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Lecture 5: statistical learning theory II: Vapnik-Chervonenkis theory.
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The story so far

I To bound the generalization error of a single function (e.g. based
on a test set error), a variety of methods are available (Binomial
inversion for the 0-1 loss; Chernoff’s method and Chernoff’s,
Bernstein’s, Hoeffding’s inequalities for bounded losses).

I To bound the generalization error of a function f̂ chosen from a
countable pool F , based on the training sample S , we can bound
the generalization error of f̂ provided we have a uniform control
over F of the form: with probability 1− δ,

∀f ∈ F , E(f ) ≤ Ê(f , S) + ε(δ, f , n) .

(We need this because both f̂ and Ê(., S) are random quantities
involving the training set S, hence they are dependent).

I To do this, we proposed to use the union bound (Bonferroni’s
correction) if F is finite, or the union-bound-with-a-prior (“Occam’s
razor”), where the prior can be seen as a repartition of confidence,
or a prior belief about “complexity”.
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There are at least two reasons why the union bound will not be
satisfactory in many cases:

I A lot of interesting function classes are uncountable!

I Even for a countable class, if two (classification) functions f , f ′ are
very “close” to each other, we expect that they will tend to have a
similar behavior on the same training set.

I Hence, if the confidence interval for the first function f is valid for a
sample S, then it is “likely” that it is also the case for the second
function f ′ .

I In the union bound, we always consider the worst case where the
CIs for two distinct functions will fail on different set of samples.
This is probably very overpessimistic.
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A detour via bounded regression

I Assume we want to estimate η(Y |X ) , consider the squared error
function `(f , X , Y ) = (f (X )− Y )2 , and want to pick an estimator in
some fixed class F of bounded by 1 and continuous functions.

I We want to control uniformly the deviation between true and
empirical error

E(`, f )− Ê(`, f , S) = (P − Pn)(`(f , X , Y )) ,

where we introduce the notation P(.) for expectation wrt. the
drawing probability P , and Pn(.) , the empirical expectation.

I Denote G the loss class based on F

G = {(X , Y ) 7→ `(f , X , Y )|f ∈ F} .
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I If d is a distance, introduce the notion of covering number
N (G, d , ε) the smallest cardinality M of a set M = {g1, . . . , gM}
such that the ε-balls Bd(gi , ε) centered on elements of M “cover”
G .

I Let’s apply this with the supremum norm distance, and the union
bound. It comes: with probability at least 1− δ ,

∀f ∈ F

E(`, f )− Ê(`, f ,S) ≤ 2ε +

√
2(logN (G, ‖‖∞ , ε) + log δ−1)

n
.

I (This can be optimized in ε) .

I Unfortunately, this approach cannot be directly applied to
classification functions: why?
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The plan of what is to come

I The goal: for a set of classification functions F , obtain a uniform
CI of the form: with probability 1− δ , we have

∀f ∈ F , E(f ) ≤ Ê(f , S) + ε(δ, n) .

(here we consider the case where ε does not depend on f :
comparable to the “Bonferroni” union bound in the finite case).

I This is equivalent to showing that, with probability 1− δ ,

sup
f∈F

E(f )− Ê(f , S) ≤ ε(δ, n) .

I Step 1: show that the random variable

sup
f∈F

E(f )− Ê(f , S)

“concentrates” around its expectation (i.e. is close to it with high
probability)

I Step 2: upper bound this expectation in some way.
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Concentration and stability

The following theorem is very important:

Theorem (Azuma, McDiarmid)

Let (x1, . . . , xn) 7→ f (x1, . . . , xn) be a measurable function such that

∀1 ≤ i ≤ n ,∀(x1, . . . , xn) and x ′i ,∣∣f (x1, . . . , xi , . . . , xn)− f (x1, . . . , x ′i , . . . , xn)
∣∣ ≤ ci . (1)

Then, if (X1, . . . , Xn) are independent (not necessary i.d.), it holds that

P [f (X1, . . . , Xn)− E [f ] ≥ ε] ≤ exp− 2ε2∑
1≤i≤n c2

i

.

Proof: apply Hoeffding’s inequality conditionally and repeatedly.
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Application to bounded losses

I Consider the functional:

S = ((Xi , Yi)1≤i≤n) 7→ f (S) = sup
f∈F

E(f )− Ê(f , S) .

I It is “B
n -stable” in the sense of the previous theorem.

I Hence, with probability 1− δ over the draw of S, we have

E (̂f )− Ê (̂f , S) ≤ sup
f∈F

E(f )− Ê(f , S)

≤ E
[
sup
f∈F

E(f )− Ê(f , S)

]
+ B

√
2

log δ−1

n
.
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Dealing with the expectation 1: symmetrization

E
[
sup
f∈F

E(f )− Ê(f , S)

]
≤ ESES′E(σi )1≤i≤n

[
sup
f∈F

1
n

n∑
i=1

σi
(
`(f , Xi , Yi)− `(f , X ′

i , Y ′
i )

)]
,

where:

I S′ is a “phantom” sample, draw exactly like S but independently;

I (σi)1≤i≤n is a family of “random signs” (a.k.a. Rademacher
variables), that is, σi = 2Bi − 1 where Bi is Bernoulli

(1
2

)
.
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Dealing with the expectation 2: “Shattering”
coefficients

I We restrict our attention now to the case of 0− 1 loss for
classification.

I Let us look at the expectation over the Rademacher signs only,
everything else being fixed.

I Consider the application

f ∈ F 7→ GS,S′(f ) =
(
1{f (X1) 6= Y1}, . . . ,1{f (X ′

1) 6= Y ′
1}, . . .

)
.

I When (S, S′) is fixed, the supremum operation is actually only
over HF (S, S′) = card

(
GS,S′(F)

)
distinct elements!
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Expectation of the supremum of sub-Gaussian
variables

Lemma

Let Z1, . . . , ZM a family of random variables satisfying for a certain
constant σ > 0 :

E [exp (λZi)] ≤ exp
(

σ2λ2

2

)
for all 1 ≤ i ≤ M .

(the family does not have to be independent not i.d.).
Then

E
[

max
1≤i≤M

Zi

]
≤ σ

√
2 log M .
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Putting everything together, we have proved:

Theorem

Consider the 0-1 classification loss `(f , X , Y ) = 1{f (X ) 6= Y} .
Consider any learning algorithm returning f̂ ∈ F depending on S . With
probability 1− δ over the draw of S , the following holds:

E (̂f )− Ê (̂f ) ≤
ES,S′

[√
2 log HF (S, S′)

]
√

n
+

√
log δ−1

2n
.

Now, what about this log HF (S, S′) quantity?
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The Sauer-Vapnik lemma

Lemma

Assume for the family of classifiers F , there exists d such that, for any
sample S of size d ,

H(Sd) < 2d .

Then for all n > d for all sample S of size n ,

HF (S) ≤
d−1∑
i=0

(
n
i

)

The quantity d − 1 is then called the Vapnik-Chervonenkis dimension
of class F .
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One last effort

We can then upper bound the shattering coefficient by a more
tractable quantitity: if F has VC dimension d , then

(i)∀S , |S| = n , HF (S) ≤ (n + 1)d ;

(ii)∀S , |S| = n ≥ d , HF (S) ≤
(ne

d

)d
;
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The final result

Theorem

Consider the 0-1 classification loss `(f , X , Y ) = 1{f (X ) 6= Y} . Let F
be a set of classifiers of VC dimension d . Consider any learning
algorithm returning f̂ ∈ F depending on S . With probability 1− δ over
the draw of S , the following holds:

E (̂f )− Ê (̂f ) ≤
√

2(d + 1) log(2n)

n
+

√
log δ−1

2n
.
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Examples of VC dimensions

Theorem

The class of indicators of parallelepipeds in Rk has VC dimension 2k .

Theorem

The class of linear separators in Rk has VC dimension k + 1 .

This last theorem allows to upper bounds the VC dimension of
“generalized linear separators” including indicators or spheres,
ellipsoids. . .
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Combining VC theory + Occam’s Razor

I We can consider different algorithms f̂1, . . . , f̂k picking their
classifiers in classes F1, . . . ,Fk of increasing VC-dimensions
d1 < . . . < dk .

I We can apply a principle similar to Occam’s Razor, getting a
uniform bound over these different algorithms via a prior π on
{1, . . . , k} (uniform for example) .

I In this case, with probability 1− δ it holds:

∀1 ≤ i ≤ k ,∀f ∈ Fi ,

E (̂f ) ≤ Ê (̂f ) +

√
2(d + 1) log(2n)

n
+

√
log π(i)−1

2n
+

√
log δ−1

2n
.

I If we pick the model minimizing this bound, this leads to Vapnik’s
“structural risk minimization” (SRM) principle.
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