Mathematical machine learning part IV : active and online learning

Prof. Dr. Gilles Blanchard, Dr. Alexandra Carpentier*, Dr. Jana de Wiljes, Dr. Martin Wahl

1. The stochastic bandit problem
```
Useful material : See Bubeck et.al (2012), and also Cesa-Bianchi et.al (2006) for a
broader perspective - see also
https://blogs.princeton.edu/imabandit/2016/05/11/bandit-theory-part-i/ (and part ii)
for a helpful blog post.
```


1.1. The problem

1.2. Upper bounds

1.3. Lower bounds

An important question is on whether the algorithm presented in the last subsection is optimal. But first, how can we characterise optimality? A useful tool for characterizing the efficiency of a statistical methods is the concept of minimax lower bounds - this framework is related to information theory.

1.3.1. Examples in a classical problem

The problems As an example let us consider a much simpler statistical setting. Consider X_{1}, \ldots, X_{n} that are iid according to $\mathcal{B}(\mu), \mu \in[1 / 4,3 / 4]$. Let us write \mathbb{E}_{μ} and \mathbb{P}_{μ} for the expectation and probability when the parameter is μ.

We consider the problem of estimating μ. Consider the empirical mean

$$
\hat{\mu}=\frac{1}{n} \sum_{i} X_{i} .
$$

It is clear that by Hoeffding's inequality that for any $\mu \in[1 / 4,3 / 4]$, it holds with probability larger than $1-\delta$ that

$$
\begin{equation*}
|\hat{\mu}-\mu| \leq \sqrt{\frac{\log (2 / \delta)}{2 n}}=: c_{\delta} / \sqrt{n} \tag{1}
\end{equation*}
$$

So the rate of estimation for this test statistic is $n^{-1 / 2}-\hat{\mu}$ is a $\left(\delta, c_{\delta} / \sqrt{n}\right)$ good estimator.
Question 1 : Does there exist an estimator that performs better, i.e. such that its rate is significantly smaller than c_{δ} / \sqrt{n} on an event of probability $1-\delta$?

[^0]Consider now the testing problem

$$
H_{0}: \mu=1 / 2 \quad \text { vs } \quad H_{1}: \mu=1 / 2+u
$$

Consider the test

$$
T=\mathbf{1}\{\hat{\mu}>1 / 2+u / 2\}
$$

By Equation (1), the sum of its power and level is bounded as

$$
\mathbb{E}_{1 / 2}[T]+\mathbb{E}_{1 / 2+u}[1-T] \leq 2 \exp \left(-\frac{u^{2} n}{2}\right)
$$

Question 2 : Does there exist a test that performs better, i.e. such that the bound on its power and level is significantly smaller than $2 \exp \left(-\frac{u^{2} n}{2}\right)$?

1.3.2. Results

Theorem 1. It holds that

$$
\inf _{\tilde{T}}\left[\mathbb{E}_{1 / 2}[\tilde{T}]+\mathbb{E}_{1 / 2+u}[1-\tilde{T}]\right] \geq \frac{1}{4 e^{4}} \exp \left(-10 n u^{2}\right)
$$

This implies in particular that no estimator can be uniformly better than $\left(\delta, \sqrt{\frac{\log (2 / \delta)}{10 n}}\right)$ good.
An approach using likelihood ratio and concentration Let

$$
L_{\mu}\left(x_{1}, \ldots, x_{n}\right)=\mu^{\sum_{i} x_{i}}(1-\mu)^{n-\sum_{i} x_{i}}=\exp \left(\log \left(\frac{\mu}{1-\mu}\right) \sum_{i} x_{i}+n \log (1-\mu)\right)
$$

Note that L_{μ} is the likelihood of the data when the parameter is μ.
Let \tilde{T} be a test. Let $\Omega=\{T=0\}$. We have

$$
\begin{aligned}
\mathbb{P}_{1 / 2+u}(\Omega) & =\mathbb{E}_{1 / 2}\left[\frac{L_{1 / 2+u}\left(X_{1}, \ldots, X_{n}\right)}{L_{1 / 2}\left(X_{1}, \ldots, X_{n}\right)} \mathbf{1}\{\Omega\}\right] \\
& =\mathbb{E}_{1 / 2}\left[\exp \left(\log \left(\frac{1+2 u}{1-2 u}\right) \sum_{i} X_{i}+n \log (1-2 u)\right) \mathbf{1}\{\Omega\}\right]
\end{aligned}
$$

Consider now

$$
\xi=\left\{\left|\sum_{i} X_{i}-n / 2\right| \leq \sqrt{n \frac{\log (4)}{2}}\right\}
$$

Note that $\mathbb{P}_{1 / 2}(\xi) \geq 3 / 4$.
Let us take δ so that $\mathbb{P}_{1 / 2}(\Omega)=1-\delta$ (which is required so that the test has level δ). Note that we have $\mathbb{P}_{1 / 2}(\Omega \cap \xi) \geq 3 / 4-\delta$.

Now this implies that

$$
\begin{aligned}
\mathbb{P}_{1 / 2+u}(\Omega) & \geq \mathbb{E}_{1 / 2}\left[\log \left(\frac{1+2 u}{1-2 u}\right) \sum_{i} X_{i}+n \log (1-2 u) \mathbf{1}\{\Omega \cap \xi\}\right] \\
& \left.\geq \mathbb{E}_{1 / 2}\left[\exp \left(\log \left(\frac{1+2 u}{1-2 u}\right)\left(n / 2-\sqrt{n \frac{\log (4)}{2}}\right\}\right)+n \log (1-2 u)\right) \mathbf{1}\{\Omega \cap \xi\}\right]
\end{aligned}
$$

Now note that since $0<u \leq 1 / 4$, we have $\log (1-2 u) \geq-2 u-2 u^{2}$ and

$$
\log \left(\frac{1+2 u}{1-2 u}\right) \geq \log ((1+2 u)(1+2 u))=\log \left(1+4 u+4 u^{2}\right) \geq 4 u-8 u^{2}
$$

So we have

$$
\begin{aligned}
\mathbb{P}_{1 / 2+u}(\Omega) & \geq \mathbb{E}_{1 / 2}\left[\log \left(\frac{1+2 u}{1-2 u}\right) \sum_{i} X_{i}+n \log (1-2 u) \mathbf{1}\{\Omega \cap \xi\}\right] \\
& \geq \mathbb{E}_{1 / 2}\left[\exp \left(\left(4 u-8 u^{2}\right)\left(n / 2-\sqrt{\frac{n \log (4)}{2}}\right)+n\left(-2 u-2 u^{2}\right)\right) \mathbf{1}\{\Omega \cap \xi\}\right] \\
& \geq \mathbb{E}_{1 / 2}\left[\exp \left(-6 n u^{2}-4 u \sqrt{n \frac{\log (4)}{2}}\right) \mathbf{1}\{\Omega \cap \xi\}\right] \\
& \geq \exp \left(-6 n u^{2}-4 u \sqrt{n \frac{\log (4)}{2}}\right) \mathbb{E}_{1 / 2}[\mathbf{1}\{\Omega \cap \xi\}] \\
& \geq \exp \left(-6 n u^{2}-4 u \sqrt{n \frac{\log (4)}{2}}\right)[3 / 4-\delta] .
\end{aligned}
$$

So for the test \tilde{T} we know that

$$
\begin{aligned}
\mathbb{E}_{1 / 2}[\tilde{T}]+\mathbb{E}_{1 / 2+u}[1-\tilde{T}] & \geq \exp \left(-6 n u^{2}-4 u \sqrt{n \frac{\log (4)}{2}}\right)[3 / 4-\delta]+\delta \\
& \geq \frac{1}{4} \exp \left(-10 n u^{2}-4\right) \geq \frac{1}{4 e^{4}} \exp \left(-10 n u^{2}\right)
\end{aligned}
$$

This concludes the proof.
Let $\tilde{\mu}$ be an estimator of μ. Let $0<u \leq 1 / 4$ and $T=\mathbf{1}\{\tilde{\mu} \in[1 / 2-u / 2,1 / 2+u / 2]\}$. We have by the previous result that $\tilde{\mu}$ cannot be more than $\left(\min \left(2 \exp \left(-2 n u^{2}\right), 1 / 2\right), u\right)$ good. This concludes the proof for $u=\sqrt{\frac{\log (2 / \delta)}{10 n}}$.

An approach using the distance between the distributions We have

$$
\mathbb{P}_{1 / 2}(\Omega)+\mathbb{P}_{1 / 2+u}\left(\Omega^{C}\right)=1+\mathbb{P}_{1 / 2}(\Omega)-\mathbb{P}_{1 / 2+u}(\Omega)
$$

So we have
$\sup _{\tilde{\mu}}\left[\mathbb{P}_{1 / 2}(|\tilde{\mu}-1 / 2|<u / 2)+\mathbb{P}_{1 / 2+u}(|\tilde{\mu}-1 / 2-u|<u / 2)\right] \leq 1+\sup _{A \text { measurable }}\left|\mathbb{P}_{1 / 2}(A)-\mathbb{P}_{1 / 2+u}(A)\right|$.
We now introduce the total variation distance for two measures \mathbb{P}, \mathbb{Q} that are defined on the same σ-algebra

$$
d_{T V}(\mathbb{P}, \mathbb{Q})=\sup _{A \text { measurable }}|\mathbb{P}(A)-\mathbb{Q}(A)| .
$$

We have

$$
\sup _{\tilde{\mu}}\left[\mathbb{P}_{1 / 2}(|\tilde{\mu}-1 / 2|<u / 2)+\mathbb{P}_{1 / 2+u}(|\tilde{\mu}-1 / 2-u|<u / 2)\right] \leq 1+d_{T V}\left(\mathbb{P}_{1 / 2}, \mathbb{P}_{1 / 2+u}\right) .
$$

We now link the total variation distance to the KL divergence.

Theorem 2 (Pinsker's inequality). Let \mathbb{P}, \mathbb{Q} be two measures that are defined on the same σ-algebra. It holds that

$$
d_{T V}(\mathbb{P}, \mathbb{Q}) \leq \sqrt{\frac{1}{2} d_{K L}(\mathbb{P}, \mathbb{Q})}
$$

By the chain rule this implies

$$
d_{T V}\left(\mathbb{P}_{1 / 2}, \mathbb{P}_{1 / 2+u}\right) \leq \sqrt{\frac{1}{2} d_{K L}\left(\mathbb{P}_{1 / 2}, \mathbb{P}_{1 / 2+u}\right.}=\sqrt{\frac{n}{2}\left[-\frac{1}{2} \log (1+2 u)-\frac{1}{2} \log (1-2 u)\right]} .
$$

So

$$
d_{T V}\left(\mathbb{P}_{1 / 2}, \mathbb{P}_{1 / 2+u}\right) \leq \frac{1}{2} \sqrt{-n \log \left(1-4 u^{2}\right)} \leq \sqrt{u^{2} n+n O\left(u^{4}\right)} .
$$

So for $u \leq o(1 / \sqrt{n})$, this concludes the estimation proof.

References

Bubeck, Sebastien, and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multiarmed bandit problems. Foundations and Trends in Machine Learning, 5(1):1-122, 2013.
Cesa-Bianchi, Nicolo, and Gabor Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

[^0]: * Contact : carpentier@math.uni-potsdam.de. Webpage with course material TBA : http://www.math. uni-potsdam.de/~carpentier/page3.html

