
Statistical Machine Learning

UoC Stats 37700, Winter quarter

Lecture 4: classical linear and quadratic discriminants.
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Linear separation

I For two classes in Rd : simple idea: separate the classes using a
hyperplane

Hw ,b = {X : X · w + b ≤ 0} ;

I Simplest extension for several classes: consider a family of linear
scores

sy (x) = wy · x − by

and the rule
f (x) = Arg Max

y∈Y
sy (x) .

I Then the separation between any two classes is linear.
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Classification via linear regression

I Simplest idea for two classes: perform a standard linear
regression of Y (coded e.g. in {0, 1}) by X ,

ŵ = (XT X)−1XT Y

where X is the (n, d + 1) extended data matrix and Y the (n, 1)
vector of training classes;

I For a new point x , the linear regression function predicts x · ŵ ,
and the decision function would be 1{x · ŵ ≥ 1

2} .
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I We can extend this idea to K classes by performing regression on
each of the class indicator variables 1{Y = y} , y ∈ Y .

I In matrix form: same as above, replacing Y by the matrix of
indicator responses.

I This is equivalent to solving globally the least squares problem:

min
W

n∑
i=1

∥∥Y i − XiW
∥∥2

,

where W is a coefficient matrix and Y i is the class indicator vector.
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Problems using linear regression

I For multiple classes, a “masking” problem is likely to occur.

I A possible fix is to extend the data vectors with quadratic
components.

I Two disadvantages however:
• masking can still occur when there are many classes.
• increasing the degree of the components lead to too many

parameters and overfitting.
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Separating two Gaussians

I We can adopt a simple parametric “generative” approach and
model the classes by simple Gaussians.

I Assume we take a Gaussian generative model for the classes
distribution:

p(x |Y = i) =
1√

(2π)d |Σi |
exp

(
−1

2
(x − mi)

T Σ−1
i (x − mi)

)

I What is the Bayes classifier for this model?

I Remember that if the generating densities for classes 0 and 1 are
f0, f1 and the marginal probability p = P(Y = 1) then the Bayes
decision is given by

F (x) = Arg Max(pf1(x), (1 − p)f2(x)) .
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I Hence, denoting di the Mahalanobis distance corresponding to Σi ,

d2
i (x , y) = (x − y)T Σ−1

i (x − y) ,

I Then the decision rule is class 1 or 2 depending whether

d2
1 (x , m1) − d2

2 (x , m2) ≤ t(p,Σ1,Σ2) ;

it is a quadratic decision rule (QDA) .

I Case Σ1 = Σ2 : becomes a linear decision rule (LDA) .

I We can use a pooled estimate for the two covariance matrices:

Σ̂ =
1

n − 2
(S1 + S2) ,

where S` =
∑

i:Yi=`(Xi − m̂`)(Xi − m̂`)
T .
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I Multiclass: the previous analysis suggests to look at the criterion

Arg Min
y∈Y

δy (x) ,

I where

δy (x) =
1
2
(x − my )T Σ−1

y (x − my ) + ty (py ,Σy ) ,

in the general QDA case (then the decision regions are
intersections of quadratic regions),

I or
δy (x) = −xT Σ−1my + ty (py ) ,

in the common variance (LDA) case (then the decision regions are
intersections of half-planes)

Gaussian case – LDA and QDA 8 / 25



Relation to linear regression

Theorem

In the two-class case the direction of w found by the Gaussian model
coincides with the one found by classical linear regression.

I . . . but the constants b differ. In practice it is recommended not to
trust either but to consider this as a separate parameter to
optimize to reduce the empirical classification error.

I Regression using quadratic terms does not give the same result
as QDA.
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Fisher’s linear discriminant

I Yet another approach to the problem: find the projection
maximizing the ratio of inter-class to intra-class variance, for two
classes:

J(w) =
(w · m̂1 − w · m̂2)

2

wT (S1 + S2)w
,

where m̂` are the empirical class means and
S` =

∑
i:Yi=`(Xi − m̂`)(Xi − m̂`)

T

I Finding dJ
dw = 0 leads to the solution

w = λ(S1 + S2)
−1(m̂1 − m̂2)

(again, the scaling is arbitrary).

I The projection direction coincides with the previous methods;
Fisher’s criterion only provides the projection direction (again,
optimize the constant separately)
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Fisher’s discriminant in multi-class

I Fisher’s criterion can be extended to the multi-class case by
maximizing the ratio (Rayleigh coefficient)

J(w) =
wT Mw
wT Sw

where S =
∑

y Sy is the pooled intraclass covariance and
M =

∑
y (my − m)(my − m)T is the interclass covariance

(covariance of the class centroids).
I (Note that normalization of the matrices is unimportant)
I Leads to the generalized eigenvalue problem

Mw = λSw

I Can be iterated to find |Y| − 1 dimensions by constraining orthogonality
(for the scalar product 〈w , w ′〉 = wT Sw ′) with previously found
directions.

I Equivalent to the following: “whiten” the data by applying S− 1
2 ; perform

PCA on the transformed class centroids; apply S− 1
2 to the found

directions.
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Properties of Fisher’s canonical projections

I This is a linear dimension reduction method aimed at “separating”
the classes (using 1st and 2nd moment information only).

I Invariant by any linear transform of the input space.

I When we take L = min(d , |Y| − 1) canonical coordinates, this
“commutes” with LDA.

I When we take L < min(d , |Y| − 1) canonical coordinates, this is
equivalent to a reduced rank LDA, i.e. where we require the mean
of the Gaussians in the model to belong to a space of dimension L
(and perform ML fitting).

I It can also be seen as a CCA of X wrt. the class indicator function
Y .
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Regularized linear and quadratic discriminant

I When the dimension d is too large, overfitting and instability can
occur.

I Looking back at standard linear regression, a possible is ridge
regression finding

β̂λ = Arg Min
β

 N∑
i=1

Yi − β0 −
d∑

j=1

xijβj

2

+ λ

p∑
i=1

β2
j

 ;

I The solution is given by

β̂1≤i≤d = (XT X + λI)−1XT Y

“regularization by shrinkage”.
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I By a (weak) analogy with ridge regression we can consider the
following regularized version for the covariance estimation in LDA:

Σ̂γ = γΣ̂ + (1 − γ)σ̂2I

another possibility is

Σ̂γ = γΣ̂ + (1 − γ)D ,

where D is the diagonal matrix formed with entries σ̂i
2 .

I We can also regularize QDA using the following scheme for the
estimator of the covariance matrix for class k :

Σ̂k (α) = αΣ̂k + (1 − α)Σ̂

I . . . we can even combine the two.

I In practice, as usual it is recommended to use cross-validation to
tune the parameters.
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Linear Logistic regression

I Recall that in the 2-class case logistic regression aims at finding
the log-odds ratio function

log
P(Y = 1|X = x)

P(Y = 0|X = x)
= log

η(x)

1 − η(x)
;

I In the multiclass case, this can be generalized to log-odds ratio
wrt. some (arbitrary) reference class:

si(x) = log
P(Y = i |X = x)

P(Y = 0|X = x)
;

again the resulting (plug-in) classifier outputs the max of the
“score functions” .

I If we model scores by linear functions, we get again a linear
classifier.
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I The model
si(x) = βi0 + βi · x

gives rise to the conditional class probabilities

P(Y = i |X = x) =
exp (βi0 + βi · x)

1 +
∑K−1

`=1 exp (β`0 + β` · x)
,

we can fit this using Maximum Likelihood.
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Algorithm for linear logistic regression

I We consider the 2-class case (Y = {0, 1}) .
I The log-likelihood function is

`(β) =
n∑

i=1

(Yiβ · Xi − log(1 + exp(β · Xi))) ;

(where the data points Xi are augmented with a contant
coordinate) and

d`

dβ
=

n∑
i=1

Xi (Yi − η(Xi , β)) ( = 0 ) ;

we can solve this using a Newton-Raphson algorithm with step

β̂new = β̂old −
(

d2`

dβdβT

)−1
d`

dβ
.
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I We have (
d2`

dβdβT

)
= −

n∑
i=1

XiX
T
i η(Xi , β)(1 − η(Xi , β)) ;

I If we denote W the diagonal matrix of weights
η(Xi , β)(1− η(Xi , β)) , we can rewrite the NR step in matrix form as

β̂new = (XT WX)−1XT WZ ,

where
Z = Xβ̂old + W−1(Y − η) .

I This can be seen as an iterated modified least squares fitting.
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LDA vs. logistic regression

I LDA and logistic regression both fit a linear model to the log-odds
ratio.

I They do not result in the same output however. Why?

I The answer is that logistic regression only fits the conditional
densities P(Y = i |X ) and remains “agnostic” as to the distribution
of covariate X . LDA on the other hand implicitly fits a distribution
for the joint distribution P(Y |X ) (mixture of Gaussians).

I In practice, logistic regression is therefore considered more
adaptive, but also less robust.
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The linear perceptron

I Assume that the “point clouds” for two the classes in the training
set turn out to be perfectly separable by some hyperplane.

I Then LDA will not necessarily return a hyperplane having zero
training error.

I On the other hand, logistic regression will return infinite
parameters (why?)

I Other approach: consider minimizing a criterion based on the
distance of misclassified examples to the hyperplane:

D(w , b) = −
∑

i:Yi (Xi ·w+b)<0

Yi (Xi · w + b) .

(here we assume Yi ∈ {−1, 1}!). (Note that actually the average
distance to the hyperplane would be ‖w‖−1 D(w , b) .)

I Principle of perceptron training (more or less): minimize the above
by a kind of stochastic gradient descent.
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Convergence of perceptron training

I Very simple iterative rule: first, put R = maxi ‖Xi‖ .
• If all points are correctly classified, stop.
• If there are misclassified points, choose such a point (Xi , Yi)

arbitrarily.
• Put [

wnew

bnew

]
=

[
wold

bold

]
+

[
YiXi

YiR2

]
.

• Repeat.

Theorem

If there exists (w∗, b∗) a separating hyperplane, such that for all i

Yi (w
∗ · Xi + b∗) ≥ γ ,

then above algorithm will eventually find a separating hyperplane in a

finite number of steps bounded by
(

2R
γ

)2

.
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Some problems with the perceptron algorithm:

I The number of steps required to converge can be large!

I If the classes are not separable, there is no guarantee of
convergence. In fact, cycles can occur.

I There is no regularization and so no protection against overfitting
(the number of steps can be used as regularization though)
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The “naive Bayes” classifier

I Assume that X is a vector of binary features (possibly in very high
dimension, X ∈ {0, 1}d .

I We don’t want to model very complicated dependencies. Naive
assumption: given Y , the coordinates of X are independent!

I Can be seen as an elementary graphical model:

X.   .   .

Y

X(1) X(2) (d)
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I Assume we know the probability distribution of each coordinate (a
Bernoulli variable) given Y , pk ,−1 = P(X (k) = 1|Y = −1) ;
pi,1 = P(X (k) = 1|Y = 1) .

I In this case the Bayes classifier is given by the sign of

log
P(Y = 1|X )

P(Y = −1|X )
=
∑

k

X (k)αk + a

where

αk = log
pk ,1(1 − pk ,−1)

(1 − pk ,1)pk ,−1
; a =

∑
k

log
1 − pk ,1

1 − pk ,−1
+ log

P(Y = 1)

P(Y = −1)
;

I In practice: like for LDA, it is recommended to optimize the
constant a separately (to minimize the training error).
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Naive Bayes classifier generalized

I We can generalize this idea to continuous-valued coordinates with
the same conditional independence hypothesis.

I We estimate the conditional density of each coordinate (e.g. with
a Gaussian)

I The decision function becomes an additive model:

f̂ (x) = sign

(∑
k

f̂ (k)(x (k))

)

I Advantage of naive Bayes: robust also in high dimension, simple
and surprisingly good in a number of situations even when the
assumption obviously does not hold.

I Disadvantage: generally does not match the performance of more
flexible methods.
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