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1. The stochastic bandit problem

Useful material : See Bubeck et.al (2012), and also Cesa-Bianchi et.al (2006) for a

broader perspective - see also

https://blogs.princeton.edu/imabandit/2016/05/11/bandit-theory-part-i/ (and part ii)

for a helpful blog post.

1.1. The problem

1.2. Upper bounds

1.3. Lower bounds

An important question is on whether the algorithm presented in the last subsection is optimal. But
first, how can we characterise optimality? A useful tool for characterizing the efficiency of a statistical
methods is the concept of minimax lower bounds - this framework is related to information theory.

1.3.1. Examples in a classical problem

The problems As an example let us consider a much simpler statistical setting. ConsiderX1, . . . , Xn

that are iid according to B(µ), µ ∈ [1/4, 3/4]. Let us write Eµ and Pµ for the expectation and prob-
ability when the parameter is µ.

We consider the problem of estimating µ. Consider the empirical mean

µ̂ =
1

n

∑
i

Xi.

It is clear that by Hoeffding’s inequality that for any µ ∈ [1/4, 3/4], it holds with probability larger
than 1− δ that

|µ̂− µ| ≤
√

log(2/δ)

2n
=: cδ/

√
n. (1)

So the rate of estimation for this test statistic is n−1/2 - µ̂ is a (δ, cδ/
√
n) good estimator.

Question 1 : Does there exist an estimator that performs better, i.e. such that its
rate is significantly smaller than cδ/

√
n on an event of probability 1− δ?
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Consider now the testing problem

H0 : µ = 1/2 vs H1 : µ = 1/2 + u.

Consider the test
T = 1{µ̂ > 1/2 + u/2}.

By Equation (1), the sum of its power and level is bounded as

E1/2[T ] + E1/2+u[1− T ] ≤ 2 exp(−u
2n

2
).

Question 2 : Does there exist a test that performs better, i.e. such that the bound

on its power and level is significantly smaller than 2 exp(−u
2n
2 )?

1.3.2. Results

Theorem 1. It holds that

inf
T̃ test

[
E1/2[T̃ ] + E1/2+u[1− T̃ ]

]
≥ 1

4e4
exp

(
− 10nu2

)
.

This implies in particular that no estimator can be uniformly better than (δ,
√

log(2/δ)
10n ) good.

An approach using likelihood ratio and concentration Let

Lµ(x1, ..., xn) = µ
∑

i xi(1− µ)n−
∑

i xi = exp
(

log(
µ

1− µ
)
∑
i

xi + n log(1− µ)
)
.

Note that Lµ is the likelihood of the data when the parameter is µ.

Let T̃ be a test. Let Ω = {T = 0}. We have

P1/2+u(Ω) = E1/2

[L1/2+u(X1, . . . , Xn)

L1/2(X1, . . . , Xn)
1{Ω}

]
= E1/2

[
exp

(
log(

1 + 2u

1− 2u
)
∑
i

Xi + n log(1− 2u)
)
1{Ω}

]
.

Consider now

ξ =
{
|
∑
i

Xi − n/2| ≤
√
n

log(4)

2

}
.

Note that P1/2(ξ) ≥ 3/4.
Let us take δ so that P1/2(Ω) = 1 − δ (which is required so that the test has level δ). Note that

we have P1/2(Ω ∩ ξ) ≥ 3/4− δ.
Now this implies that

P1/2+u(Ω) ≥ E1/2

[
log(

1 + 2u

1− 2u
)
∑
i

Xi + n log(1− 2u)1{Ω ∩ ξ}

]

≥ E1/2

[
exp

(
log(

1 + 2u

1− 2u
)
(
n/2−

√
n

log(4)

2

})
+ n log(1− 2u)

)
1{Ω ∩ ξ}

]
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Now note that since 0 < u ≤ 1/4, we have log(1− 2u) ≥ −2u− 2u2 and

log(
1 + 2u

1− 2u
) ≥ log((1 + 2u)(1 + 2u)) = log(1 + 4u+ 4u2) ≥ 4u− 8u2.

So we have

P1/2+u(Ω) ≥ E1/2

[
log(

1 + 2u

1− 2u
)
∑
i

Xi + n log(1− 2u)1{Ω ∩ ξ}

]

≥ E1/2

[
exp

(
(4u− 8u2)

(
n/2−

√
n log(4)

2

)
+ n(−2u− 2u2)

)
1{Ω ∩ ξ}

]

≥ E1/2

[
exp

(
− 6nu2 − 4u

√
n

log(4)

2

)
1{Ω ∩ ξ}

]

≥ exp
(
− 6nu2 − 4u

√
n

log(4)

2

)
E1/2

[
1{Ω ∩ ξ}

]

≥ exp
(
− 6nu2 − 4u

√
n

log(4)

2

)
[3/4− δ].

So for the test T̃ we know that

E1/2[T̃ ] + E1/2+u[1− T̃ ] ≥ exp
(
− 6nu2 − 4u

√
n

log(4)

2

)
[3/4− δ] + δ

≥ 1

4
exp(−10nu2 − 4) ≥ 1

4e4
exp(−10nu2).

This concludes the proof.
Let µ̃ be an estimator of µ. Let 0 < u ≤ 1/4 and T = 1{µ̃ ∈ [1/2− u/2, 1/2 + u/2]}. We have by

the previous result that µ̃ cannot be more than (min(2 exp(−2nu2), 1/2), u) good. This concludes

the proof for u =
√

log(2/δ)
10n .

An approach using the distance between the distributions We have

P1/2(Ω) + P1/2+u(ΩC) = 1 + P1/2(Ω)− P1/2+u(Ω).

So we have

sup
µ̃ estimator

[
P1/2(|µ̃−1/2| < u/2)+P1/2+u(|µ̃−1/2−u| < u/2)

]
≤ 1+ sup

A measurable
|P1/2(A)−P1/2+u(A)|.

We now introduce the total variation distance for two measures P,Q that are defined on the same
σ-algebra

dTV (P,Q) = sup
A measurable

|P(A)−Q(A)|.

We have

sup
µ̃ estimator

[
P1/2(|µ̃− 1/2| < u/2) + P1/2+u(|µ̃− 1/2− u| < u/2)

]
≤ 1 + dTV (P1/2,P1/2+u).

We now link the total variation distance to the KL divergence.
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Theorem 2 (Pinsker’s inequality). Let P,Q be two measures that are defined on the same σ-algebra.
It holds that

dTV (P,Q) ≤
√

1

2
dKL(P,Q).

By the chain rule this implies

dTV (P1/2,P1/2+u) ≤
√

1

2
dKL(P1/2,P1/2+u =

√
n

2

[
− 1

2
log(1 + 2u)− 1

2
log(1− 2u)

]
.

So

dTV (P1/2,P1/2+u) ≤ 1

2

√
−n log(1− 4u2) ≤

√
u2n+ nO(u4).

So for u ≤ o(1/
√
n), this concludes the estimation proof.
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