d} v / \mathrm{d} \rho>0\}} \mathbb{P}\left(\frac{\mathrm{d} \mu}{\mathrm{~d} \rho}(x) \geq M U \frac{\mathrm{~d} v}{\mathrm{~d} \rho}(x)\right) \frac{\mathrm{d} v}{\mathrm{~d} \rho}(x) \rho(\mathrm{d} x) \\
& =\int_{A \cap\{\mathrm{~d} v / \mathrm{d} \rho>0\}} \frac{1}{M} \frac{\mathrm{~d} \mu}{\mathrm{~d} v} \frac{\mathrm{~d} v}{\mathrm{~d} \rho} \mathrm{~d} \rho \\
& =\frac{1}{M} \mu\left(A \cap\left\{\frac{\mathrm{~d} v}{\mathrm{~d} \rho}>0\right\}\right)=\mu(A) / M
\end{aligned}
$$

(For the last equality, note that

$$
\mu\left(\frac{\mathrm{d} v}{\mathrm{~d} \rho}>0\right)=\int_{\{\mathrm{d} v / \mathrm{d} \rho>0\}} \frac{\mathrm{d} \mu}{\mathrm{~d} v} \frac{\mathrm{~d} v}{\mathrm{~d} \rho} \mathrm{~d} \rho=\int_{E} \frac{\mathrm{~d} \mu}{\mathrm{~d} v} \frac{\mathrm{~d} v}{\mathrm{~d} \rho} \mathrm{~d} \rho=\mu(E)
$$

which equals 1.) Hence, $\psi(A) / \psi(E)=M \mu(A) /(M \mu(E))=\mu(A)$, as required.

[^0]In exactly the same way as in Alexandra's Monte Carlo notes, samples from this conditional measure can be generated via rejection sampling: let $\left(X_{n}\right)_{n \geq 1}$ and $\left(U_{n}\right)_{n \geq 1}$ be independent iid sequences of random variables, with $X_{n} \sim v$ and $U_{n} \sim \operatorname{Unif}([0,1])$ for each $n \geq 1$, and define

$$
T:=\inf \left\{n \geq 1: \frac{\mathrm{d} \mu}{\mathrm{~d} \rho}\left(X_{n}\right) \geq M U_{n} \frac{\mathrm{~d} v}{\mathrm{~d} \rho}\left(X_{n}\right)\right\}
$$

Then T is almost surely finite and $X_{T} \sim \mu$.

[^0]: *Statistical Laboratory, University of Cambridge, Cambridge, UK; a.jones@maths.cam.ac.uk

