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The story so far

» To bound the generalization error of a single function (e.g. based
on a test set error), a variety of methods are available (Binomial
inversion for the 0-1 loss; Chernoff’s method and Chernoff’s,
Bernstein’s, Hoeffding’s inequalities for bounded losses).

» To bound the generalization error of a function f chosen from a
countable pool F, based on the training sample S, we can bound
the generalization error of f provided we have a uniform control
over F of the form: with probability 1 — §,

vie F,  E(f)<E&F,S)+¢(5.f,n).
(We need this because both f and 5(., S) are random quantities
involving the training set S, hence they are dependent).

» To do this, we proposed to use the union bound (Bonferroni’s
correction) if F is finite, or the union-bound-with-a-prior (“Occam’s
razor”), where the prior can be seen as a repartition of confidence,
or a prior belief about “complexity”.



There are at least two reasons why the union bound will not be
satisfactory in many cases:

» A lot of interesting function classes are uncountable!

» Even for a countable class, if two (classification) functions f,f’ are
very “close” to each other, we expect that they will tend to have a
similar behavior on the same training set.

» Hence, if the confidence interval for the first function f is valid for a
sample S, then it is “likely” that it is also the case for the second
function f’ .

» In the union bound, we always consider the worst case where the
Cls for two distinct functions will fail on different set of samples.
This is probably very overpessimistic.



A detour via bounded regression

» Assume we want to estimate (Y |X), consider the squared error
function £(f,X,Y) = (f(X) — Y)?, and want to pick an estimator in
some fixed class F of bounded by 1 and continuous functions.

» We want to control uniformly the deviation between true and
empirical error

E(L,F) — E(L,1,S) = (P — Pn)(U(Ff, X,Y)),

where we introduce the notation P(.) for expectation wrt. the
drawing probability P, and Py(.), the empirical expectation.

» Denote G the loss class based on F

G = {(X,Y)— ((f,X,Y)[f € F} .
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» If d is a distance, introduce the notion of covering number
N(G,d, ¢) the smallest cardinality M of a set M = {g1,...,9u}
such that the e-balls B4(g;, €) centered on elements of M “cover”
g.

» Let’s apply this with the supremum norm distance, and the union
bound. It comes: with probability at least 1 —

vf e F

c\ 1
E(0,F) = E(0,f,8) < 2e+ \/2('09/\/(9, HIIo; ,€) + log 1)

» (This can be optimized in ¢).

» Unfortunately, this approach cannot be directly applied to
classification functions: why?
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The plan of what is to come

» The goal: for a set of classification functions F, obtain a uniform
Cl of the form: with probability 1 — §, we have

vieF,  E(Ff)<EF,S)+e(,n).
(here we consider the case where ¢ does not depend on f :
comparable to the “Bonferroni” union bound in the finite case).
» This is equivalent to showing that, with probability 1 — ¢,

~

sup&(f) — E(F,S) <e(d,n).
fer

» Step 1: show that the random variable

~

sup&(f) — E(F,S)
feF

“concentrates” around its expectation (i.e. is close to it with high
probability)
» Step 2: upper bound this expectation in some way.
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Concentration and stability

The following theorem is very important:

Theorem (Azuma, McDiarmid)
Let (X1,...,%n) — f(X1,...,Xn) be @ measurable function such that

V1<i<n,VY(Xq,...,Xn)andx,
F(X2, o Xis ooy Xn) = F(Xa, .., X o xn) <6l (D)

Then, if (X1, ..., Xn) are independent (not necessary i.d.), it holds that

2 2
P[f(X1,...,Xn) —E[f] > ¢] < exp_ﬁ_
1<i<n G

Proof: apply Hoeffding’s inequality conditionally and repeatedly.

Concentration - McDiarmid’s inequality 7117



Application to bounded losses

» Consider the functional:

S = ((Xi, Yi)1<i<n) — f(S) = supE(f) — £(f, S).
feF

» Itis “-stable” in the sense of the previous theorem.

» Hence, with probability 1 — § over the draw of S, we have

E(F) — E(f,S) < sup&(f) — E(F, S)
feF

~ -1
<E supS(f)—E(f,S)] LBy 2990
fer n
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Dealing with the expectation 1: symmetrization

E |sup &(f) —g(f,S)]
feF
n

1
< ESES/E(Ui)lgign [?UE ﬁ Z g (E(f,Xi,Yi) — Z(f,Xi’, Yi/)) R
€ i=1

where:
» S’is a“phantom” sample, draw exactly like S but independently;

» (0i)1<i<n is a family of “random signs” (a.k.a. Rademacher
variables), that is, o; = 2B; — 1 where B; is Bernoulli(3) .
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Dealing with the expectation 2: “Shattering”
coefficients

» We restrict our attention now to the case of 0 — 1 loss for
classification.

» Let us look at the expectation over the Rademacher signs only,
everything else being fixed.

» Consider the application

» When (S, S’) is fixed, the supremum operation is actually only
over Hx(S,S') = card (Gg s/(F)) distinct elements!
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Expectation of the supremum of sub-Gaussian
variables

Lemma

Let Z4,...,Zy afamily of random variables satisfying for a certain
constant o > 0:

a2\?
E [exp (A\Z;)] < exp (T) foralll <i <M.

(the family does not have to be independent not i.d.).

Then
E [ max Zi] <oy2logM.

1<i<M
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Putting everything together, we have proved:

Theorem

Consider the 0-1 classification loss ¢(f, X,Y) = 1{f(X) # Y }.
Consider any learning algorithm returning f € F depending on S. With
probability 1 — § over the draw of S, the following holds:

. Esg [\/2|09 H;(S,S’)} log o1
e(f) —&(f) < NG o

Now, what about this log Hz(S, S’) quantity?
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The Sauer-Vapnik lemma

Lemma

Assume for the family of classifiers F, there exists d such that, for any
sample S of size d ,
H(Sq) < 29.

Then for alln > d for all sample S of size n,

Hx(S) < df (T)

i=0

The quantity d — 1 is then called the Vapnik-Chervonenkis dimension
of class F .
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One last effort

We can then upper bound the shattering coefficient by a more
tractable quantitity: if 7 has VC dimension d , then

(iI)VS,|S| =n,Hx(S) < (n+1)¢;

(iS,|S| =n>d,Hxe(S) < (%e)d ;
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The final result

Theorem

Consider the 0-1 classification loss ¢(f, X,Y) = 1{f(X) # Y }. Let F
be a set of classifiers of VC dimension d . Consider any learning

algorithm returning fer depending on S . With probability 1 — 4 over
the draw of S, the following holds:

£y 8 < \/Z(d + 1{)] log(2n) \/Iogz f]_l -
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Examples of VC dimensions

Theorem
The class of indicators of parallelepipeds in R¥ has VC dimension 2k .

Theorem
The class of linear separators in R¥ has VC dimension k + 1.

This last theorem allows to upper bounds the VC dimension of
“generalized linear separators” including indicators or spheres,
ellipsoids. ..
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Combining VC theory + Occam’s Razor

» We can consider different algorithms ﬂ, e ,fAk picking their
classifiers in classes Fi, ..., Fx of increasing VC-dimensions
dy <...<dg.

» We can apply a principle similar to Occam’s Razor, getting a
uniform bound over these different algorithms via a prior 7 on
{1,...,k} (uniform for example).

» In this case, with probability 1 — ¢ it holds:

vi<i<k,vfeF,

£(f) < £) + \/ 2(d + 1log(2n) | \/Iog;rs)l N \/Iogz =

» If we pick the model minimizing this bound, this leads to Vapnik’s
“structural risk minimization” (SRM) principle.
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