
Statistical Machine Learning

UoC Stats 37700, Winter quarter

Lecture 1: Introduction. Decision Trees.

1 / 28

What is “machine learning”?

“Machine Learning” is traditionally classified as part of computer
science.
A short history note:

I 1940’s, 1950’s : first computers are created; early on, strong belief
that “one day computers will be intelligent” (e.g.: Alan Turing’s
“imitation game”, a.k.a. Turing test, 1950). Mathematical
formalism grounded on logic and symbolic calculus.

I 1960’s, 1970’s : development of symbolic-reasoning artificial
intelligence based on formalism and rule inference. Rules are
“learned” from data but the statistical analysis is almost inexistant.
The results obtained in practice fall short of the initial expectations
and stall.

Introduction Brief history 2 / 28

I 1980’s : development of artificial neural networks: a clear
departure from symbolic-based AI (early version: Rosenblatt’s
perceptron 1957) that brings forth some successes. The
ambitions are more modest.

I 1990-2000’s : development of statistical learning methods:
decision trees, kernel methods. . . The mathematical formalism of
these methods is now more firmly grounded in probability,
statistics, information theory and analysis (e.g. optimization).

I Now: a certain inching towards more ambitious goals. . .

Introduction Brief history 3 / 28

A limited goal: classification

Typical machine learning problem: classification.
The task is to classify an unknown object x ∈ X into one category of a
certain set Y = {1, 2, . . . c} (labels).
Examples:

I (Handwritten) character recognition: x is a grey scale image, Y is
the list of possible characters or digits.

I Medical diagnosis: x is a set of medical observations (numerical
or categorical), Y = {benign, malignant} (for example).

I Recognition of coding/non-coding gene sequences

I Junk e-mail automatic sorting

Introduction Some specific goals 4 / 28

Supervised and unsupervised learning

I The “learning” stage is to construct (in an automatic way) such a
classification method from a known set of examples whose class
is already known: training sample.

I “Unsupervised learning” : no labels are available from the training
sample. We want to extract some relevant information, for
example a separation into clusters (a kind of classification without
pre-defined classes).

Introduction Some specific goals 5 / 28

Some formalization

I A classifier is a function f : X → Y.

I The “training sample” is S = ((X1, Y1), . . . , (Xn, Yn)) .

I A learning method is a mapping S 7→ (̂f : X → Y) .

I How can we (theoretically) assess if f̂ is a good classifier?

I Test it on new examples.

Formalization and first approaches Some definitions 6 / 28

I Probabilistic framework: the performance of the classifier is
theoretically measured by the average percentage of classification
errors commited on a unknwown ’test’ object (X , Y) drawn at
random:

E (̂f) = E(X ,Y)∼P

[
1{f̂ (X) 6= Y}

]
= P

[
f̂ (X) 6= Y

]
.

This is called the generalization error.

I The learning from examples makes sense if we assume that the
sample S constains some information on the test objects.

I Simplest assumption: S = ((Xi , Yi)1≤i≤n) are drawn from the
same distribution P, independently.

Formalization and first approaches Some definitions 7 / 28

Machine learning = statistics?

Obviously, with this formalism machine learning is very close to
traditional statistics:

Classification → Regression
Unsupervised learning → Density estimation

Emphasis of machine learning on:

I complex data: high dimensional, non-numerical, structured

I very few modelling assumptions on the distribution of the data.

I non-parametric methods coming from various sources of
inspiration.

Formalization and first approaches Machine learning and statistics 8 / 28

The Bayes classifier

I Assuming the probabilistic framework: (X , Y) drawn according to
a distribution P, what is the best possible classifier possible?

I Represent P under the form

P(x , y) = P(X = x)P(Y = x |X = x) = µ(x)η(Y = y |X = x) .

I For any fixed x , the best possible deterministic classification for x
is to output the class having the largest conditional probability
given X = x :

f ∗(x) = Arg Max
y∈Y

η(Y = y |X = x) .

This is the Bayes classifier; the Bayes error is

L∗ := E [f ∗] = E [1{f ∗(X) 6= Y}] .

I Important: the Bayes classifier f ∗ is entirely determined by the
function η only.

Formalization and first approaches The classification problem 9 / 28

Plug-in rules

I One way to construct a classifier is therefore to estimate the
function η by η̂ .

I If we know an estimator η̂ it is natural to consider the classifier

f̂ (x) = Arg Max
y∈Y

η̂(Y = y |X = x)

This is called a plug-in classifier.

Formalization and first approaches Plug-in rules 10 / 28

Quality of plug-in rules

We can relate the performance of estimator η̂ to the peformance of the
corresponding plug-in rule:

E (̂f)− E(f ∗) ≤ E

[
1{f̂ (x) 6= f ∗(x)}

∑
y

|η(y |x)− η̂(y |x)|

]

≤ E

[∑
y

|η(y |x)− η̂(y |x)|

]
.

In the binary classification case:

E (̂f)− E(f ∗) = E
[
1{f̂ (x) 6= f ∗(x)} |2η(y = 1|x)− 1|

]
≤ 2 ‖η − η̂‖1 .

Formalization and first approaches Plug-in rules 11 / 28

Logistic regression for η

I If Y = {0, 1} (binary classification), there is one classical way do
to estimate η: logistic regression: estimate instead

γ(x) = logit(η(1|x)) = log
η(1|x)

η(0|x)
,

the log-odds ratio.

I Advantage: η ∈ [0, 1] but γ ∈ R , therefore you can apply your
favorite regression method to estimate γ .

Formalization and first approaches Plug-in rules 12 / 28

Class density estimation

I Another classical way to go: estimate separately the density of
each class

gy (x)dx = dP(X = x |Y = y)

I Generally model-based; for example, each class is modelled by a
mixture of Gaussians:

gy (x) =

my∑
i=1

py ,iφ
(
µy ,i ,Σy ,i

)
,

which can be estimated via the EM algorithm for example .
I Then estimate the marginal probabilities of each class:

cy = P(Y = y) ;

if the above are estimated by ĝ and ĉ, the plug-in rule is by
definition

f̂ (x) = Arg Max
y∈Y

ĉy ĝy (x)

Formalization and first approaches Plug-in rules 13 / 28

Decision trees

I Decision trees are a way of defining classifiers that are somehow
descendants of rule-based classification methods from symbolic
approaches to ML.

I Can be used for classification and for regression.

I Different variants: CART (Breiman, Friedman, Olshen and Stone),
C4.5, ID3 (Quinlan)

I Not the best method available nowadays in terms of generalization
error, but still very popular because it provides the user with an
“explanation” of the decision rule.

Decision trees Introduction 14 / 28

The shape of a decision tree: the “20 questions” game:

Long ears ?

Hooves ?

rabbitdonkey

Predator ?

Mouse

Climb in trees ?

bear wolf

NY

Y
Y

Y

N

N

N

Decision trees Introduction 15 / 28

Formally, a decision tree is:

I a binary tree

I whose internal nodes are labeled by questions q ∈ Q ;

I whose terminal nodes are labeled by the decision (e.g. for
classification: some y ∈ Y) .

Decision trees Formulation 16 / 28

I Formally, a question is a function q : X → {left , right} .

I Note: so, questions can be identified with (binary) classifiers. . . A
decision tree is a way to combine “elementary” classifiers.

I Standard choice of questions: when x is a collection of numerical
and/or categorical data,

x = (x1, . . . , xk) , with xi ∈ R or xi ∈ Ci =
{

Ci,1, . . . , Ci,ni

}
,

consider questions of the form

q(x) = 1{xi > t} if xi is numerical

(where t is some real threshold) or

q(x) = 1{xi ∈ C} if xi is categorical

(where C is some subset of Ci) .

Decision trees Formulation 17 / 28

Choosing the decision when the tree structure is fixed

I Assume for now that the tree structure and the questions are fixed.

I What is the best decision to take on each of the leaves? (based
on the available data)

I Let the training data “fall down the tree” and for each leaf, decide
to pick the majority class among those datapoints having reached
that leaf.

Decision trees Formulation 18 / 28

Growing a decision tree

Now, how can we choose the structure of the tree itself and the
questions?

I Assume we want to build a decision tree of size k (the size is the
number of leaves)

I One standard way to choose a classifier belonging to a certain set
F (here trees of size k) is to find the minimizer of the training (or
empirical) classification error:

f̂ = Arg Min
f∈F

Ê(S, f) = Arg Min
f∈F

1
n

n∑
i=1

1{f (Xi) 6= Yi}

This is known as Empirical Risk Minimization (ERM).

I Unfortunately, in the case of trees this is intractable from a
practical point of view.

Decision trees Growing a tree 19 / 28

Greedy growing

I An alternative to global optimization: “greedy” construction:
• Start with a tree reduced to its root (a constant classifier!)
• Choose the question that results in the largest reduction in the

empirical risk when splitting the root into two sub-nodes.
• Iterate this procedure for splitting the sub-nodes in turn.

I Unfortunately, in the case of classification, there arises a new
problem: it can happen that no available question leads to any
“local” improvement.

Decision trees Growing a tree 20 / 28

Impurity functions

I As a function of the (estimated) class probabilities (pi), the
(training) error of a locally constant classifier is piecewise linear;
this is the source of the latter problem.

I Idea: replace this by a strictly convex “impurity function” I((pi)):

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Decision trees Growing a tree 21 / 28

I Once an impurity function I has been chosen, the “greedy”
criterion to choose a question is to find the minimum of

Nleft I((pi,left)) + Nright I((pi,right)) ;

then strict convexity of I implies that this is always strictly smaller
than

Ntot I((pi,tot))

whenever (pi,left) 6= (pi,right) .

I Classical choices for I: (1) Entropy

H((pi)) = −
∑

i

pi log pi

(2) Gini criterion
G((pi)) = −

∑
i

p2
i

Decision trees Growing a tree 22 / 28

I Note: a classification tree can be seen as a plug-in rule wherein
the function η is estimated by a constant function on the leaves of
the trees.

I To this regard the entropy criterion is the natural cost function
when estimating η on such a model via Maximum Likelihood
(“greedy” maximum likelihood).

I Similarly considering the Gini criterion is equivalent to locally
minimizing a kind of least square error:

`(η, x , y) =
∑
y ′∈Y

(1{y = y ′} − η(x , y ′))2 .

Decision trees Growing a tree 23 / 28

I We now have a reasonable way to construct a tree structure
recursively.

I But when should we stop growing the tree?

I We could keep growing the tree until each leaf only contains data
points of one single class. . .

I Unfortunately this is not a very good idea: why?

Decision trees Tree pruning 24 / 28

Overfitting

A classification problem (here totally random data).

Decision trees Tree pruning 25 / 28

Overfitting

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Output of maximally grown decision tree.

Decision trees Tree pruning 25 / 28

Underfitting and overfitting

Informally, there is a tradeoff to be found between the “complexity” of a
classifier and the amount of data available.

Training error

"Complexity" (e.g. tree size)

error
Generalization

OverfittingUnderfitting

Decision trees Tree pruning 26 / 28

I One first idea: stop if a split leads to a leafs containing less than `
datapoints.

I This might not be the best idea.

I More interesting idea: complexity regularization: find a tradeoff
between the empirical risk Ê(S, f) and the “complexity” (tree size)
of f .

I Grow a tree T of maximal size using the greedy procedure and
select a sub-tree T ⊂ T optimizing the following regularized error:

Arg Min
T⊂T

Ê(S, T) + λ|T | := Rλ(T) ;

this is called pruning.

I Note: λ has to be chosen, too! But let us assume for now that it is
fixed.

Decision trees Tree pruning 27 / 28

I Interestingly, when the “maximal” tree T is fixed the problem of
finding the optimal subtree minimizing the previous regularize
criterion is tractable.

I If T̂λ denotes the pruned tree for a fixed λ , we have

Rλ(T̂λ) = min(Rλ(Troot), Rλ(T̂left ,λ) + Rλ(T̂right ,λ)) ,

then use recursive principle.

I Furthermore, then

λ1 ≥ λ2 ⇒ T̂λ1 ⊂ T̂λ2 .

I Hence, as λ grows from 0 to +∞ , we have a decreasing
sequence of pruned trees

T = T̂0 ⊃ T̂λ1 ⊃ . . . ⊃ Troot ,

which is easily computable.

Decision trees Tree pruning 28 / 28

	Introduction
	Brief history
	Some specific goals

	Formalization and first approaches
	Some definitions
	Machine learning and statistics
	The classification problem
	Plug-in rules

	Decision trees
	Introduction
	Formulation
	Growing a tree
	Tree pruning

