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UoC Stats 37700, Winter quarter

Lecture 9: Learning theory III: Rademacher complexities.
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Rewind to the analysis of VC bounds

I We have seen previously that if ` is a loss function such that
|`(.)| ≤ B , and F a class of functions of interest (classifiers,
regression functions. . . ) the following holds with probability at
least 1− δ over the draw of the training sample S:

sup
f∈F

E(`, f )−Ê(`, f , S) ≤ E
[
sup
f∈F

E(`, f )− Ê(`, f , S)

]
+B

√
2 log δ−1

n

≤ 1
n

ES,S′Eσ

[
sup
f∈F

n∑
i=1

σi(`(f , Zi)− `(f , Z ′
i ))

]
+ B

√
2 log δ−1

n

≤ 2
n

ESEσ

[
sup
f∈F

n∑
i=1

σi`(f , Zi)

]
+ B

√
2

log δ−1

n
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I Similarly, with probability at least 1− δ over the draw of the
training sample S:

sup
f∈F

∣∣∣E(`, f )− Ê(`, f , S)
∣∣∣

≤ 2
n

ESEσ

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi`(f , Zi)

∣∣∣∣∣
]

+ B

√
2

log δ−1

n
.

I In VC theory we upper bounded the above quantity in the case of
binary classifiers, but this symmetrized quantity has interesting
properties of its own and can be used in much more general
cases.
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Definition

I We denote

R(F) =
1
n

ESEσ

[
sup
g∈G

n∑
i=1

σig(Zi)

]
the Rademacher complexity of class G . (Note that above we
applied it to G = {`(f , .); f ∈ F} .)

I We also denote

R||(F) =
1
n

ESEσ

[
sup
g∈G

∣∣∣∣∣
n∑

i=1

σig(Zi)

∣∣∣∣∣
]

I Note: in general the supremum of an arbitrary family of
measurable functions might not be measurable. Here we assume
that the function spaces we consider are such that the above
suprema can always be restricted to a countable subfamily.
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Elementary properties of Rademacher complexities

Rademacher complexities satisfy the following composition
inequalities:

I For any a ∈ R , R(aF) = |a|R(F) ;

I R(F + G) ≤ R(F) +R(G) ;

I R({sup(f , g); f ∈ F , g ∈ G}) ≤ (R(F) +R(G))

I For any function h , R({h}) = 0 ; R||({h}) ≤
√

E[h2]
n .

I Similar inequalities hold for R|| .
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A cornerstone of Rademacher analysis

Theorem (Comparison principle)

Let γ be a Lipschitz function from R to R with Lipschitz constant L .
Then

R ({γ(f (.)), f ∈ F}) ≤ LR(F) .

If furthermore γ(0) = 0 , then

R|| ({γ(f (.)), f ∈ F}) ≤ 2LR||(F) .
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Main lemma for the comparison principle

Lemma

Let (Ai , Bi)i∈I be a countable family of constants, and let X be a
symmetric random variable. Then if γ is a L-Lipschitz function,

E
[
sup

i
(Ai + Xγ(Bi))

]
≤ E

[
sup

i
(Ai + LXBi)

]
.
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Consequence: bounded LS regression

I Consider the squared error loss function for regression
`(f , x , y) = (f (x)− y)2 , and assume that we know that both the
random variable Y and the functions f ∈ F are bounded by B .
Then

R
({

(x , y) 7→ (f (x)− y)2; f ∈ F
})

≤ 4BR(F) .

I Hence in this situation, with probability 1− δ , for all f ∈ F ,

E(f (X )− Y )2 ≤ 1
n

∑
i

(f (Xi)− Yi)
2 + 4BR(F) + 2B2

√
2 log δ−1

n
.

Main results of Rademacher analysis 8 / 15



Consequence: margin-based loss functions

I Consider a loss function ` which is a function of the edge/margin:
`(f , x , y) = `0(f (x)y) , where `0 is L-Lipschitz. Then

R({(x , y) 7→ `(f , x , y); f ∈ F}) ≤ LR(F) .

I This applies for example to the hinge loss function
h(u) = (1− u)+ , or the “deviance” d(u) = − log(1 + exp(−2u)) , if
we assume the function class to be bounded (for Mcdiarmid) .

I By considering the “thresholded + rescaled” hinge loss
`θ(u) = min(h(θ−1u), 1) , we obtain that with probability 1− δ , for
all f ∈ F ,

E(f ) = P [f (X )Y ≤ 0] ≤ 1
n

∑
i

1{f (Xi)Yi ≤ θ}+θ−1R(F)+

√
log δ−1

2n
.

Important: for this, we don’t need to assume boundedness of
functions in F since the loss function itself is bounded by
construction!
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Rademacher complexity of kernel function classes

I We can apply the previous analysis for kernel function classes:
consider the Hilbert ball BR of radius R in the RKHS, then we have

R(BR) ≤ 1√
n

R
√

E [k(X , X )] .

I Thus, we obtain that with probability at least 1− δ , ∀f ∈ BR :

P [f (X )Y ≤ 0]

≤ 1
n

∑
1≤i≤n

1{f (Xi)Yi ≤ θ}+
1√
n

R
θ

√
E [k(X , X )] +

√
2 log δ−1

n
.

I Above we assumed that R, θ are fixed but by homogeneity we can
take R = 1 w.l.o.g. and θ then plays the role of the “margin”
parameter.
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Rademacher complexity of ensemble methods

I The Rademacher complexity satisfies the following property:

R(conv(F)) = R(F) .

I Hence, if the set of base classifiers has finite Rademacher
complexity, say has VC dimension less that d , then with
probability at least 1− δ , ∀α probability distribution on the base
classifier set F :

P [Fα(X )Y ≤ 0]

≤ 1
n

∑
1≤i≤n

1{Fα(Xi)Yi ≤ θ}+
1
θ

√
2(d + 1) log 2n

n
+

√
2 log δ−1

n
,

where we recall that Fα(x) = Et∼α [ft(x)] .

I It looks as if we did not increase the complexity by going from
single classifiers in F to ensembles ?? How is that possible?
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Uniform bound wrt. regularization term

I In the two previous bounds we fixed the value of the margin (or
equivalently by homogeneity, the value of the “regularization
parameter”: Hilbert norm for the kernel case; sum of the
coefficients in the ensemble case).

I In practice this parameter gets picked from the data by the
algorithm, so how can we make the bound valid in this case?

I Apply once again Occam’s razor over some discretized sequence
of the regularization parameters, e.g. radii R = 1, 2, · , with a “flat
prior”, for example π(i) = 6

π2 i−2 .
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Important difference between 1-norm and 2-norm
regularization

I Consider a simplified case where we consider an ensemble
methods taking classifiers in a finite base classifer space F
(taking values in [−1, 1]) of cardinality D .

I If we consider this as a feature mapping and apply the “geometric
large margin” approach, we obtain a bound with a factor
R

√
E [k(X , X )] = R

√
D for the complexity term; here R is the `2

norm of the coefficient vector w .
I If we apply the “ensemble large margin” approach, we obtain a

bound with a factor R
√

log D , where R is the `1 norm of the
coefficient vector w .

I Note that this does not mean that the ensemble approach is
intrisically “less complex” since in practice one will look for `1 balls
of much larger radius to approximate the data. But it illustrates
that in high dimension the two measures of complexity become of
an increasingly different nature.
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Empirical Rademacher

I Note that we can apply MacDiarmid’s inequality to the
Rademacher complexity itself.

I Hence with probability at least 1− δ ,

R(F) ≤ R̂(F) + B

√
2 log δ−1

n
.

where

R̂(F) =
1
n

Eσ

[
sup
g∈G

n∑
i=1

σig(Zi)

]
I Thus, at the price of tripling the trailing term in the bounds, we can

replace Rademacher complexities by their empirical counterparts.
(Note that by applying directly McDiamid’s inequality to the sum of
all terms, we avoid dividing δ by 2. . . )
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Empirical Rademacher for certain classes

I In the case of kernel classes, we obtain

R̂(BR) ≤ R√
n

1
n

∑
1≤i≤n

k(Xi , Xi)

 ;

note how the obtained bound now resembles even more closely
the semi-heuristic “margin” bound that served to motivate the
SVMs.

I In the case of VC sets of classifiers (hence this also applies to
ensembles), remember we proved

R̂(BR) ≤
√

2 log HF (S)

n
,

where HF (S) is the shattering coefficient on the sample S.
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