
Statistical Machine Learning

UoC Stats 37700, Winter quarter

Lecture 3: nearest neighbors and local averaging rules.
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Principle

I Assume there is a “relevant” metric distance d on X .

I General idea: if given a new point X , look at training points falling
in the neighborhood of X .

I The 1-NN rule: predict for X the class of its nearest neighbor in
the training set.

I The k -NN neighbor rule: same as above, but perform a majority
vote among the k nearest neighbors.

I Weighted k -NN rule: same as above, with some weighted majority
vote (weights according to the order of closeness)

I Note : this is a plug-in rule!
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Example.
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A classification problem (two Gaussians)
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Example.
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Result of 1-NN.
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Example.
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Result of 2-NN.
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Example.
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Result of 5-NN.
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Goals for statistical analysis

I Note that unfortunately the NN procedure does not enter in a
straightforward way in the framework of a classifier choice
amound a fixed “set of functions”.

I We will be interested in the behavior of E (̂fk−NN) as the sample
size grows to infinity:

• For k fixed ?
• As k = k(n) varies with the sample size?
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Asymptotics for k fixed: general idea

I We consider the binary clasification case.

I When the sample size is large, the k nearest neighbors X (i)(x) of
x are very close to x .

I Then for the corresponding labels, P(Y (i) = 1|X = X (i)) = η(X (i))
is very close to P(Y = y |X = x) = η(x) .

I If, for a fixed x , the Y (i) where, in fact, drawn according to
P(Y = y |X = x) , then the average error conditional to X = x
would be

E (̂fk−NN(x)|X = x) = η(x)Q(η(x)) + (1− η(x))(1−Q(η(x))) ,

where Q(u) = P
[
Bin(u, k) > b k

2c
]

.
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First Lemma

Lemma

Let X ; X1, X2, . . . be drawn i.i.d. ∼ P. Then

d(X (k)
n (X ), X ) → 0

as n →∞, in probability and a.s. ( X (k) is the k-th NN among
(Xi)1≤i≤n .)
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Second Lemma

Lemma

Let L∗k be the error of the “idealized” k-NN (where labels of neighbors
of x would be drawn following η(x)), then

E
[
E (̂fk )− L∗k

]
≤

k∑
i=1

E
[∣∣∣η(X )− η(X (i)(X ))

∣∣∣] .

Principle: coupling argument.
If we assume X compact and η continuous , this leads to the
conclusion.

Introduction 7 / 17



Consequences of the asymptotics

I For c-classes problem, we can easily compute

L∗1 = 1−
c∑

i=1

E
[
P(Y = c|X )2

]
.

I The asymptotic error L∗k of k -NN is decreasing in k .

I We have the inequality

L∗ ≤ L∗k ≤ L∗ +

√
2L∗1
k

≤ L∗ +

√
1
k

.
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Behavior when L∗ is small

Writing L∗k = E [αk (η(x))] , it is interesting to look at the behavior of
αk (p) as p → 0:

I α1(p) ∼ 2p ;

I α3(p) ∼ p + 4p2 ;

I α5(p) ∼ p + 10p3 . . .

If one assumes that L∗ is “small”, 3-NN is OK in an asymptotic sense
(this is however not clear for a fixed sample size. . . )
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Consistency

I Let f̂ (n) be a sequence of classifiers for increasing sample size n .

I Weak consistency holds when

ESn

[
E (̂f (n))

]
→ L∗

I Strong consistency holds if

E (̂f (n)) → L∗ a.s.

I We have seen that the k -NN rule cannot be consistent (in general)
if k is fixed. What if we allow k to depend on n?

Introduction 10 / 17



Consistency of k -NN

Theorem

Assume k(n) →∞ and k(n)/n → 0 . Then the k(n)-NN rule is weakly
consistent under either of the following conditions:
(i) X is compact and η(x , y) is continuous;
(ii) X = Rd and the distance is the standard euclidean one.

Note that in case (ii) we have (universal consistency), i.e., no
assumptions have to be made at all on the generating distribution
P(X , Y ).
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Decomposition:

E (̂f (n)
k(n))− L∗ ≤ 2E [|η(X )− η̂n(x)|]

(see first lecture)
Put

ηn(x) =
1

k(n)

k(n)∑
i=1

η(X (i)(x))

then

E [|η(X )− η̂n(x)|] ≤ E [|η(X )− ηn(x)|] + E [|ηn(X )− η̂n(x)|]
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Stone’s Lemma

Lemma

Let f be any integrable function on Rd . Then there exists a constant γd

such that
k∑

i=1

E
[∣∣∣f (X (i)(X ))

∣∣∣] ≤ kγdE [|f (X )|] .
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I The universal consistency result, even for non-continuous η, might
be counter-intuitive. . .

I Let’s consider a particularly counter-intuitive example: learning to
classify rational numbers from irrational ones!

I Assume:
P(Y = 1) = P(Y = 0) = 1/2 ;
P(X |Y = 0) = Uniform([0, 1]) (hence a.s. irrational);
P(X |Y = 1) = some discrete distribution on Q

I . . . then the k(n)− NN rule (following the requirements of the
theorem) is consistent! Can we reconcile this with intuition?
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Generalization of the consistency result:

Theorem

Consider a local averaging rule (for regression) of the form

f̂ (x) =
n∑

i=1

Wn,i(x)Yi ,

where (Wn,i) are a family of weights which may depend on the data.
Then the following conditions are sufficient for consistency:
(i) E

[∑n
i=1 Wn,i(X )f (Xi)

]
≤ cE [f (X )] for any nonnegative, integrable

function f ;
(ii) E

[
maxi Wn,i(x)

]
→ 0 as n →∞ ;

(iii) for all a > 0 , E
[∑n

i=1 Wn,i1{‖x − xi‖ ≥ a}
]
→ 0 as n →∞ ;
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Implementation issues for k -NN

I The direct way to find a nearest neighbor takes O(n) operations .

I This can already be too expensive to compute if the training
sample is large.

I Many methods exist either to obtain a faster computation or an
approximate computation.

• “prototype” methods: select a subset of the training set, of construct
a reduced set of “prototypes” that are supposed to sum up the
training set. Then apply k -NN using the prototype set.

• “K-D trees”: partition the data in a tree similar to a decision tree.
Works when the dimension d is not too large.

• In many cases the dimension is abitrary and/or the metric is
non-euclidean. Then one must use only metric properties of the
data.
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Cover trees

I Cover trees are a recent method by Beygelzimmer, Kakade and
Langford (2006) that yields extremely good results.

I A cover tree is a leveled tree structure where nodes where nodes
are labeled by points. Denoting Ci the set of points at level i , the
following properties hold:

• (nesting) Ci ⊂ Ci−1 .
• (cover) Every p ∈ Ci−1 has a parent q ∈ Ci satifying d(p, q) ≤ 2i .
• (separation) Any distinct points q, q′ ∈ Ci satisfy d(q, q′) > 2i

I Cover Trees are a structure taking O(n) space where queries for
the k -nearest neighbors of a new points are in O(log n).
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Side note: when is a distance matrix euclidean of
dimension d?

I Assume we are given the n × n matrix of distances between any
to points of a certain set.

I Can we ensure that these points can be represented in a
d-dimensional eulidean space?

I Note: to construct a cover tree, in general it is not necessary to
compute all the entries in the distance matrix.
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