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UoC Stats 37700, Winter quarter

Lecture 7: Kernel methods.



Euclidean structure methods

» We have already seen a couple of methods depending only either
on a notion of distance between training (and test) inputs, or of a
scalar product between said points.

» One common method to make for example linear separators more
flexible is to add more coordinates to the input observations, or
more generally to map them explicitly into some
higher-dimensional Euclidean “feature space”:



» In many common cases, for all purposes it is actually sufficient to
be able to compute dot products (®(X), ®(X")) of input points
mapped in feature space.

» This begs the natural question: when is a real function
k:(X,x')€eX x X —k(x,x')eR

the dot product for some mapping x — $(x) into some Euclidean
feature space E?

» For example
k(x,x') = (x -x"+¢)?

is the “kernel” for the mapping

X +— (D(X) = (Xin)iyj, (\/Exi)i,c] .



Fundamental characterization theorem

Theorem

Given a set X and a function k : X x X — R, there exists a Hilbert
space H and a mapping ®X — H such that k(x,x’) = &(X) - &(X’)
if and only if

the function k is of positive type, i.e. for any integer n > 0, for any
n-uple (Xg,...,Xn) € X", and (ayg,...,an) € R",

Zaiajk(xi,xj) > 0.

i?j
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Further properties of reproducing kernel Hilbert
spaces (RKHS)

» A RKHS is a Hilbert space of real functions on a space X .
» The kernel function k : X2 — R is such that for all x € X', the
function k(x, .) belongs to H . Furthermore,

vx,y € H? (k(x,.),k(y,.)) = k(x,y).
» The above implies the general “reproducing” property:
vie H,x e X, (f k(x,.)) =f(x).
» The above implies that the evaluation functional in a point x € X
feH—f(x)eR

is a continuous function H — R for all x .

» Conversely, any Hilbert space of functions on X satisfying this last
property is a RKHS and the two first properties characterize its
kernel.
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The representer theorem revisited

The representer theorem can be rewritten for RKHS spaces under an
interesting form:

Theorem

Let H be a reproducing kernel Hilbert space. Consider an optimization
problem of the form

Arg Min W((f(Xi))1<i<n, Ifll%)
fEH,b

where V is a function nondecreasing in its last variable.
Then the solution f* € H is a linear combination of the k(X;,.)’s,

f(x) = ak(X;,x).
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Kernels and regularity

» Suppose Kk is a reproducing kernel for RKHS H ; then we have the
formula, for any f € H:

[f(x) = f(y)I < [Ifll5 distc(x,y),

where disty is the distance on X" implicitly defined by the kernel.

» Hence the RKHS norm represents a bound on the Lipschitz
constant of tbe function relative to the distance defined by the
kernel (this is kind of auto-referential, but still interesting!).

» Note also that if the kernel is bounded, the norm of functions in H
is an upper bound on their supremum norm.
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When is a function a kernel?

» Of course the standard dot product k(x,z) = x - z is a kernel.

» Some basic kernel transformations: if kq, ko are kernels and f is a
real function on X', and a a positive numer, then the following are

kernels:
- k(x,2) = ki(x,2) + ko(x,2)
* k(x,z) = aki(x,z)
e k(x,z) = ky(x,2)ka(x,2)
e k(x,z) =f(x)f(z)
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Applications

» The “normalization” of kernel is a kernel:

/ B K(x,y)
)= A ookG )

Note that it corresponds to the transformed feature mapping

Hy) — ®(x)
X ¥0) = g0, -
» A polynomial function with nonnegative coefficients of a kernel is a
kernel.
» A convergent series with nonnegative coefficients of a kernel is a
kernel.

» The Gaussian kernel is a kernel:

2
X —
ka(xay) = exp <_H20.¥”> ’
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Kernel distances and conditionally positive definite
(CPD) kernels

» Many Euclidean learning methods are actually invariant by
translation of the datapoints. Hence, they only depend on the
distances between the points.

» Let k be a positive type kernel and d the associated distance, i.e.

d?(x,y) = k(x,x) + Kk(y,y) — 2k(x,y).
Then d? is a conditionally negative function, i.e.
V(Xi), ()\), with Zi >\i =0 : Zi,j )\i)\jd(Xi,Xj) < 0.

» Conversely, any d? satisfying the above condition is a squared
distance corresponding to a positive type kernel. To see this, pick
any “origin” xg € X and use the formula to compute dot product
from square distances:

ko(X,y) = —% (dz(x,y) —d?(x,xg) — dz(y,xo)) .
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Properties of cpd functions

Theorem

Iff : X2 — R7T is a conditionally negative function taking nonnegative
(") values, then so are f*, o € [0, 1], and log(1 +f).

An interesting consequence is that for any Euclidean norm ||x|| , the
function d2(x,y) = ||x — y||”, for 8 € [0, 2] is conditionally negative
definite.

One striking aspect of »-SVM based on this family of distances is that
it is invariant by translation and scale change in the input space.
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When is a kernel useful?

» Kernels seem to be a wonderful general tool. . . Are all kernels
potentially useful?

» Example of a useless kernel: k(x,x) =1 and k(x,y) =0ifx #y.

» In general, one should try to embed some kind of prior knowledge
in the kernel used.

» Remember a kernel is implicitly a Euclidean strtucture: the
underlying “distance” should somehow reflect what we think is
important to compare examples.
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Separable RKHSs

» A separable Hilbert space has by definition a countable dense
subset, or, equivalently, a countable Hilbert basis (¢1, ¢z, ...).

» If a RKHS is separable, then the kernel can be but under the form

k(x y)—Z¢. )3i(y)

for any Hilbert basis of H .

» If the kernel is bounded, the sum converges uniformly in x for any
fixedy .

» Conversely, any function f(x,y) of the above form is a reproducing
kernel.



Example: translation invariant kernels on a compact
interval

» Consider a kernel of the following form, for x,y € [0, 1] :

k(x,y) =ko(x —y)

» Assume kg : [-1,1] — R is the sum of its Fourier series
ko(t) = ancos(nt),
n=0

with 3, |ax| < oo ensuring absolute convergence.
» Then the kernel k can be expanded as

k(x —y) =ap+ Y _agsin(nx)sin(ny) + > _ancos(nx) cos(ny).
n>1 n>1

» Hence k is a reproducing kernel iff a; > 0 for all i .



A criterion for separable RKHS

Theorem

Let k be a positive type symmetric kernel.
If k is continuous, then the “feature mapping”

XxeX—k(x,.)eH

is continuous.

If additionally X is a separable space X', then the associated RKHS is
a separable Hilbert of continuous functions.

Furthermore, for any Hilbert basis (¢;), the representation

k(x,y) = 6i(x)s;(y)
i
converges uniformly in (x,y) on any compact.



Kernels, smoothness and differential operators

» Consider the Hilbert space of real functions f on [0, 1], with
f(0) = 0, a.e. derivable, with the scalar product

1
t.9) = [ 1009 (x)ox
0
» This space is a RKHS with kernel k(x,y) = min(x,y).

» This can be extended to more general differential operators D,
then the kernel is the Green function for operator D*D .



Kernels and integral operators

» For v a distribution on X', assume that [ k(x,x)dv(x) < co. An
important operator is the kernel integral operator

Ly : f e L2(v) — ka(x)/k(x,y)f(y)dy(y).

» This operator is Hilbert-Schmidt and can be written as TT *, where
T is the inclusion operator from H to L?(v).

» If X is compact, L?(v) is a separable Hilbert and there exists a
diagonalizing basis (¢, ;) for the operator Ly .

» If additionally k is continuous, and v has full support, v/Aj7; , forms
an orthogonal basis of H .

» The unit ball of H can be seen as a compact (in fact
Hilbert-Schmidt) ellipsoid in L?(v).



An interesting extension of a previous result is the case of
translation-invariant kernels on R9:

K(X,y) =ko(X —y).

Theorem (Bochner’s theorem (more or less))

If kg is (Lebesgue) integrable and its Fourier transform Eo is real
nonnegative and integrable, k is a reproducing kernel and the
associated RKHS consists in continuous, integrable functions f
satisfying
~ 2
1 g [fw)
(2m)9 Jra ko(u)

with the inner product

1 f(u)g*(u)
-9)n = zmya /Rd ko(u) -

du < oo,
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