Statistical Machine Learning

UoC Stats 37700, Winter quarter

Lecture 4: classical linear and quadratic discriminants.



Linear separation

» For two classes in RY: simple idea: separate the classes using a
hyperplane
Hyp ={X: X -w+b <0},

» Simplest extension for several classes: consider a family of linear
scores
Sy(x) = wy - X — by

and the rule
f(x) = Arg Maxsy(X).
yey

» Then the separation between any two classes is linear.
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Classification via linear regression

» Simplest idea for two classes: perform a standard linear
regression of Y (coded e.g. in {0,1}) by X,
w=(XTX)"IXTy

where X is the (n,d + 1) extended data matrix and Y the (n,1)
vector of training classes;

» For a new point x , the linear regression function predicts x - W,
and the decision function would be 1{x -w > 1}.
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» We can extend this idea to K classes by performing regression on
each of the class indicator variables 1{Y =y}.,y € .

» In matrix form: same as above, replacing Y by the matrix of
indicator responses.

» This is equivalent to solving globally the least squares problem:

n
i Vi - xw*
i=1

where W is a coefficient matrix and Y; is the class indicator vector.
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Problems using linear regression

» For multiple classes, a “masking” problem is likely to occur.
» A possible fix is to extend the data vectors with quadratic
components.
» Two disadvantages however:
» masking can still occur when there are many classes.

« increasing the degree of the components lead to too many
parameters and overfitting.
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Separating two Gaussians

» We can adopt a simple parametric “generative” approach and
model the classes by simple Gaussians.

» Assume we take a Gaussian generative model for the classes
distribution:

. 1 1 _
p(x|Y =i) = Wexp (—Z(X —m) T (x - mi)>

» What is the Bayes classifier for this model?

» Remember that if the generating densities for classes 0 and 1 are
fo, f1 and the marginal probability p = P(Y = 1) then the Bayes
decision is given by

F(x) = Arg Max(pfy(x), (1 — p)f2(x)) -
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» Hence, denoting d; the Mahalanobis distance corresponding to ¥ ,
d?(x,y) = (x =y) 5 (x —y),
» Then the decision rule is class 1 or 2 depending whether
df(x,my) — d3(x,mz) <t(p, X1, %2);

it is a quadratic decision rule (QDA).
» Case ¥; = ¥, : becomes a linear decision rule (LDA) .
» We can use a pooled estimate for the two covariance matrices:

o 1
Z—E(S:L“‘Sz),

where Sy = >y (X — Mg)(X; —my)T
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» Multiclass: the previous analysis suggests to look at the criterion

Arg Min 6y (x) ,
yey

» where
5y(x) = =(x — my) T (x — t )X
y(X) = 2(X my) Iy (X —my) +ty(py, Xy),

in the general QDA case (then the decision regions are
intersections of quadratic regions),

> or
Jy(x) = —xTZtmy +ty(py),

in the common variance (LDA) case (then the decision regions are
intersections of half-planes)
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Relation to linear regression

Theorem

In the two-class case the direction of w found by the Gaussian model
coincides with the one found by classical linear regression.

» ...but the constants b differ. In practice it is recommended not to
trust either but to consider this as a separate parameter to
optimize to reduce the empirical classification error.

» Regression using quadratic terms does not give the same result
as QDA.
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Fisher’s linear discriminant

» Yet another approach to the problem: find the projection
maximizing the ratio of inter-class to intra-class variance, for two
classes: R _

W-m;—w-m

I(wy = WM 2)

wT(S; + Sy)w

where m, are the empirical class means and
St = Yiy—e(Xi = Mg)(Xi —my)T
» Finding & = 0 leads to the solution

W = \(Sy + S2) " H(my — my)

(again, the scaling is arbitrary).

» The projection direction coincides with the previous methods;
Fisher’s criterion only provides the projection direction (again,
optimize the constant separately)
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Fisher’s discriminant in multi-class

» Fisher’s criterion can be extended to the multi-class case by
maximizing the ratio (Rayleigh coefficient)
~wMw

IJW) = —=——

(W) wTSw

where S =} Sy is the pooled intraclass covariance and
M =3, (my —m)(my — m)T is the interclass covariance
(covariance of the class centroids).

» (Note that normalization of the matrices is unimportant)
» Leads to the generalized eigenvalue problem

Mw = ASw

» Can be iterated to find || — 1 dimensions by constraining orthogonality
(for the scalar product (w,w’) = wT Sw’) with previously found
directions.

» Equivalent to the following: “whiten” the data by applying S-z; perform
PCA on the transformed class centroids; apply S~z to the found
directions.
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Properties of Fisher's canonical projections

» This is a linear dimension reduction method aimed at “separating”
the classes (using 1st and 2nd moment information only).

v

Invariant by any linear transform of the input space.

» When we take L = min(d, |)| — 1) canonical coordinates, this
“‘commutes” with LDA.

» When we take L < min(d, || — 1) canonical coordinates, this is
equivalent to a reduced rank LDA, i.e. where we require the mean
of the Gaussians in the model to belong to a space of dimension L
(and perform ML fitting).

> Itcan also be seen as a CCA of X wrt. the class indicator function
Y.
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Regularized linear and quadratic discriminant

» When the dimension d is too large, overfitting and instability can
occur.

» Looking back at standard linear regression, a possible is ridge
regression finding

2
N d
By = ArgﬁMin > (Yi —Bo — in,ﬂj) +AY B
i=1 j=1 i
» The solution is given by

Brcica = (XTX+A)"XTY

“regularization by shrinkage”.
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» By a (weak) analogy with ridge regression we can consider the
following regularized version for the covariance estimation in LDA:

27 =% + (1 —7)72
another possibility is
T, =95 +(1-9)D,

where D is the diagonal matrix formed with entries ;2.

» We can also regularize QDA using the following scheme for the
estimator of the covariance matrix for class k:

~ o~

Si(a)=aSy +(1—a)L

» ...we can even combine the two.

» In practice, as usual it is recommended to use cross-validation to
tune the parameters.
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Linear Logistic regression

» Recall that in the 2-class case logistic regression aims at finding
the log-odds ratio function
| P(Y =1X =x) n(x)
P(Y =0X =x) 91— y(x)’

» In the multiclass case, this can be generalized to log-odds ratio
wrt. some (arbitrary) reference class:

P(Y =i|X =x)

Six) =log 5y —ox =x)

again the resulting (plug-in) classifier outputs the max of the
“score functions”.

» If we model scores by linear functions, we get again a linear
classifier.
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» The model
si(x) = fio + B - X
gives rise to the conditional class probabilities
exp (Bio + Gi - X)
1+ Y5 exp (B + B x)

we can fit this using Maximum Likelihood.

P(Y =i|X =x) =
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Algorithm for linear logistic regression

» We consider the 2-class case (Y = {0,1}).
» The log-likelihood function is

n

0B) =" (i X —log(1 + exp(53 - X)) ;

i=1
(where the data points X; are augmented with a contant
coordinate) and

d/

R =i§xi (Yi—n(Xi.8)  (=0);

we can solve this using a Newton-Raphson algorithm with step

d2e \ "t de
dﬂdﬂT> dag’
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» We have
d2¢ n T
(W) == > XX (X, B)(L = n(Xi, B));
i=1

» If we denote W the diagonal matrix of weights
n(Xi, 8)(1 —n(X;, 3)), we can rewrite the NR step in matrix form as

Bnew — (XTWX)_]'XTWZ,

where R
Z=Xp% + Wy —7).

» This can be seen as an iterated modified least squares fitting.
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LDA vs. logistic regression

» LDA and logistic regression both fit a linear model to the log-odds
ratio.

» They do not result in the same output however. Why?

» The answer is that logistic regression only fits the conditional
densities P(Y = i|X) and remains “agnostic” as to the distribution
of covariate X . LDA on the other hand implicitly fits a distribution
for the joint distribution P (Y |X) (mixture of Gaussians).

» In practice, logistic regression is therefore considered more
adaptive, but also less robust.
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The linear perceptron

» Assume that the “point clouds” for two the classes in the training
set turn out to be perfectly separable by some hyperplane.

» Then LDA will not necessarily return a hyperplane having zero
training error.

» On the other hand, logistic regression will return infinite
parameters (why?)

» Other approach: consider minimizing a criterion based on the
distance of misclassified examples to the hyperplane:

Dw,b)=—" > Yi(X-w+b).
i2Yi (X w+b)<0
(here we assume Y; € {—1,1}!). (Note that actually the average
distance to the hyperplane would be ||w| ! D(w,b).)
» Principle of perceptron training (more or less): minimize the above
by a kind of stochastic gradient descent.
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Convergence of perceptron training

» Very simple iterative rule: first, put R = max; || Xi|| .
« If all points are correctly classified, stop.
« If there are misclassified points, choose such a point (X;, Y;)

arbitrarily.
o Put
prew | — bold YiRZ .

* Repeat.

Theorem
If there exists (w*, b*) a separating hyperplane, such that for all i

Yi(Ww*-Xi+b*) >,
then above algorithm will eventually find a separating hyperplane in a

- 2R\ ?
finite number of steps bounded by [ — | .
v
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Some problems with the perceptron algorithm:
» The number of steps required to converge can be large!

» If the classes are not separable, there is no guarantee of
convergence. In fact, cycles can occur.

» There is no regularization and so no protection against overfitting
(the number of steps can be used as regularization though)
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The “naive Bayes” classifier

» Assume that X is a vector of binary features (possibly in very high
dimension, X € {0,1}9.

» We don’t want to model very complicated dependencies. Naive
assumption: given Y , the coordinates of X are independent!

» Can be seen as an elementary graphical model:
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» Assume we know the probability distribution of each coordinate (a
Bernoulli variable) given Y, px 1 = P(X*K) = 1Y = -1);
pii=PXK® =1y =1).

» In this case the Bayes classifier is given by the sign of

P(Y = 1|x
where
Pk, (1 — Pk,-1) P(Y =1)
=log ———————= lo +log ———;
M @ P Z g Ypy=—1)’

» In practice: like for LDA, it is recommended to optimize the
constant a separately (to minimize the training error).
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Naive Bayes classifier generalized

» We can generalize this idea to continuous-valued coordinates with
the same conditional independence hypothesis.

» We estimate the conditional density of each coordinate (e.g. with
a Gaussian)

» The decision function becomes an additive model:

~

f(x) = sign (Z?(k)(x(k))>
k

» Advantage of naive Bayes: robust also in high dimension, simple
and surprisingly good in a number of situations even when the
assumption obviously does not hold.

» Disadvantage: generally does not match the performance of more
flexible methods.
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