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Lecture 10: Learning theory IV: Randomized classifiers.
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Going back to Occam’s razor

I Remember Occam’s razor principle: suppose f̂1, f̂2, . . . , is a
countable family of functions and/or learning methods, such that
we know a generalization error bound for each one taken
individually, of the form: with probability 1− δ over the draw of the
sample S ,

E (̂fk , `) ≤ B(̂fk , S, δ) .

I Then given a prior distribution π on {1, 2, . . .} , it holds with
probability 1− δ:

∀i ≥ 1 , E (̂fk , `) ≤ B(̂fk , π(k)δ) .

I Despite its simplicity, this is a useful tool because it can apply “on
top of” any other bound that we can have available for the single
f̂i ’s: simple binomial tail bouns if the functions are fixed; VC or
Rademacher bounds if the functions belong to a model of
controlled complexity; etc.
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I Remember also that Occam’s razor readily implies the useful
corollary: for any data-dependent choice k̂(S) of a function among
the family f̂1, f̂2, . . . , with probability 1− δ

E (̂fk , `) ≤ B(̂fk(S), π(k̂(S))δ) .

I This formulation is actually equivalent to the previous formulation
as a uniform bound.

I Occam’s razor is a bound applying to any “rule” (or algorithm) for
selecting an object from a countable class, when a probabilistic
bound is known for each individual object.
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How to generalize Occam’s razor?

I It would be nice (!) to have a generalization of Occam’s razor to
continuous function classes.

I This is hopeless in general, unless there is some known structure
over the function class (finite VC dimension, covering number
entropy, control of Rademacher complexity etc.)

I However, even if there is no known structure, we can still obtain
something interesting if we assume that the estimation process is
randomized, i.e. that we choose the final f̂ from a fixed set F
using some probability distribution Θ (that may depend on the
observed data).
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A dumb example

I Consider a “stupid” example where we suppose that we draw f̂
from F from a fixed distribution Θ , i.e. without looking at the data!

I Assume that for any fixed f ∈ F with probability 1− δ we have the
known bound

E(f , `) ≤ B(f , S, δ) .

I Then, for any fixed ρ , with probability 1− δ over the draw of S and
of f̂ ∼ Θ the same bound as above holds for f̂ .
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Setting

I Instead of considering a data-dependend choice f̂ ∈ F of a
function in F , we consider the following ranfomized two-step
procedure:

• Choose a distribution Θ(S) on F from the data S (using some
arbitrary “rule”).

• Pick at random an element f̂ from F by drawing according to Θ(S) ,
and return f̂ .

I Furthermore we will assume that Θ(S) admits a density θ(S, f )
with respect to some fixed reference distribution µ on F .
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A slighlty less dumb example

I Assume that the learning procedure consists of a special case
where a data-dependent subset A(S) ⊂ F is returned. The
randomization step then picks a function at random from the
distribution µ|A .

I Assume additionally that the refernce “volume” measure µ(A) is
bounded from below by a constant a > 0 .

I Then it holds with probability 1− δ over the draw of S and f̂ ∼ µ|A:

E (̂f , `) ≤ B(̂fk , S, aδ)
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A graphical representation of the set-output case

H

X
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The general case

I Additional assumption: the single generalization bound B(f , S, δ)
is decreasing as a function of the level δ (this is a quite natural
assumption).

I We consider two prior distributions: first, a prior Π on F with
density π with respect to the reference µ.

I Secondly, let γ be a probability distribution function on (0,+∞).
(a priori distribution on the inverse randomization density).

I Define β(u) =
∫ u

0 xdγ(x).

I Occam’s hammer bound: with probability 1− δ over the draw of S
and f̂ ∼ Θ

E (̂f , `) ≤ B(̂f , S, π(̂f )β(θ(S, f̂ )−1)δ)
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The hammer and the razor

I A particular case: γ = δa ⇒ β(u) = a1{u ≥ a}; we recover the
result for the constant output subset case.

I A subcase of the above: H is discrete, µ the counting measure,
a = 1, and the algorithm returns a single element hX ∈ H
−→ we recover Occam’s razor.
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Application: randomized classifier choice

I As an example, consider some rule for picking randomly a
classifier out of an arbitrary set F . Take a “uniform” prior to
simplify (π ≡ 1) .

I For each single classifier, we can consider for example Hoeffing’s
bound.

I Consider the second prior dγ = α−1x−
1−α

α dx on [0, 1] for some
α > 0 ; then β(u) = (α + 1)−1 min(x

α+1
α , 1) and we obtain that with

probability at least 1− δ :

E (̂f ) ≤ Ê (̂f , S) +

(
log(α + 1)δ−1 + (1 + α−1) log+ θ(̂f , S)

2n

) 1
2

.
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Some conclusions

I Remember the latter inequality is valid for any choice of θ(̂f , S)!
We might want to choose θ to have the above bound as small as
possible; a simple (approximate) solution is to choose uniformly
from the set of classifiers having empirical error less that some
(data-dependent) threshold t̂ .

I One important point to note is that we can use an arbitrary
randomization rule over an arbitrary space of classifiers, and that
the role of “complexity” is then held by the log-randomization
density (with respect to some reference measure).

I The tradeoff between empirical error and complexity is still
present in this case since if we want to select with high probability
classifiers with a lower empirical error, it entails choosing a high
density for those classifiers, hence an increased complexity term.
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Relation to False Discovery Rate in multiple testing

I Occam’s razor, a.k.a. the union bound, is also used for multiple
testing where it goes by the name of Bonferroni’s correction.

I Assume H is a finite or countable set of null hypotheses about P.

I For any null hypothesis h ∈ H and level δ ∈ [0, 1], assume we
know a test Th(δ, X ) ∈ {0, 1} with level (type I error) controlled by
δ:

P satisfies null hypothesis h ⇒ P [Th(δ, X ) = 1] ≤ δ.

I Let H0 ⊂ H the subset of null hypotheses actually satisfied by P,
and H1 its complementary in H.
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Bonferroni’s correction (with a prior)

I Let π be an “a priori” distribution on H.

I Union bound with the a priori π: with probability at least
(1− π(H0)δ) ≥ (1− δ), we have:

∀h ∈ H0 , Th(δπ(h), X ) = 0 .

I Thus, if we perform all tests Th with a respective corrected level
π(h)δ, we control the probability of wrongly rejecting one or more
hypotheses (Family-Wise Error , FWE).

I Referred to as Bonferroni’s correction
(generally with the uniform prior π(h) = |H|−1.)

I This is distribution-free bound – no assumption is made on the
dependency structure of the family of tests.
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The False Discovery Rate (FDR)

I Type I error control using FWE is too conservative (poor power).

I Benjamini and Hochberg (1995) propose a weaker form of type I
error control, the False Discovery Rate:

FDR = E
[

V
R
1{R > 0}

]
,

where R = number of rejected hypotheses
and V = number of wrongly rejected hypotheses.

I Define ΘX the uniform distribution on the set of rejected
hypotheses; then

FDR = PX∼P;h∼ΘX [h ∈ H0] .
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Occam’s hammer for FDR control

I H countable null hypotheses set; µ counting measure on H.
π and γ are arbitrary.

I Define the bad sets:

B(h, δ) =

{
{X : Th(X , δ) = 1} si h ∈ H0 ;

∅ otherwise.

I Suppose the set of rejected null hypotheses AX is such that

AX ⊂ {h ∈ H : Th(X , δπ(h)β(|AX |, X ) = 1)} ,

I Then

E
[
|AX ∩H0|
|AX |

]
= PX∼P,

h∼µ|AX

[X ∈ B(h, δπ(h)β(|AX |))] ≤ π(H0)δ .
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Step-up procedures for multiple testing

I We should preferrably choose the largest subset satisfying the
previous condition:

AX = sup {G ⊂ H : ∀h ∈ G, Th(X , δπ(h)β(|G|)) = 1} .

I ⇒ “Step-up” procedure: denote p(i) the p-values reweighted by

the prior π and sorted in increasing order; then we reject the k̂
hypotheses corresponding to the lowest eigenvalues, where

k̂ = sup
{

k : p(k) ≤ δβ(k)
}

.
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β(  )x

Rejected null hypotheses

sorted
P−values (reweighted),

If |H| = M, and one chooses dγ = c
∑M

i=1
1
i δ i

M
, we get a linear

“threshold” function β(i) = ci , with c =
∑M

i=1
1
i .

⇒ in this particular case we recover the distribution-free step-up
procedure of Benjamini-Yekutieli (2001).
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Some conclusions

I Occam’s hammer makes sense for multiple testing for FDR control
in a distribution-free point of view.

I Under an assumption of independence of the tests (or positive
dependence), the original procedure of Benjamini-Hochberg (BH)
is more powerful and uses other probabilistic tools.

I In the distribution-free point of view, Occam’s hammer allows a
more general approach and generalizes the Benjamini-Yekutieli
procedure (BY) through the choice of γ and π. Also, theoretical
possibility of considering continuous hypothesis space.
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