Statistical Machine Learning

UoC Stats 37700, Winter quarter

Lecture 4: classical linear and quadratic discriminants.

Linear separation

- For two classes in \mathbb{R}^{d} : simple idea: separate the classes using a hyperplane

$$
H_{w, b}=\{X: X \cdot w+b \leq 0\} ;
$$

- Simplest extension for several classes: consider a family of linear scores

$$
s_{y}(x)=w_{y} \cdot x-b_{y}
$$

and the rule

$$
f(x)=\underset{y \in \mathcal{Y}}{\operatorname{Arg} \operatorname{Max}} s_{y}(x)
$$

- Then the separation between any two classes is linear.

Classification via linear regression

- Simplest idea for two classes: perform a standard linear regression of Y (coded e.g. in $\{0,1\}$) by X,

$$
\widehat{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

where \mathbf{X} is the $(n, d+1)$ extended data matrix and \mathbf{Y} the $(n, 1)$ vector of training classes;

- For a new point x, the linear regression function predicts $x \cdot \widehat{w}$, and the decision function would be $\mathbb{1}\left\{x \cdot \widehat{w} \geq \frac{1}{2}\right\}$.
- We can extend this idea to K classes by performing regression on each of the class indicator variables $\mathbb{1}\{Y=y\}, y \in \mathcal{Y}$.
- In matrix form: same as above, replacing \mathbf{Y} by the matrix of indicator responses.
- This is equivalent to solving globally the least squares problem:

$$
\min _{\mathbf{W}} \sum_{i=1}^{n}\left\|\bar{Y}_{i}-X_{i} \mathbf{W}\right\|^{2}
$$

where \mathbf{W} is a coefficient matrix and \bar{Y}_{i} is the class indicator vector.

Problems using linear regression

- For multiple classes, a "masking" problem is likely to occur.
- A possible fix is to extend the data vectors with quadratic components.
- Two disadvantages however:
- masking can still occur when there are many classes.
- increasing the degree of the components lead to too many parameters and overfitting.

Separating two Gaussians

- We can adopt a simple parametric "generative" approach and model the classes by simple Gaussians.
- Assume we take a Gaussian generative model for the classes distribution:

$$
p(x \mid Y=i)=\frac{1}{\sqrt{(2 \pi)^{d}\left|\Sigma_{i}\right|}} \exp \left(-\frac{1}{2}\left(x-m_{i}\right)^{T} \Sigma_{i}^{-1}\left(x-m_{i}\right)\right)
$$

- What is the Bayes classifier for this model?
- Remember that if the generating densities for classes 0 and 1 are f_{0}, f_{1} and the marginal probability $p=P(Y=1)$ then the Bayes decision is given by

$$
F(x)=\operatorname{Arg} \operatorname{Max}\left(p f_{1}(x),(1-p) f_{2}(x)\right) .
$$

- Hence, denoting d_{i} the Mahalanobis distance corresponding to Σ_{i},

$$
d_{i}^{2}(x, y)=(x-y)^{T} \Sigma_{i}^{-1}(x-y)
$$

- Then the decision rule is class 1 or 2 depending whether

$$
d_{1}^{2}\left(x, m_{1}\right)-d_{2}^{2}\left(x, m_{2}\right) \leq t\left(p, \Sigma_{1}, \Sigma_{2}\right)
$$

it is a quadratic decision rule (QDA).

- Case $\Sigma_{1}=\Sigma_{2}$: becomes a linear decision rule (LDA).
- We can use a pooled estimate for the two covariance matrices:

$$
\widehat{\Sigma}=\frac{1}{n-2}\left(S_{1}+S_{2}\right)
$$

where $S_{\ell}=\sum_{i: Y_{i}=\ell}\left(X_{i}-\widehat{m}_{\ell}\right)\left(X_{i}-\widehat{m}_{\ell}\right)^{T}$.

- Multiclass: the previous analysis suggests to look at the criterion

$$
\underset{y \in \mathcal{Y}}{\operatorname{Arg} \operatorname{Min}} \delta_{y}(x),
$$

- where

$$
\delta_{y}(x)=\frac{1}{2}\left(x-m_{y}\right)^{T} \Sigma_{y}^{-1}\left(x-m_{y}\right)+t_{y}\left(p_{y}, \Sigma_{y}\right)
$$

in the general QDA case (then the decision regions are intersections of quadratic regions),

- or

$$
\delta_{y}(x)=-x^{T} \Sigma^{-1} m_{y}+t_{y}\left(p_{y}\right)
$$

in the common variance (LDA) case (then the decision regions are intersections of half-planes)

Relation to linear regression

Theorem

In the two-class case the direction of w found by the Gaussian model coincides with the one found by classical linear regression.

- ... but the constants b differ. In practice it is recommended not to trust either but to consider this as a separate parameter to optimize to reduce the empirical classification error.
- Regression using quadratic terms does not give the same result as QDA.

Fisher's linear discriminant

- Yet another approach to the problem: find the projection maximizing the ratio of inter-class to intra-class variance, for two classes:

$$
J(w)=\frac{\left(w \cdot \widehat{m}_{1}-w \cdot \widehat{m}_{2}\right)^{2}}{w^{\top}\left(S_{1}+S_{2}\right) w}
$$

where \widehat{m}_{ℓ} are the empirical class means and $S_{\ell}=\sum_{i: Y_{i}=\ell}\left(X_{i}-\widehat{m}_{\ell}\right)\left(X_{i}-\widehat{m}_{\ell}\right)^{T}$

- Finding $\frac{d J}{d w}=0$ leads to the solution

$$
w=\lambda\left(S_{1}+S_{2}\right)^{-1}\left(\widehat{m}_{1}-\widehat{m}_{2}\right)
$$

(again, the scaling is arbitrary).

- The projection direction coincides with the previous methods; Fisher's criterion only provides the projection direction (again, optimize the constant separately)

Fisher's discriminant in multi-class

- Fisher's criterion can be extended to the multi-class case by maximizing the ratio (Rayleigh coefficient)

$$
J(w)=\frac{w^{\top} M w}{w^{\top} S w}
$$

where $S=\sum_{y} S_{y}$ is the pooled intraclass covariance and $M=\sum_{y}\left(m_{y}-m\right)\left(m_{y}-m\right)^{T}$ is the interclass covariance (covariance of the class centroids).

- (Note that normalization of the matrices is unimportant)
- Leads to the generalized eigenvalue problem

$$
M w=\lambda S w
$$

- Can be iterated to find $|\mathcal{Y}|-1$ dimensions by constraining orthogonality (for the scalar product $\left\langle w, w^{\prime}\right\rangle=w^{\top} S w^{\prime}$) with previously found directions.
- Equivalent to the following: "whiten" the data by applying $S^{-\frac{1}{2}}$; perform PCA on the transformed class centroids; apply $S^{-\frac{1}{2}}$ to the found directions.

Properties of Fisher's canonical projections

- This is a linear dimension reduction method aimed at "separating" the classes (using 1st and 2nd moment information only).
- Invariant by any linear transform of the input space.
- When we take $L=\min (d,|\mathcal{Y}|-1)$ canonical coordinates, this "commutes" with LDA.
- When we take $L<\min (d,|\mathcal{Y}|-1)$ canonical coordinates, this is equivalent to a reduced rank LDA, i.e. where we require the mean of the Gaussians in the model to belong to a space of dimension L (and perform ML fitting).
- It can also be seen as a CCA of X wrt. the class indicator function \bar{Y}.

Regularized linear and quadratic discriminant

- When the dimension d is too large, overfitting and instability can occur.
- Looking back at standard linear regression, a possible is ridge regression finding

$$
\widehat{\beta}_{\lambda}=\underset{\beta}{\operatorname{Arg} \operatorname{Min}}\left(\sum_{i=1}^{N}\left(Y_{i}-\beta_{0}-\sum_{j=1}^{d} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{i=1}^{p} \beta_{j}^{2}\right) ;
$$

- The solution is given by

$$
\widehat{\beta}_{1 \leq i \leq d}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

"regularization by shrinkage".

- By a (weak) analogy with ridge regression we can consider the following regularized version for the covariance estimation in LDA:

$$
\widehat{\Sigma}_{\gamma}=\gamma \widehat{\Sigma}+(1-\gamma) \widehat{\sigma}^{2} \mathbf{I}
$$

another possibility is

$$
\widehat{\Sigma}_{\gamma}=\gamma \widehat{\Sigma}+(1-\gamma) \mathbf{D},
$$

where \mathbf{D} is the diagonal matrix formed with entries $\widehat{\sigma}_{i}{ }^{2}$.

- We can also regularize QDA using the following scheme for the estimator of the covariance matrix for class k :

$$
\widehat{\Sigma}_{k}(\alpha)=\alpha \widehat{\Sigma}_{k}+(1-\alpha) \widehat{\Sigma}
$$

- ... we can even combine the two.
- In practice, as usual it is recommended to use cross-validation to tune the parameters.

Linear Logistic regression

- Recall that in the 2-class case logistic regression aims at finding the log-odds ratio function

$$
\log \frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}=\log \frac{\eta(x)}{1-\eta(x)}
$$

- In the multiclass case, this can be generalized to log-odds ratio wrt. some (arbitrary) reference class:

$$
s_{i}(x)=\log \frac{P(Y=i \mid X=x)}{P(Y=0 \mid X=x)}
$$

again the resulting (plug-in) classifier outputs the max of the "score functions".

- If we model scores by linear functions, we get again a linear classifier.
- The model

$$
s_{i}(x)=\beta_{i 0}+\beta_{i} \cdot x
$$

gives rise to the conditional class probabilities

$$
P(Y=i \mid X=x)=\frac{\exp \left(\beta_{i 0}+\beta_{i} \cdot x\right)}{1+\sum_{\ell=1}^{K-1} \exp \left(\beta_{\ell 0}+\beta_{\ell} \cdot x\right)}
$$

we can fit this using Maximum Likelihood.

Algorithm for linear logistic regression

- We consider the 2 -class case $(\mathcal{Y}=\{0,1\})$.
- The log-likelihood function is

$$
\ell(\beta)=\sum_{i=1}^{n}\left(Y_{i} \beta \cdot X_{i}-\log \left(1+\exp \left(\beta \cdot X_{i}\right)\right)\right)
$$

(where the data points X_{i} are augmented with a contant coordinate) and

$$
\frac{d \ell}{d \beta}=\sum_{i=1}^{n} X_{i}\left(Y_{i}-\eta\left(X_{i}, \beta\right)\right) \quad(=0)
$$

we can solve this using a Newton-Raphson algorithm with step

$$
\widehat{\beta}^{\text {new }}=\widehat{\beta}^{\text {old }}-\left(\frac{d^{2} \ell}{d \beta d \beta^{T}}\right)^{-1} \frac{d \ell}{d \beta}
$$

- We have

$$
\left(\frac{d^{2} \ell}{d \beta d \beta^{T}}\right)=-\sum_{i=1}^{n} X_{i} X_{i}^{T} \eta\left(X_{i}, \beta\right)\left(1-\eta\left(X_{i}, \beta\right)\right)
$$

- If we denote \mathbf{W} the diagonal matrix of weights $\eta\left(X_{i}, \beta\right)\left(1-\eta\left(X_{i}, \beta\right)\right)$, we can rewrite the NR step in matrix form as

$$
\widehat{\beta}^{\text {new }}=\left(\mathbf{X}^{T} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{W} \mathbf{Z}
$$

where

$$
\mathbf{Z}=\mathbf{X} \widehat{\beta}^{\text {old }}+\mathbf{W}^{-1}(\mathbf{Y}-\bar{\eta})
$$

- This can be seen as an iterated modified least squares fitting.

LDA vs. logistic regression

- LDA and logistic regression both fit a linear model to the log-odds ratio.
- They do not result in the same output however. Why?
- The answer is that logistic regression only fits the conditional densities $P(Y=i \mid X)$ and remains "agnostic" as to the distribution of covariate X. LDA on the other hand implicitly fits a distribution for the joint distribution $P(Y \mid X)$ (mixture of Gaussians).
- In practice, logistic regression is therefore considered more adaptive, but also less robust.

The linear perceptron

- Assume that the "point clouds" for two the classes in the training set turn out to be perfectly separable by some hyperplane.
- Then LDA will not necessarily return a hyperplane having zero training error.
- On the other hand, logistic regression will return infinite parameters (why?)
- Other approach: consider minimizing a criterion based on the distance of misclassified examples to the hyperplane:

$$
D(w, b)=-\sum_{i: Y_{i}\left(X_{i} w+b\right)<0} Y_{i}\left(X_{i} \cdot w+b\right) .
$$

(here we assume $Y_{i} \in\{-1,1\}$!). (Note that actually the average distance to the hyperplane would be $\|w\|^{-1} D(w, b)$.)

- Principle of perceptron training (more or less): minimize the above by a kind of stochastic gradient descent.

Convergence of perceptron training

- Very simple iterative rule: first, put $R=\max _{i}\left\|X_{i}\right\|$.
- If all points are correctly classified, stop.
- If there are misclassified points, choose such a point $\left(X_{i}, Y_{i}\right)$ arbitrarily.
- Put

$$
\left[\begin{array}{l}
w^{\text {new }} \\
b^{\text {new }}
\end{array}\right]=\left[\begin{array}{l}
w^{\text {old }} \\
b^{\text {old }}
\end{array}\right]+\left[\begin{array}{c}
Y_{i} X_{i} \\
Y_{i} R^{2}
\end{array}\right] .
$$

- Repeat.

Theorem

If there exists $\left(w^{*}, b^{*}\right)$ a separating hyperplane, such that for all i

$$
Y_{i}\left(w^{*} \cdot X_{i}+b^{*}\right) \geq \gamma
$$

then above algorithm will eventually find a separating hyperplane in a finite number of steps bounded by $\left(\frac{2 R}{\gamma}\right)^{2}$.

Some problems with the perceptron algorithm:

- The number of steps required to converge can be large!
- If the classes are not separable, there is no guarantee of convergence. In fact, cycles can occur.
- There is no regularization and so no protection against overfitting (the number of steps can be used as regularization though)

The "naive Bayes" classifier

- Assume that X is a vector of binary features (possibly in very high dimension, $X \in\{0,1\}^{d}$.
- We don't want to model very complicated dependencies. Naive assumption: given Y, the coordinates of X are independent!
- Can be seen as an elementary graphical model:

- Assume we know the probability distribution of each coordinate (a Bernoulli variable) given $Y, p_{k,-1}=P\left(X^{(k)}=1 \mid Y=-1\right)$; $p_{i, 1}=P\left(X^{(k)}=1 \mid Y=1\right)$.
- In this case the Bayes classifier is given by the sign of

$$
\log \frac{P(Y=1 \mid X)}{P(Y=-1 \mid X)}=\sum_{k} X^{(k)} \alpha_{k}+a
$$

where
$\alpha_{k}=\log \frac{p_{k, 1}\left(1-p_{k,-1}\right)}{\left(1-p_{k, 1}\right) p_{k,-1}} ; \quad a=\sum_{k} \log \frac{1-p_{k, 1}}{1-p_{k,-1}}+\log \frac{P(Y=1)}{P(Y=-1)} ;$

- In practice: like for LDA, it is recommended to optimize the constant a separately (to minimize the training error).

Naive Bayes classifier generalized

- We can generalize this idea to continuous-valued coordinates with the same conditional independence hypothesis.
- We estimate the conditional density of each coordinate (e.g. with a Gaussian)
- The decision function becomes an additive model:

$$
\widehat{f}(x)=\operatorname{sign}\left(\sum_{k} \widehat{f}^{(k)}\left(x^{(k)}\right)\right)
$$

- Advantage of naive Bayes: robust also in high dimension, simple and surprisingly good in a number of situations even when the assumption obviously does not hold.
- Disadvantage: generally does not match the performance of more flexible methods.

