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Lecture 11: Bayesian approaches, Gaussian processes
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The Bayesian way

I The general Bayes principle is to assume a prior distribution on
some space of parameters θ ∈ Θ that determine the data
generating distribution:

θ ∼ π → Pθ ∈ P → (Z1, . . . , Zn) ∼ P⊗n
θ .

I Given the observed data (Z1, . . . , Zn) , the main object of interest
is the posterior distribution on the parameters:

p(θ|Z1, . . . , Zn) =
p(Z1, . . . , Zn|θ)p(θ)

p(Z1, . . . , Zn)

= π(θ).
n∏

i=1

Pθ [Zi ] .Eθ∼π

[
n∏

i=1

Pθ [Zi ]

]−1
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Latent variables

I Often the parameter θ parametrizes a “latent variable”

V = fθ(Z ) and Z |V ∼ QV

(where Qt is a fixed family ).

I For regression Z = (Z , Y ), the usual model

Yi = fθ(Xi) + εi ,

where εi ∼ N (0, σ2)

I For classification, we can use logistic modelling,

Yi = Bernoulli(sigmoid(fθ(Xi))); sigmoid(x) =
1

1 + exp(−x)
.
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Using a basis of fixed functions

I Consider the regression or classification case where the
parametrization is given by

fθ(x) =
K∑

i=1

θihi(x) ,

where (hi) form a basis of fixed in advance functions.

I Assume the prior over the parameters is given by a N (0, γ2)
distribution.
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Maximum A Posteriori

I A common way to perform Bayesian inference is to find the
maximum of the a posteriori (MAP) distribution.

I For regression, in the previous framework this results in finding

min
θ

1
2σ2

n∑
i=1

(Yi − fθ(Xi))
2 +

1
2γ2 ‖θ‖

2 ,

(where terms independant of θ have been dropped)

I For binary classification,

min
θ

n∑
i=1

log(1 + exp(−Yi fθ(Xi))) +
1

2γ2 ‖θ‖
2 .

I Thus MAP estimation is equivalent to regularized empirical loss
minimization.
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The real Bayes way: predictive distribution

I The MAP is however not really satisfying from a Bayesian
standpoint (for example it is not invariant wrt. reparametrization,
or change of the reference measure).

I The predictive Bayesian framework uses the current information to
determine the amount of uncertainty about a new sample point Z ∗:

p(Z ∗|Z1, . . . , Zn) =

∫
θ
Pθ(Z ∗)p(θ|Z1, . . . , Zn) .

I In the case of classification/regression, the observation X ∗ is
known and we want to infer Y ∗ , so that (generally) the above is
rewritten with everything conditional on the design (X1, . . . , Xn, X ∗)
(in other words there is no modelling of the design).

I The advantage of the predictive distribution is that it gives an idea
of the uncertainty about the prediction (via the predictive
distribution). Of course, this notion of uncertainty strongly
depends on the prior that has been picked in the first place.

Bayesian inference 6 / 20



Computable example

I In the regression case, the Bayesian model is

Y = HΘ + ε ,

where Hij = hj(Xi) , Θ ∼ N (0, γ2IK ) , ε ∼ N (0, σ2In) .

I The posterior ir proportional to

p(Θ|(Xi , Yi)1≤i≤n) ∝ exp
(
− 1

2σ2 (Θ−M−1
ν HY )tMν(Θ−M−1

ν HY )

)
,

where Mν = H tH + ν2IK , ν2 = σ2/γ2 .

I Hence
Θ|((Xi , Yi)1≤i≤n) ∼ N (M−1

ν HY , γ2M−1
ν )

I The predictive distribution of Y ∗ given a new observation X ∗ is
given by left multiplication by the row vector
h∗ = (h1(X ∗), . . . , hK (X ∗)) .
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I Alternative derivation:
(

Y
Θ

)
is jointly centered Gaussian with

covariance matrix

γ2
(

Kν H
H t IK

)
,

where Kν = HH t + ν2In .

I using the conditioning formula for Gaussians we obtain

Θ|(Xi , Yi)1≤i≤n ∼ N (H tK−1
ν Y , γ2(IK − H tK−1

ν H)) ,

I (Compare with previous expression)
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“Hyperparameters”

I In the previous model σ2, γ2 are arbitrary parameters.

I We can put a prior on those parameters too: hierarchical Bayes.

I Note that this is just a convienient way to specify a more general
prior over Θ, Y (which is, in particular, non-Gaussian)
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How can we compute the predictive distribution?

We can’t in general. However, there are a number of approximation
methods available. In fact, much of the area of research concerning
Bayesian approaches is dedicated to those.

I perform a MAP on Hyperparameters (marginal likelihood or
evidence maximization), then fix them and perform Bayesian
prediction as if they were fixed.

I Approximate distribution of hyperparameters by a Gaussian
centered at the MAP value (Laplace approximation).

I Various forms of Monte-Carlo integration.

I Approximate the posterior via a more tractable family of
distributions having a specific form, for example: the different
parameters are independent in the posterior (variational Bayes,
unfortunately also sometimes called ensemble learning).
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Marginal likelihood/evidence maximization

I Marginal likelihood maximization or “type II MAP” selects
hyperparameters (here σ, γ) by looking at

p((Zi)1≤i≤n|σ, γ) =

∫
Pθ [(Zi)] p(θ|σ, γ)dθ

I The Bayesian credo is that this will result in a tradeoff between
model complexity and available information from the data. The
intuitive view is that simple models will give a high likelihood to
only a limited set of “typical” samples, while more complex models
“spread” the likelihood over more samples (thereby also diluting it,
hence the tradeoff).

I This view, the Bayesian’s Occam’s razor, works quite well in
practice but only if the number of parameters to choose this way is
limited, otherwise we are again at risk of overfitting.
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Gaussian processes

I Instead of specifying a prior on Y using a fixed basis of functions
and parameters with a Gaussian prior, we can directly specify a
prior on Y as a (centered) Gaussian process on the set X .

I A centered Gaussian process on a set X is entirely determined by
its covariance structure, k(x , x ′) = E [GxGx ′ ] , which is a positive
definite kernel.

I Conversely any pd kernel on X defines a Gaussian process index
by X .

I For any fixed X1, . . . , Xn the prior on the values or (Yi) is Gaussian
with covariance matrix K , , Kij = k(Xi , xj) .
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I Going back to the regression example, with a GP prior we can
directly consider the predictive distribution for a new point

(X ∗, Y ∗): given the design (X1, . . . , Xn, X ∗) , the vector
(

Y
Y ∗

)
is

jointly centered Gaussian with covariance matrix

γ2
(

Kσ k∗
k t
∗ k(X ∗, X ∗) + σ2

)
,

where Kσ = K + σ2In , k∗ is the column vector with entries
k(Xi , X ∗) ;

I hence

Y ∗|((Xi , Yi)1≤i≤n, X ∗) ∼ N (k t
∗K

−1
σ Y , k(X ∗, X ∗) + σ2 − k t

∗K
−1
σ k∗) .

I (This can be extended to a set of test points)
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Going back to the “basis of functions” representation

I From the previous expression we see that we can write the mean
of Y ∗|Y as a combination

∑
1≤i≤n θik(Xi , X ∗) ;

I Thus it seems that we can cast this setting back into the “basis of
functions” representation.

I However, there are several caveats in this “equivalence”: first, the
prior over the vector Θ is now centered Gaussian with covariance
matrix K−1 .

I If we want to predict on a new point X ∗, we must also include the
function K (X ∗, .) in the “basis” with a coefficient θ∗ . We then get(

Θ
θ∗

)
|((Xi , Yi)i , X ∗) ∼ N

((
K−1

σ Y
0

)
, K−1

∗ −
(

K−1
σ 0
0 0

))
I The point to understand is that with a finite basis of functions of

size k , we can only obtain the correct prior marginal on k points.
The prior on the coefficients is not “intrinsic”, it depends on the set
of points considered. Only the GP is the intrinsic prior
representation.
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Hyperparameters for GP priors

I Just like before, one can make the GP prior depend on
hyperparameters, say α. In this case is can be simply represented
as a kernel function kα depending on parameter.

I These can be once again picked by “evidence maximization” if we
can’t afford to perform the posterior integration over them (again,
generally not).

I In this case the quantity to minimize is

G(α) = − log p(Y |X , α) =
1
2

log |Kα|+
1
2

Y tK−1
α Y + c ;

I For example, using a simple gradient descent technique, we have

dG
dα

=
1
2

tr

(
K−1

α

dKα

dα

)
− 1

2
Y tK−1

α

dKα

dα
K−1

α Y .

I The GP can also optionally include a non-zero mean function that
can be similarly estimated.

I The point to remember is that the Bayesian framework offers a
methodology for choosing the kernel parameters.
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The “Relevance Vector Machine”

I The previous remarks notwithstanding, a common shortcut is to
consider a Bayesian model with “data-dependent basis functions”
of the form

V =
∑

1≤i≤n

θik(Xi , X ∗) ;

I and consider some fixed explicit prior on the parameters.

I A Gamma prior with different parameter for each θi gives rise to a
sparse Bayesian model called the “Relevance Vector Machine”.
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Gaussian process for classification

I In the case of using a GP prior for classification, we specify a GP
prior on the latent variables V .

I The problem is that the posterior on the latent variables is not
Gaussian (even with fixed hyperparameters).

I Again, we have to use some approximation. A common approach
is to approximate the posterior on VS (the latent variables
corresponding to the observed labels) by a Gaussian
Q̃(VS|XS, YS) .

I In this case, for the latent variables V ∗ corresponding to the
testing points, the distribution P(V ∗|VS) is given by the Gaussian
prior hence the approximate posterior

Papprox .(V ∗|X ∗, XS, YS) =

∫
VS

P(V ∗|VS, X ∗)Q̃(VS|XS, YS)dVS

is also Gaussian.
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The PAC-Bayes bound

I The PAC-Bayes bound concerns randomized classifiers (using a
data-dependent randomization measure ΘS) and concentrates on
the generalization error averaged over the randomization:

E(Θ) = Ef∼ΘEX ,Y [1{f (X ) 6= Y}] ,

and the relation to its empirical counterpart Ê(Θ, S) .

Theorem

Let Π be a prior distribution on a set of classifiers F . Then with
probability 1− δ over the draw of the training set S , for any distribution
Θ over F :

D+(Ê(Θ), E(Θ)) ≤ 1
m

(
KL(Θ,Π) + log(m + 1)δ−1

)
.

I NB: compare with Occam’s Hammer approach which is not
averaged over Θ .
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I We can apply the PAC-Bayes bound to the “Gibbs” version of a
Bayesian classifier which consists in:

I (1) drawing a latent function V (.) according to (an approximation
of) the posterior.

I (2) for a test point X ∗ , output the sign of V (X ∗) .

I The Radon-Nikodym derivative of the (approximate) posterior wrt.
the prior is given by

Q̃(VS|XS, YS)

P(VS|XS)
.

I For a Gaussian prior P(VS|XS) ∼ N (0, KS) and an approximate
posterior written as Q̃(VS|XS, YS) = N (KSα̃S,ΣS) , we have

KL(Q̃, P) =
1
2

(
log |Σ−1

S KS|+ tr(Σ−1
S KS)−1 + α̃t

SKSα̃S − n
)
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Link between Gibbs, Bayesian and voting classifiers

I Consider the majority vote decision by classifiers drawn according
to the randomization. Then the error of this voting rule is bounded
by twice the averaged (over randomization) error of the Gibbs
classifier. (In fact this is true for any fixed training point (X ∗, Y ∗) .

I If the posterior distribution of the latent variable is symmetric
around its mean at any test point, then the voting classifier
coincides with the Bayesian classifier.

PAC-Bayes bounds 20 / 20


	Bayesian inference
	Gaussian processes as priors
	PAC-Bayes bounds

