Contrôle non-asymptotique adaptatif du *family-wise* error rate en tests multiples

G. Blanchard¹

¹Weierstrass Institut Berlin, Germany

Journées Statistiques du Sud, Porquerolles 17/06/09

2 Contrôle du FWER et adaptativité à π_0

 Adaptativité à la dépendance et régions de confiance Résultats théoriques Quelques simulations

B 1 4 B 1

1 Introduction

2 Contrôle du FWER et adaptativité à π_0

3 Adaptativité à la dépendance et régions de confiance Résultats théoriques Quelques simulations

Tests d'hypothèses multiples :motivation

- problème de type "fouille de données" : déterminer des caractéristiques "marquantes" ou "significatives" d'une population, à partir d'un jeu de données, parmi une grande liste de candidats
- exemple typique : données en grande dimension, où chaque dimension correspond à un facteur
 - quels facteurs ont une moyenne nulle?
 - comparaison de deux échantillons : quels facteurs ont une moyenne différente ?
 - détermination de relations d'indépendance entre facteurs (evt. conditionnelle) : modèles graphiques, sélection de variables pertinentes en régression
- problème central : complexité et contrôle de critères d'erreur de groupe
- on se concentrera en particulier sur des résultats non-asymptotiques

Tests multiples - exemples

Exemple – données microarray :

- petit nombre d'observations répétées en grande dimension
- quels gènes ont un niveau d'expression significativement élevée ou différencié ?
- chaque gène peut être testé séparément
- dizaines de milliers de gènes à tester

Exemple – données d'imagerie fonctionnelle :

- petit nombre de séries temporelles répétées d'imagerie cérébrale pendant l'accomplissement d'une tâche
- quelles régions du cerveau sont-elles significativement actives ?
- tout point du cerveau (pixel) peut être testé séparément
- dépendances de courte et longue portée entre régions
- contraintes supplémentaires éventuelles sur la géométrie des régions actives

Exemple – motifs significatifs d'une séquence ADN :

- modéliser l'ADN comme une chaîne de Markov d'ordre k
- ► chercher les motifs de longueur ℓ > k + 1 qui ont une fréquence supérieure à la normale, suggérant un rôle biologique (par ex. marqueurs de "splicing")
- un motif spécifique peut être testé en utilisant des approximations du modèle Markovien (voir par ex. Roquain et Schbath, 2007)
- ► on veut tester tous les motifs de taille ℓ (4^ℓ possibilités)

AGGTTGCATATCGCAT-TTCATCATAAAAGCTC-CAGAACAACGACTAGC-TGGACCAATCGGTCCG-ATGAGGACAAGTTCCT-ACAAGAAAGAGAGGGGT-CATCCACCCGCTTATT-TATAGCTGGAATTCCT-CTCCGGCATATACATA-GTGTAAGGATGTAGCC

- ► test simple : fonction T_h : X → {0, 1}, indicant une décision prise d'après l'observation, acceptant ou rejetant l'hypothèse P ∈ h
- erreur de première espèce ou niveau :

$$\alpha = \sup_{P \in h} P(T(\mathbf{X}) = 1)$$

p-values

▶ le plus souvent, un test est basé sur une statistique $Z(\mathbf{X}) \in \mathbb{R}$ et

$$T_h(X) = \mathbf{1}\{Z(\mathbf{X}) \ge t\}$$

▶ plus généralement, une famille croissante de tests dépendant d'un paramètre α tel que T_{h,α}(X) ≤ T_{h,α'}(X) si α ≤ α', et (après reparamétrisation monotone) telle que

$$\sup_{P\in h} P(T_{\alpha}(\mathbf{X}) = 1) = \alpha;$$

▶ on définit alors la fonction *p*-value $p_h : \mathcal{X} \rightarrow [0, 1]$ associée,

$$p_h(\mathbf{X}) = \inf \{ \alpha \in [0, 1] | T_\alpha(\mathbf{X}) = 1 \} ,$$

caractérisée par :

$$\forall \boldsymbol{P} \in \boldsymbol{h} \qquad \mathbb{P}_{\boldsymbol{X} \sim \boldsymbol{P}}\left[\boldsymbol{p}_{\boldsymbol{h}}(\boldsymbol{X}) \leq \alpha\right] \leq \alpha \,. \tag{(\star)}$$

Réciproquement, la donnée d'une fonction *p*-value *p_h* (càd satisfaisant la propriété (*)) assure le contrôle de l'erreur de première espèce au niveau α pour le test

$$T_{h,lpha}(\mathbf{X}) = \mathbf{1}\{p_h(\mathbf{X}) \leq lpha\}_{\mathbf{D}}$$
 , where \mathbf{X} is the set of \mathbf{X}

Contrôle non-asymptotique du FWER

p-values

▶ le plus souvent, un test est basé sur une statistique $Z(\mathbf{X}) \in \mathbb{R}$ et

$$T_h(X) = \mathbf{1}\{Z(\mathbf{X}) \ge t\}$$

▶ plus généralement, une famille croissante de tests dépendant d'un paramètre α tel que T_{h,α}(X) ≤ T_{h,α'}(X) si α ≤ α', et (après reparamétrisation monotone) telle que

$$\sup_{P\in h} P(T_{\alpha}(\mathbf{X}) = 1) = \alpha;$$

▶ on définit alors la fonction *p*-value $p_h : \mathcal{X} \rightarrow [0, 1]$ associée,

$$\boldsymbol{p}_h(\mathbf{X}) = \inf \left\{ \alpha \in [0,1] | T_\alpha(\mathbf{X}) = 1 \right\} \,,$$

caractérisée par :

$$\forall \boldsymbol{P} \in \boldsymbol{h} \qquad \mathbb{P}_{\boldsymbol{X} \sim \boldsymbol{P}}\left[\boldsymbol{p}_{\boldsymbol{h}}(\boldsymbol{X}) \leq \alpha\right] \leq \alpha \,. \tag{(\star)}$$

Réciproquement, la donnée d'une fonction *p*-value *p_h* (càd satisfaisant la propriété (*)) assure le contrôle de l'erreur de première espèce au niveau α pour le test

$$T_{h,lpha}(\mathbf{X}) = \mathbf{1}\{p_h(\mathbf{X}) \leq lpha\}_{ ext{ if } h ext{ if }$$

- un ensemble (usuellement fini) \mathcal{H} d'hypothèses nulles à tester.
- ▶ procédure de test multiple *R* :

Observation $\mathbf{X} \rightarrow$ Hypothèses rejetées $R(\mathbf{X}) \subset \mathcal{H}$

- on note H₀(P) ⊂ H l'ensemble des hypothèses nulles qui sont satisfaites (i.e. contiennent) la distribution génératrice P.
- on note $\pi_0(P) = |\mathcal{H}_0|/|\mathcal{H}|$ la proportion d'hypothèses nulles.

- Un problème souvent considéré est celui de test multiple construit à partir de tests simples connus.
- Supposons que pour tout $h \in \mathcal{H}$, un test simple T_h et une *p*-value correspondante p_h sont connus.
- On considère alors les procédures de tests multiples qui sont des fonctions de la famille des p-values :

Données
$$\mathbf{X} \to p$$
-values $\mathbf{p} = (p_h(\mathbf{X}))_{h \in \mathcal{H}} \to R(\mathbf{p}) \subset \mathcal{H}$

 Une sous-famille souvent considérée : rejet des p-values plus petites qu'un seuil,

$$R(\mathbf{p}) = \left\{ h \in \mathcal{H} : p_h(X) \leq \widehat{t} \right\},$$

 \hat{t} étant éventuellement un seuil aléatoire.

Modèles de distribution des *p*-values

► si *h* est satisfaite par *P*, alors *p_h* a une distribution stochastiquement bornée inférieurement par une variable *U*([0, 1]) :

$$P \in h \Rightarrow P(p_h \leq t) \leq t$$

(c'est la définition d'une p-value)

- (**U**₀) si *h* est satisfaite par *P*, alors $p_h \sim U([0, 1])$
- ▶ (A₁) si *h* n'est pas satisfaite par *P*, alors $p_h \sim P_1$ pour une certaine loi P_1

(I) indépendance : les p-values sont indépendantes

(RE) modèle "random effects", à tendance Bayésienne : soient h₁,..., h_N des variables de Bernoulli indépendantes de paramètre 1 – π₀, les *p*-values sont indépendantes conditionnellement aux (h_i) avec

$$\mathcal{D}_i \sim egin{cases} U([0,1]) & ext{ si } h_i = 0 \ , \ P_1 & ext{ si } h_i = 1 \ . \end{cases}$$

Les hypothèses nulles vraies forment un ensemble aléatoire donné par $\{i : h_i = 1\}$.

Critères d'erreur de première espèce

l'erreur d'ensemble de R a famille (family-wise error rate ou FWER) est définie comme la probabilité que R(X) contienne au moins une hypothèse nulle :

$$\mathsf{FWER}(R, P) = \mathbb{P}_{\mathbf{X} \sim P}\left[R \cap \mathcal{H}_0(P) \neq \emptyset\right]$$

 la proportion de fausses découvertes (false discovery proportion, FDP) est la variable aléatoire

$$FDP(R, P) = \frac{|\mathcal{H}_0(P) \cap R|}{|R|} \mathbf{1}\{|R| > 0\}$$

(avec la convention = 0 si |R| = 0);

le taux de fausses découvertes (false discovery rate, FDR) est

$$\mathsf{FDR}(R.P) = \mathbb{E}\left[\mathsf{FDP}(R,P)\right] = \mathbb{E}\left[\frac{|\mathcal{H}_0(P) \cap R|}{|R|}\mathbf{1}\{|R| > 0\}\right]$$

Critères d'erreur de première espèce

l'erreur d'ensemble de R a famille (family-wise error rate ou FWER) est définie comme la probabilité que R(X) contienne au moins une hypothèse nulle :

$$\mathsf{FWER}(R, P) = \mathbb{P}_{\mathbf{X} \sim P} \left[R \cap \mathcal{H}_0(P) \neq \emptyset \right]$$

 la proportion de fausses découvertes (false discovery proportion, FDP) est la variable aléatoire

$$FDP(R, P) = \frac{|\mathcal{H}_0(P) \cap R|}{|R|} \mathbf{1}\{|R| > 0\}$$

(avec la convention = 0 si |R| = 0);

le taux de fausses découvertes (false discovery rate, FDR) est

$$\mathsf{FDR}(R.P) = \mathbb{E}\left[\mathsf{FDP}(R,P)\right] = \mathbb{E}\left[\frac{|\mathcal{H}_0(P) \cap R|}{|R|}\mathbf{1}\{|R| > 0\}\right].$$

1 Introduction

2 Contrôle du FWER et adaptativité à π_0

3 Adaptativité à la dépendance et régions de confiance Résultats théoriques Quelques simulations

- le mot "adaptativité" utilisé en tests multiples est un peu galvaudé. Il s'agit ici plutôt d'un point de vue semi-paramétrique :
- "adaptativité" à des paramètres de nuisance ou annexes :
- à la proportion π_0 d'hypothèses nulles
- ▶ à la structure de dépendance inconnue des *p*-values
- à la loi des p-values des hypothèses non-nulles

(4月) トイヨト イヨト

- le mot "adaptativité" utilisé en tests multiples est un peu galvaudé. Il s'agit ici plutôt d'un point de vue semi-paramétrique :
- "adaptativité" à des paramètres de nuisance ou annexes :
- à la proportion π_0 d'hypothèses nulles
- à la structure de dépendance inconnue des p-values
- à la loi des p-values des hypothèses non-nulles

(4月) トイヨト イヨト

- le mot "adaptativité" utilisé en tests multiples est un peu galvaudé. Il s'agit ici plutôt d'un point de vue semi-paramétrique :
- "adaptativité" à des paramètres de nuisance ou annexes :
- à la proportion π_0 d'hypothèses nulles
- ▶ à la structure de dépendance inconnue des *p*-values
- à la loi des p-values des hypothèses non-nulles

- le mot "adaptativité" utilisé en tests multiples est un peu galvaudé. Il s'agit ici plutôt d'un point de vue semi-paramétrique :
- "adaptativité" à des paramètres de nuisance ou annexes :
- à la proportion π_0 d'hypothèses nulles
- ▶ à la structure de dépendance inconnue des *p*-values
- à la loi des p-values des hypothèses non-nulles

Contrôle non-adaptatif : correction de Bonferroni

correction de Bonferroni : rejeter

$$\pmb{R} = \{\pmb{h} \in \mathcal{H}: \pmb{p_h} \leq lpha / |\mathcal{H}|\}$$
 .

▶ alors le FWER est contrôlé au niveau α car

$$\begin{aligned} \mathsf{FWER}(R, P) &= \mathbb{P}_{\mathbf{X} \sim P} \left[R \cap \mathcal{H}_0 \neq \emptyset \right] \\ &= \mathbb{P}_{\mathbf{X} \sim P} \left[\bigcup_{h \in \mathcal{H}_0} \left\{ h \in R(\mathbf{X}) \right\} \right] \\ &\leq \sum_{h \in \mathcal{H}_0(P)} \mathbb{P}_{\mathbf{X} \sim P} \left[p_h \leq \alpha / |\mathcal{H}| \right] \\ &\leq \pi_0 \alpha \,. \end{aligned}$$

16/49

Contrôle non-adaptatif : correction de Bonferroni

correction de Bonferroni : rejeter

$$\pmb{R} = \{\pmb{h} \in \mathcal{H}: \pmb{p}_{\pmb{h}} \leq lpha / |\mathcal{H}|\}$$
 .

▶ alors le FWER est contrôlé au niveau α car

$$\begin{aligned} \mathsf{FWER}(\boldsymbol{R},\boldsymbol{P}) &= \mathbb{P}_{\mathbf{X}\sim \boldsymbol{P}}\left[\boldsymbol{R}\cap\mathcal{H}_{0}\neq\emptyset\right] \\ &= \mathbb{P}_{\mathbf{X}\sim \boldsymbol{P}}\left[\bigcup_{h\in\mathcal{H}_{0}}\left\{h\in\boldsymbol{R}(\mathbf{X})\right\}\right] \\ &\leq \sum_{h\in\mathcal{H}_{0}(\boldsymbol{P})}\mathbb{P}_{\mathbf{X}\sim \boldsymbol{P}}\left[\boldsymbol{p}_{h}\leq\alpha/|\mathcal{H}\right] \\ &\leq \pi_{0}\alpha\,. \end{aligned}$$

Contrôle non-adaptatif : correction de Bonferroni (pondérée)

correction de Bonferroni pondérée : rejeter

$$\boldsymbol{R} = \{\boldsymbol{h} \in \mathcal{H} : \boldsymbol{p}_{\boldsymbol{h}} \leq \alpha \boldsymbol{\pi}(\boldsymbol{h})\},\$$

où π est une loi de probabilité (discrète) SUR \mathcal{H} .

alors le FWER est contrôlé au niveau α car

$$\begin{aligned} \mathsf{FWER}(\boldsymbol{R},\boldsymbol{P}) &= \mathbb{P}_{\mathbf{X}\sim \boldsymbol{P}}\left[\boldsymbol{R}\cap\mathcal{H}_{0}\neq\emptyset\right] \\ &= \mathbb{P}_{\mathbf{X}\sim \boldsymbol{P}}\left[\bigcup_{h\in\mathcal{H}_{0}}\left\{h\in\boldsymbol{R}(\mathbf{X})\right\}\right] \\ &\leq \sum_{h\in\mathcal{H}_{0}(\boldsymbol{P})}\mathbb{P}_{\mathbf{X}\sim \boldsymbol{P}}\left[\boldsymbol{p}_{h}\leq\pi(\boldsymbol{h})\alpha\right] \\ &\leq \pi(\mathcal{H}_{0})\alpha\,. \end{aligned}$$

Dans le cas (I) et (U) (p-values indépendantes et ~ U([0, 1]) pour les hypothèses nulles), on a pour un test multiple rejetant au seuil t :

$$\mathsf{FWER}(\boldsymbol{R}, \boldsymbol{P}) = \mathbb{P}_{\mathbf{X} \sim \boldsymbol{P}} \left[\exists h \in \mathcal{H}_0 : \boldsymbol{p}_h \leq t \right]$$
$$= 1 - (1 - t)^{|\mathcal{H}_0|};$$

- ainsi t = 1 − (1 − α)^{1/|ℋ|} (correction de Šidàk) donne un contrôle exact au niveau 1 − (1 − α)^{|ℋ₀|/|ℋ|}
- équivalent au seuil et niveau de Bonferroni quand $\alpha \rightarrow 0$.

▶ Remarque asymptotique : sous l'hypothèse (**RE**) Bonferroni comme Šidàk ont une puissance tendant vers 0 lorsque $|\mathcal{H}| \rightarrow \infty$, et le nombre d'hypothèses rejetées à tort converge vers une variable de Poisson de paramètre $\pi_0 \alpha$ (Bonferroni) resp. $-\log(1 - \pi_0 \alpha)$ (Šidàk).

Dans le cas (I) et (U) (p-values indépendantes et ~ U([0,1]) pour les hypothèses nulles), on a pour un test multiple rejetant au seuil t :

$$\begin{aligned} \mathsf{FWER}(\boldsymbol{R},\boldsymbol{P}) &= \mathbb{P}_{\mathbf{X}\sim\boldsymbol{P}}\left[\exists h\in\mathcal{H}_0:p_h\leq t\right] \\ &= 1-(1-t)^{|\mathcal{H}_0|}; \end{aligned}$$

- ainsi t = 1 − (1 − α)^{1/|ℋ|} (correction de Šidàk) donne un contrôle exact au niveau 1 − (1 − α)^{|ℋ₀|/|ℋ|}
- équivalent au seuil et niveau de Bonferroni quand $\alpha \rightarrow 0$.
- ▶ Remarque asymptotique : sous l'hypothèse (**RE**) Bonferroni comme Šidàk ont une puissance tendant vers 0 lorsque $|\mathcal{H}| \rightarrow \infty$, et le nombre d'hypothèses rejetées à tort converge vers une variable de Poisson de paramètre $\pi_0 \alpha$ (Bonferroni) resp. $-\log(1 - \pi_0 \alpha)$ (Šidàk).

・ロット (雪) (き) (き)

- ▶ pour "optimiser" la correction de Bonferroni on voudrait rejeter les hypothèses *h* telles que *p_h* ≤ απ(*h*)/π(H₀(*P*)).
- ► cette procédure a son FWER controllé au niveau α, et est plus puissante car π(H₀(P)) ≤ 1.
- Problème : $\pi(\mathcal{H}_0(P)) \dots$ inconnu.
- supposons que π̂₀(**p**) est un estimateur de π₀ formé à partir de la collection de *p*-values
- on peut considérer le seuil "Bonferroni plug-in" (BPI) : $\hat{\pi}_0^{-1} \alpha$

< 同 > < 三 > < 三 >

- ▶ pour "optimiser" la correction de Bonferroni on voudrait rejeter les hypothèses *h* telles que *p_h* ≤ απ(*h*)/π(H₀(*P*)).
- ► cette procédure a son FWER controllé au niveau α, et est plus puissante car π(H₀(P)) ≤ 1.
- Problème : $\pi(\mathcal{H}_0(P)) \dots$ inconnu.
- supposons que π̂₀(**p**) est un estimateur de π₀ formé à partir de la collection de *p*-values
- on peut considérer le seuil "Bonferroni plug-in" (BPI) : $\hat{\pi}_0^{-1} \alpha$

▶ si $\hat{\pi}_0(\mathbf{p})$ est croissant en les *p*-values , alors sous l'hypothèse (I) on a

 $FWER(R_{BPI}, P) \leq FWER(R_{BPI}, DU(n, n - n_0)),$

où DU(n, k) est la distribution de *p*-values suivante :

- k des p-values sont indentiquement nulles
- (n − k) des p-values sont U([0, 1])
- on peut donc en principle calibrer cette méthode par simulation en calculant

 $\sup_{n_0 \leq n} FWER(R_{BPI}, DU(n, n - n_0)),$

(pour développements voir Finner et Gontscharuk 2009)

- Principe du step-down : utiliser le contrôle du FWER pour en déduire une borne de confiance supérieure sur π₀ et itérer.
- utiliser la procédure R⁽¹⁾ avec la correction de Bonferroni : rejeter

 $R^{(1)} = \{h \in \mathcal{H} : p_h \le \alpha \pi(h)\} .$

► itérer en utilisant l'étape précédente comme une borne supérieure sur H₀ : rejeter

$$\mathbf{R}^{(k+1)} = \left\{ h \in \mathcal{H} : p_h \le lpha \pi(h) / \pi(\mathbf{R}^{(k)})
ight\} \,.$$

• Arrêter si $R^{(k)} = R^{(k+1)}$.

- Principe du step-down : utiliser le contrôle du FWER pour en déduire une borne de confiance supérieure sur π₀ et itérer.
- utiliser la procédure R⁽¹⁾ avec la correction de Bonferroni : rejeter

$$R^{(1)} = \{h \in \mathcal{H} : p_h \leq lpha \pi(h)\}$$
.

 itérer en utilisant l'étape précédente comme une borne supérieure sur *H*₀ : rejeter

$${oldsymbol R}^{(k+1)} = \left\{ oldsymbol h \in {\mathcal H} : {oldsymbol p}_h \leq lpha \pi(oldsymbol h) / \pi({oldsymbol R}^{(k)})
ight\} \,.$$

• Arrêter si $R^{(k)} = R^{(k+1)}$.

Inteprétation graphique (π uniforme)

p⁽¹⁾,...,p^(d) les p-values ordonnées
 seuil de Holm :

$$t_{Holm} = \frac{\alpha}{n+1-k^*}, \qquad k^* = \max\left\{k \le d : \forall k' \le k, p^{(k')} \le \frac{\alpha}{d+1-k'}\right\}$$

► considérons un cadre plus général (Romano et Wolf) : soit R(C) une famille de procédures de test multiple indexée par les sous-ensembles C ⊂ H et telle que

$$\mathcal{C} \subset \mathcal{C}' \Rightarrow \mathcal{R}(\mathcal{C}) \supset \mathcal{R}(\mathcal{C}')$$
 (p.s.)

et pour tout $P \in \mathfrak{P}$

 $\mathsf{FWER}(R(\mathcal{H}_0(P))) \leq \alpha$.

Le step-down généralisé est alors défini par la suite

$$\mathcal{C}_0 = \mathcal{H}; \qquad \mathcal{C}_k = \mathcal{C}_{k-1} \setminus R(\mathcal{C}_{k-1}),$$

s'arrêtant à l'étape k^* lorsque $C_{k^*} = C_{k^*-1}$ et rejetant $R(C_{k^*})$.

▶ alors pour tout $P \in \mathfrak{P}$

 $\operatorname{FWER}(R(\mathcal{C}_{k^*})) \leq \alpha$.

considérons l'événement

$$\Omega(\mathcal{H}_0) = \{ \boldsymbol{R}(\mathcal{H}_0) \cap \mathcal{H}_0 = \emptyset \} \;.$$

Si $\Omega(\mathcal{H}_0)$ est satisfait, alors par l'hypothèse de monotonie

$$\mathcal{C}_k \supset \mathcal{H}_0 \Rightarrow \mathcal{R}(\mathcal{C}_k) \cap \mathcal{H}_0 \subset \mathcal{R}(\mathcal{H}_0) \cap \mathcal{H}_0 = \emptyset$$

 $\Rightarrow \mathcal{C}_{k+1} = \mathcal{C}_k \setminus \mathcal{R}(\mathcal{C}_k) \supset \mathcal{H}_0.$

ainsi par récurrence, sur Ω(H₀) on a R(C_{k*}) ∩ H₀ = Ø et par l'hypothèse sur la procédure oracle

$$\mathsf{FWER}(\mathcal{R}(\mathcal{C}_{k^*})) = \mathbb{P}\left[\Omega(\mathcal{H}_0) \cap \{\mathcal{R}(\mathcal{C}_{k^*}) \cap \mathcal{H}_0 = \emptyset\}\right] + \mathbb{P}\left[\Omega(\mathcal{H}_0)^c\right]$$
$$\leq \mathsf{FWER}(\mathcal{R}(\mathcal{H}_0)) \leq \alpha \,.$$

4 時下 4 日下

1 Introduction

f 2 Contrôle du FWER et adaptativité à π_0

 Adaptativité à la dépendance et régions de confiance Résultats théoriques Quelques simulations

- On a vu que le seuil de Bonferroni est approximativement "sharp" dans le cas de *p*-values indépendantes, ce qui correspond donc au "pire" cas
- Peut-on tenir compte d'information supplémentaire sur la dépendance des p-values ?
- Les *p*-values sont souvent calculées en utilisant un échantillon X = X₁,..., X_n i.i.d.
- On considère un cadre particulier : X_i ∈ ℝ^d, i.i.d., de moyenne µ, et on veut tester la nullité de chacune des coordonnées de µ.
- Hypothèses considérées :
 - (Gaus.) : les X_i sont Gaussiens, $\sigma_k = Var(X^k)$ connue
 - (SB) : la distribution de X_i est symétrique par rapport à μ , et $|X_i| \le M$ p.s.
- On s'intéresse à la statistique de test $|\overline{X^k}|$ pour chaque coordonnée k.

- ▶ Supposons qu'on rejette $R(t) = \{h \in H | p_h \le t\}$;
- On cherche un seuil adéquat t tel que

$$\mathbb{P}\left[\sup_{k:\mu_k=0}|\overline{X^k}|>t\right]\leq \alpha\,.$$

- sous cette condition, rejeter au seuil t conduit à un contrôle du FWER au niveau α.
- le seuil "oracle" est donc le (1α) -quantile de la variable sup_{k:µk=0} $|\overline{X^k}|$.

- ▶ Supposons qu'on rejette $R(t) = \{h \in H | p_h \le t\}$;
- On cherche un seuil adéquat t tel que

$$\mathbb{P}\left[\sup_{k:\mu_k=0}|\overline{X^k}|>t\right]\leq \alpha\,.$$

- sous cette condition, rejeter au seuil t conduit à un contrôle du FWER au niveau α.
- ▶ le seuil "oracle" est donc le (1α) -quantile de la variable sup_{k:µk=0} $|\overline{X^k}|$.

- ▶ idée de type "test exact" en utilisant l'hypothèse de symétrie :
- notons X⁰ la projection de X sur les coordonnées de H₀ (ayant une moyenne nulle), alors

$$\mathcal{D}(X^0) = cD(-X^0);$$

► considérons W = (W_i)_{1≤i≤n} ∈ {-1, 1} une famille de signes i.i.d. aléatoires (var. de Rademacher)

on note

$$\mathbf{X}^{0} \bullet W = (X_1^0 W_1, \ldots, X_n^0 W_n),$$

et

$$\overline{X^0}^{\langle W \rangle} = \overline{X^0 \bullet W} = \frac{1}{n} \sum_{i=1}^n W_i X_i^0.$$

Tests exacts

▶ On considère le $q_{\alpha}(\mathbf{X}^{0})$ le $(1 - \alpha)$ -quantile de

$$\mathcal{D}(|\overline{X^0}^{\langle W \rangle}| |\mathbf{X}^0),$$

alors

$$\begin{split} \mathbb{P}\left[\sup_{k:\mu_{k}=0}|\overline{X^{k}}| > q_{\alpha}(\mathbf{X}^{0})\right] &= \mathbb{E}_{W}\left[\mathbb{P}\left[\sup_{k:\mu_{k}=0}|\overline{X^{k}}^{\langle W \rangle}| > q_{\alpha}(\mathbf{X}^{0} \bullet W)\right]\right] \\ &= \mathbb{E}_{X^{0}}\left[\mathbb{P}_{W}\left[\sup_{k:\mu_{k}=0}|\overline{X^{k}}^{\langle W \rangle}| > q_{\alpha}(\mathbf{X}^{0})\right]\right] \\ &\leq \alpha \end{split}$$

 \blacktriangleright ... comme \mathcal{H}_0 est inconnu, on peut prendre a fortiori le seuil calculable

$$q_lpha({f X})\geq q_lpha({f X}^0)$$
 .

▶ Noter qu'on pourra appliquer ici le principe de step-down ! On y reviendra.

Désavantage du seuil test exact

- le seuil randomisé q_α(X) inclut des coordonnées ayant une moyenne non nulle.
- si la moyenne de ces coordonnées est grande par rapport au bruit, c'est elles qui vont avoir la contribution la plus importante dans ce seuil !
- un seuil plus adéquat serait $q_{\alpha}((\mathbf{X} \mu)) \dots$ mais μ est inconnu.

► suggestion naturelle : remplacer µ par la moyenne empirique et considérer

$$q_{\alpha}((\mathbf{X}-\overline{X})),$$

le quantile de randomisation des données empiriquement recentrées.

- ▶ peut-on comparer ce seuil à $q_{\alpha}((\mathbf{X} \mu))$?
- interprétation comme une méthode de rééchantillonnage : on veut "imiter" les variations de

$$(\overline{X} - \mu)$$
 par celles de $(\overline{X - \overline{X}})^{\langle W \rangle}$ (condt. à **X**).

イロト イヨト イヨト イヨト

Désavantage du seuil test exact

- le seuil randomisé q_α(X) inclut des coordonnées ayant une moyenne non nulle.
- si la moyenne de ces coordonnées est grande par rapport au bruit, c'est elles qui vont avoir la contribution la plus importante dans ce seuil !
- ▶ un seuil plus adéquat serait $q_{\alpha}((\mathbf{X} \mu)) \dots$ mais μ est inconnu.
- suggestion naturelle : remplacer µ par la moyenne empirique et considérer

$$q_{\alpha}((\mathbf{X}-\overline{X})),$$

le quantile de randomisation des données empiriquement recentrées.

- peut-on comparer ce seuil à $q_{\alpha}((\mathbf{X} \mu))$?
- interprétation comme une méthode de rééchantillonnage : on veut "imiter" les variations de

$$(\overline{X}-\mu)$$
 par celles de $(\overline{X-\overline{X}})^{\langle W
angle}$ (condt. à **X**).

> on va considérer plus généralement des seuils de type

$$q_{lpha}(\mathbf{X}, oldsymbol{
ho}) = (1 - lpha)$$
-quantile de $\mathcal{D}\left(\left\| \overline{\mathbf{X}}^{\langle W
angle}
ight\|_{oldsymbol{
ho}} \ \left\| \mathbf{X}
ight)$

où ${\pmb{\rho}}\in [1,\infty]$;

- avec pour but d'estimer $q_{\alpha}(\mathbf{X} \mu, p)$.
- \blacktriangleright cela permettra notamment d'obtenir des $\psi\text{-regions}$ de confiance pour μ du type

$$\mathcal{G}(\mathbf{X},t) = \left\{ z : \left\| \overline{X} - z \right\|_{p} \le t \right\} \,.$$

on va considérer plus généralement des seuils de type

$$q_{lpha}(\mathbf{X}, p) = (1 - lpha)$$
-quantile de $\mathcal{D}\left(\left\|\overline{\mathbf{X}}^{\langle W
angle}\right\|_{p} \ \left\|\mathbf{X}
ight)$

où ${\pmb p} \in [1,\infty]$;

- avec pour but d'estimer $q_{\alpha}(\mathbf{X} \mu, p)$.
- cela permettra notamment d'obtenir des ψ-regions de confiance pour μ du type

$$\mathcal{G}(\mathbf{X},t) = \left\{ z : \left\| \overline{X} - z \right\|_{p} \leq t \right\}$$
.

Théorème

Soient $\alpha, \delta, \gamma \in]0, 1[$ et $f : \mathbb{R}^{d \times n} \to \mathbb{R}$ une fonction positive telle que

$$\mathbb{P}\left[\left\|\overline{\boldsymbol{X}}-\mu\right\|_{p}>f(\boldsymbol{X})
ight]\leqrac{lpha\gamma}{2};$$

alors le seuil

$$t_{\alpha}^{q+f}(\mathbf{Y}) := q_{\alpha(1-\delta)(1-\gamma)}(\mathbf{X} - \overline{X}, p) + \sqrt{\frac{2\log(2/(\delta\alpha))}{n}}f(\mathbf{X})$$

vérifie

$$\mathbb{P}\left[\left\|\overline{X}-\mu\right\|_{\rho}>t_{\alpha}^{q+f}(\mathbf{X})\right]\leq\alpha\,.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$t_{\alpha}^{q+f}(\mathbf{X}) = q_{\alpha(1-\delta)(1-\gamma)}(\mathbf{X} - \overline{X}, p) + \sqrt{\frac{2\log(2/(\delta\alpha))}{n}}f(\mathbf{X})$$

- la seule hypothèse sur la loi de X est la symétrie par rapport à la moyenne.
- pour obtenir un seuil observable, il faut une borne la fonction f sur un quantile "extrême" de cette distribution.
- la fonction f apparaît dans un terme de 2e ordre : la borne f elle-même n'a pas besoin d'être extrêmement précise.
- ► en utilisant un principe de Monte-Carlo avec B tirages (des signes W), on perd au plus (B+1)⁻¹ dans le niveau, et on ne perd rien si α(1 − γ)(1 − δ) est un multiple de (B + 1)⁻¹.

Exemple

$$t_{\alpha}^{q+f}(\mathbf{X}) = q_{\alpha(1-\delta)(1-\gamma)}(\mathbf{X} - \overline{X}, p) + \sqrt{\frac{2\log(2/(\delta\alpha))}{n}}f(\mathbf{X})$$

Niveau cible α ;

$$\blacktriangleright \ \gamma = \delta = \Theta(n^{-2})$$

sous (Gaus.), prendre

$$f(\mathbf{X}) = \frac{\|\sigma\|_{p}}{\sqrt{n}} \overline{\Phi}\left(\frac{\alpha\gamma}{2d}\right) = \mathcal{O}\left(\frac{\log(d) + \log n}{\sqrt{n}}\right) \,,$$

le terme quantile randomisé est calculé à un niveau α(1 – Θ(n⁻²)) ;
 le terme résiduel est en

$$\mathcal{O}\left(\frac{\log(d) + \log n}{n}\right)$$

< 🗇 🕨 < 🖻 🕨

Rééchantillonnage plus général : concentration

Théorème

Supposons (Gaus.), $p \in [1, \infty]$, W vecteur de poids aléatoires échangeables, de carré intégrable. Alors pour tout $\alpha \in (0, 1)$, le seuil

$$t_{\alpha}^{conc}(\mathbf{X}) := \frac{\mathbb{E}_{W}\left[\left\|\overline{\mathbf{X}} - \overline{\mathbf{X}}^{\langle W \rangle}\right\|_{p}\right]}{B_{W}} + \frac{\|\sigma\|_{p}}{\sqrt{n}}\overline{\Phi}^{-1}(\alpha/2)\left[\frac{C_{W}}{\sqrt{n}B_{W}} + 1\right]$$
$$\mathbb{P}\left[\left\|\overline{\mathbf{X}} - \mu\right\|_{p} > t_{\alpha}^{conc}\right] \le \alpha.$$

Avec $\sigma_k^2 = \operatorname{Var}[X_k]$,

vérifie

$$B_{W} = \mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}(W_{i}-\overline{W})^{2}\right)^{\frac{1}{2}}\right]; \qquad C_{W} = \left(\frac{n}{n-1}\mathbb{E}\left[(W_{1}-\overline{W})^{2}\right]\right)^{\frac{1}{2}}$$

< 🗇 🕨 < 🖻 🕨

Comparaison des moyennes :

$$\boldsymbol{B}_{\boldsymbol{W}} \mathbb{E}\left[\left\| \overline{\boldsymbol{\mathsf{X}}} - \boldsymbol{\mu} \right\|_{\boldsymbol{\rho}} \right] = \mathbb{E}\left[\left\| \overline{\boldsymbol{\mathsf{X}} - \overline{\boldsymbol{X}}}^{\langle \boldsymbol{W} \rangle} \right\|_{\boldsymbol{\rho}} \right]$$

Concentration Gaussienne (Cirels'on, Ibragimov and Sudakov 1976)
 Sous (SB) (variables symétriques et bornées), on a des résultats comparables en utilisant notamment l'approche de Fromont (2006).

A (1) > A (2) >

Comparaison des moyennes :

$$\boldsymbol{B}_{\boldsymbol{W}} \mathbb{E}\left[\left\| \overline{\boldsymbol{\mathsf{X}}} - \boldsymbol{\mu} \right\|_{\boldsymbol{\rho}} \right] = \mathbb{E}\left[\left\| \overline{\boldsymbol{\mathsf{X}} - \overline{\boldsymbol{X}}}^{\langle \boldsymbol{W} \rangle} \right\|_{\boldsymbol{\rho}} \right]$$

- Concentration Gaussienne (Cirels'on, Ibragimov and Sudakov 1976)
- Sous (SB) (variables symétriques et bornées), on a des résultats comparables en utilisant notamment l'approche de Fromont (2006).

Et pour σ ?

- ▶ Peu satisfaisant de postuler une borne a priori sur $\|\sigma\|_p$
- On peut considérer la variance empirique

$$\widehat{\sigma} = \left(\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(X_{k}^{i} - \overline{\mathbf{X}}_{k} \right)^{2}} \right)_{1 \le k \le d}$$

Proposition

Sous (Gaus.), avec probabilité au moins $1 - \delta$:

$$\|\sigma\|_{p} \leq \left(C_{n} - n^{-\frac{1}{2}}\overline{\Phi}(\delta/2)\right)^{-1} \|\widehat{\sigma}\|_{p},$$

pour une constante explicite $C_n = 1 - O(n^{-1})$.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Et pour σ ?

- ▶ Peu satisfaisant de postuler une borne a priori sur $\|\sigma\|_p$
- On peut considérer la variance empirique

$$\widehat{\sigma} = \left(\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(X_{k}^{i} - \overline{\mathbf{X}}_{k} \right)^{2}} \right)_{1 \le k \le d}$$

Proposition

Sous (Gaus.), avec probabilité au moins $1 - \delta$:

$$\|\sigma\|_{p} \leq \left(C_{n} - n^{-\frac{1}{2}}\overline{\Phi}(\delta/2)\right)^{-1} \|\widehat{\sigma}\|_{p},$$

pour une constante explicite $C_n = 1 - O(n^{-1})$.

• • • • • • • • • • • • • •

- différents résultats non-asymptotiques pour les régions de confiance issues de rééchantilonnage en grande dimension
- termes résiduels
- ▶ peut donner lieu à des études asymptotiques "non classiques" ($d(n) \gg n$)

Contrôle non-asymptotique du FWEF

a> a

Régions de confiance 40 / 49

Simulations : n=1000, $d=128^2$, $\sigma=1$, $\|.\|_{\infty}$

< 67 ▶

Simulations : en oubliant les termes résiduels

< A

43 / 49

G. Blanchard

Contrôle non-asymptotique du FWEF

Régions de confiance 43 / 49

G. Blanchard

Contrôle non-asymptotique du FWEF

Régions de confiance 43 / 49

G. Blanchard

Contrôle non-asymptotique du FWEF

Régions de confiance 43 / 49

rappel : en test les différents seuils obtenus ci-dessus ont un concurrent naturel, le quantile randomisé non-recentré :

$t^*_lpha(\mathbf{X}) = oldsymbol{q}_lpha(\mathbf{X})$;

- différences avec les seuils obtenus pour des régions de confiance :
 - · pas de termes résiduels ni de diminution du niveau pour le calcul du quantile
 - pas de recentrage empirique \Rightarrow influence des moyennes non-nulles sur le seuil.
- de plus, tous les seuils considérés peuvent être utilisés dans un principe de step-down.

Simulations : moyennes non nulles $\mu_k \in [0, 3]$

- Le seuil 'quantile randomisé non-recentré' devient plus performant au fur et à mesure des itérations de step-down car les moyennes les plus grandes sont éliminées
- Le seuil 'quantile randomisé recentré' reste utile pour éliminer une majorité des moyennes non-nulles en une étape
- Step-down hybride : appliquer à la première étape le seuil recentré, puis pour les itérations suivantes le seuil non-recentré calculé sur les hypothèses restantes
- Intérêt : accélération de la procédure en particulier du fait qu'une seule étape de rééchantillonnage peut être coûteuse en temps de calcul

Simulations : $n = 100, b = 30, d = 128^2$

Simulations : $n = 100, b = 30, d = 128^2$

Puissance des procédures avec arrêt anticipé

J.P. Romano et M. Wolf

Exact and approximate stepdown methods for multiple hypothesis testing. JASA 100(469) (2005) 94- 108

S.Arlot, G. Blanchard, E.Roquain

Some non-asymptotic results on resampling in high dimension,

- I : confidence regions
- II : multiple tests

Annals of Statistics, to appear