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Proposition. Suppose that u,v and p are probability measures on a measurable space (E, &);

that {u, v} < p; and that there is some M > 0 with the property that
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Let (Q, # ) be a probability space on which X ~ v and U ~ Unif([0, 1]) are defined and

independent. Then y is the conditional law of X given the event

d
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dp dp
Proof. (Firstly, note that (1)) implies that 4 < v, and that the event (2) occurs with positive
probability.) Fix a set A € & and observe that
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(For the last equality, note that

dv du dv du dv
M(dp ) vidpsy dvdp * Jpdvap P (E)
which equals 1.) Hence, y(A)/y(E) = Mu(A)/(Mu(E)) = u(A), as required. O
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In exactly the same way as in Alexandra’s Monte Carlo notes, samples from this conditional
measure can be generated via rejection sampling: let (X,,),.»; and (U,),;»; be independent iid

sequences of random variables, with X,, ~ v and U,, ~ Unif([0, 1]) for each n > 1, and define
d
T := inf{n >1: —”(Xn) > MUHQ(Xn)} .
dp dp

Then T is almost surely finite and X ~ p.



