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Lecture 7: Kernel methods.

1 / 18



Euclidean structure methods

I We have already seen a couple of methods depending only either
on a notion of distance between training (and test) inputs, or of a
scalar product between said points.

I One common method to make for example linear separators more
flexible is to add more coordinates to the input observations, or
more generally to map them explicitly into some
higher-dimensional Euclidean “feature space”:
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I In many common cases, for all purposes it is actually sufficient to
be able to compute dot products 〈Φ(X ),Φ(X ′)〉 of input points
mapped in feature space.

I This begs the natural question: when is a real function

k : (x , x ′) ∈ X × X 7→ k(x , x ′) ∈ R

the dot product for some mapping x 7→ Φ(x) into some Euclidean
feature space E?

I For example
k(x , x ′) = (x · x ′ + c)2

is the “kernel” for the mapping

x 7→ Φ(x) =
[
(xixj)i,j , (

√
2cxi)i , c

]
.
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Fundamental characterization theorem

Theorem

Given a set X and a function k : X × X 7→ R , there exists a Hilbert
space H and a mapping ΦX → H such that k(x , x ′) = Φ(X ) · Φ(X ′)
if and only if
the function k is of positive type, i.e. for any integer n > 0 , for any
n-uple (x1, . . . , xn) ∈ X n , and (α1, . . . , αn) ∈ Rn ,∑

i,j

αiαjk(xi , xj) ≥ 0 .
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Further properties of reproducing kernel Hilbert
spaces (RKHS)

I A RKHS is a Hilbert space of real functions on a space X .
I The kernel function k : X 2 7→ R is such that for all x ∈ X , the

function k(x , .) belongs to H . Furthermore,

∀x , y ∈ H2 〈k(x , .), k(y , .)〉 = k(x , y) .

I The above implies the general “reproducing” property:

∀f ∈ H , x ∈ X , 〈f , k(x , .)〉 = f (x) .

I The above implies that the evaluation functional in a point x ∈ X :

f ∈ H 7→ f (x) ∈ R

is a continuous function H → R for all x .
I Conversely, any Hilbert space of functions on X satisfying this last

property is a RKHS and the two first properties characterize its
kernel.
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The representer theorem revisited

The representer theorem can be rewritten for RKHS spaces under an
interesting form:

Theorem

Let H be a reproducing kernel Hilbert space. Consider an optimization
problem of the form

Arg Min
f∈H,b

Ψ((f (Xi))1≤i≤n, ‖f‖H) ,

where Ψ is a function nondecreasing in its last variable.
Then the solution f ∗ ∈ H is a linear combination of the k(Xi , .)’s,

f (x) =
∑

i

aik(Xi , x) .
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Kernels and regularity

I Suppose k is a reproducing kernel for RKHS H ; then we have the
formula, for any f ∈ H:

|f (x)− f (y)| ≤ ‖f‖H distk (x , y) ,

where distk is the distance on X implicitly defined by the kernel.

I Hence the RKHS norm represents a bound on the Lipschitz
constant of tbe function relative to the distance defined by the
kernel (this is kind of auto-referential, but still interesting!).

I Note also that if the kernel is bounded, the norm of functions in H
is an upper bound on their supremum norm.
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When is a function a kernel?

I Of course the standard dot product k(x , z) = x · z is a kernel.
I Some basic kernel transformations: if k1, k2 are kernels and f is a

real function on X , and a a positive numer, then the following are
kernels:

• k(x , z) = k1(x , z) + k2(x , z)
• k(x , z) = ak1(x , z)
• k(x , z) = k1(x , z)k2(x , z)
• k(x , z) = f (x)f (z)
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Applications

I The “normalization” of kernel is a kernel:

k ′(x , y) =
k(x , y)√

k(x , x)k(y , y)
.

Note that it corresponds to the transformed feature mapping
x 7→ Φ′(x) = Φ(x)

‖Φ(x)‖H
.

I A polynomial function with nonnegative coefficients of a kernel is a
kernel.

I A convergent series with nonnegative coefficients of a kernel is a
kernel.

I The Gaussian kernel is a kernel:

kσ(x , y) = exp

(
−‖x − y‖2

2σ2

)
.
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Kernel distances and conditionally positive definite
(CPD) kernels

I Many Euclidean learning methods are actually invariant by
translation of the datapoints. Hence, they only depend on the
distances between the points.

I Let k be a positive type kernel and d the associated distance, i.e.

d2(x , y) = k(x , x) + k(y , y)− 2k(x , y) .

Then d2 is a conditionally negative function, i.e.

∀(xi), (λ)i with
∑

i λi = 0 :
∑

i,j λiλjd(xi , xj) ≤ 0 .

I Conversely, any d2 satisfying the above condition is a squared
distance corresponding to a positive type kernel. To see this, pick
any “origin” x0 ∈ X and use the formula to compute dot product
from square distances:

k0(x , y) = −1
2

(
d2(x , y)− d2(x , x0)− d2(y , x0)

)
.
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Properties of cpd functions

Theorem

If f : X 2 → R+ is a conditionally negative function taking nonnegative
(!) values, then so are f α , α ∈ [0,1] , and log(1 + f ) .

An interesting consequence is that for any Euclidean norm ‖x‖ , the
function d2(x , y) = ‖x − y‖β , for β ∈ [0,2] is conditionally negative
definite.
One striking aspect of ν-SVM based on this family of distances is that
it is invariant by translation and scale change in the input space.
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When is a kernel useful?

I Kernels seem to be a wonderful general tool. . . Are all kernels
potentially useful?

I Example of a useless kernel: k(x , x) = 1 and k(x , y) = 0 if x 6= y .

I In general, one should try to embed some kind of prior knowledge
in the kernel used.

I Remember a kernel is implicitly a Euclidean strtucture: the
underlying “distance” should somehow reflect what we think is
important to compare examples.
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Separable RKHSs

I A separable Hilbert space has by definition a countable dense
subset, or, equivalently, a countable Hilbert basis (φ1, φ2, . . .) .

I If a RKHS is separable, then the kernel can be but under the form

k(x , y) =
∑
i,j

φi(x)φj(y) ,

for any Hilbert basis of H .

I If the kernel is bounded, the sum converges uniformly in x for any
fixed y .

I Conversely, any function f (x , y) of the above form is a reproducing
kernel.
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Example: translation invariant kernels on a compact
interval

I Consider a kernel of the following form, for x , y ∈ [0,1] :

k(x , y) = k0(x − y)

I Assume k0 : [−1,1] → R is the sum of its Fourier series

k0(t) =
∞∑

n=0

an cos(nt) ,

with
∑

k |ak | <∞ ensuring absolute convergence.

I Then the kernel k can be expanded as

k(x − y) = a0 +
∑
n≥1

an sin(nx) sin(ny) +
∑
n≥1

an cos(nx) cos(ny) .

I Hence k is a reproducing kernel iff ai ≥ 0 for all i .
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A criterion for separable RKHS

Theorem

Let k be a positive type symmetric kernel.
If k is continuous, then the “feature mapping”

x ∈ X 7→ k(x , .) ∈ H

is continuous.
If additionally X is a separable space X , then the associated RKHS is
a separable Hilbert of continuous functions.
Furthermore, for any Hilbert basis (φi) , the representation

k(x , y) =
∑
i,j

φi(x)φj(y)

converges uniformly in (x , y) on any compact.
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Kernels, smoothness and differential operators

I Consider the Hilbert space of real functions f on [0,1] , with
f (0) = 0 , a.e. derivable, with the scalar product

〈f ,g〉 =

∫ 1

0
f ′(x)g′(x)dx .

I This space is a RKHS with kernel k(x , y) = min(x , y) .

I This can be extended to more general differential operators D ,
then the kernel is the Green function for operator D∗D .
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Kernels and integral operators

I For ν a distribution on X , assume that
∫

k(x , x)dν(x) <∞. An
important operator is the kernel integral operator

Lk : f ∈ L2(ν) 7→ Lk f (x)

∫
k(x , y)f (y)dν(y) .

I This operator is Hilbert-Schmidt and can be written as TT ∗ , where
T is the inclusion operator from H to L2(ν) .

I If X is compact, L2(ν) is a separable Hilbert and there exists a
diagonalizing basis (ψi , λi) for the operator Lk .

I If additionally k is continuous, and ν has full support,
√
λiψi , forms

an orthogonal basis of H .

I The unit ball of H can be seen as a compact (in fact
Hilbert-Schmidt) ellipsoid in L2(ν) .
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An interesting extension of a previous result is the case of
translation-invariant kernels on Rd :

k(x , y) = k0(x − y) .

Theorem (Bochner’s theorem (more or less))

If k0 is (Lebesgue) integrable and its Fourier transform k̂0 is real
nonnegative and integrable, k is a reproducing kernel and the
associated RKHS consists in continuous, integrable functions f
satisfying

1
(2π)d

∫
Rd

∣∣∣̂f (u)
∣∣∣2

k̂0(u)
du <∞ ,

with the inner product

〈f ,g〉H =
1

(2π)d

∫
Rd

f̂ (u)ĝ∗(u)

k̂0(u)
du .
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