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A Gibbs point process of
diffusions: existence and

uniqueness
Alexander Zass*

Abstract. In this work we consider a system of infinitely many interact-
ing diffusions as a marked Gibbs point process. With this perspective,
we show, for a large class of stable and regular interactions, existence
and (conjecture) uniqueness of an infinite-volume Gibbs process. In
order to prove existence we use the specific entropy as a tightness tool.
For the uniqueness problem, we use cluster expansion to prove a Ru-
elle bound, and conjecture how this would lead to the uniqueness of the
Gibbs process as solution of the Kirkwood-Salsburg equation.

1 Introduction and set-up

Consider a Langevin dynamics on Rd of the form

dXs = dBs �
1
2

—V (Xs)ds, s 2 [0,2b ], b > 0, (1.1)
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14 A. Zass: Interacting diffusions

where B is an Rd-valued Brownian motion, and V : Rd ! R is an ultracontractive poten-
tial, i.e. outside of some compact subset of Rd ,

9d 0, 1, 2 > 0, V (x)� 1|x|d+d 0
and DV (x)� 1

2
|—V (x)|2 � 2|x|2+2d 0

. (1.2)

Under these conditions there exists a unique strong solution to (1.1) (see e.g. [12]), which
generates an ultracontractive semigroup (see [6],[2]). Moreover, the law of X starting at
X0 = 0 is a measure R such that, for any d < d 0/2,

Z
ekmkd+2d

• R(dm)<+•. (1.3)

For the rest of this work, let d > 0 as above be fixed.

The question we wish to explore in this work is how to construct a physically mean-
ingful Gibbsian interaction between infinitely many such diffusions starting at random
locations. More precisely, we model such a system as a marked Gibbs point process:
locations and marks will describe, respectively, starting points and paths of these diffu-
sions. We will then solve the non-trivial questions of existence and uniqueness of the
infinite-volume measure for a large class of stable and regular path interactions.

After introducing the Gibbsian framework, we present an existence result via the en-
tropy method of [11]: we use the specific entropy as a tightness tool to prove convergence
of a sequence of finite-volume Gibbs measures and show that this limit satisfies the Gibb-
sian property (that is, the DLR equations). In section 4 we then use the method of cluster
expansion – introduced by S. Poghosyan, D. Ueltschi, and H. Zessin in [8], [10] – and the
Kirkwood-Salsburg equation to show a Ruelle bound for a regime of small activity, and
conjecture that uniqueness of the constructed infinite-volume Gibbs process associated to
path interactions follows.

2 Gibbsian formalism for marked point processes

The state space we consider in this work is E = Rd ⇥C0, where C0
..= C0

�
[0,2b ];Rd�,

b > 0, is the set of continuous paths m : [0,2b ] ! Rd with initial value m(0) = 0. An
element x=(x,m)2 E is identified with the path

�
x+m(t)

�
t2[0,2b ] of starting point x2Rd

and trajectory m 2C0.
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Denote by M the set of locally-finite point measures (or configurations) on E , which
are of the form g = Âi d(xi,mi) 2 M ; we often identify a configuration g with its support
{(xi,mi)}i ⇢ E .

Let Bb(Rd) be the subset of bounded Borel sets of Rd . Let M f denote the subset of
finite configurations, and for any L 2 Bb(Rd), let ML ⇢ M f denote the restriction to
starting points inside L, and for any configuration g 2 M , let gL ..= g \

�
L⇥C0

�
2 ML.

Let P(M ) denote the set of probability measures on M : these are called marked
point processes. As reference process we consider, for any L 2 Bb(Rd), the marked
Poisson point process pz

L on E with intensity measure z dxL ⌦R(dm). The coefficient z
is a positive real number, dxL is the Lebesgue measure on L, and the probability measure
R is the path measure of the solution of (1.1) starting at 0. In other words, the starting
points are drawn in L according to a Poisson process, and the marks are diffusion paths
starting at these Poisson points.

We add interaction between the points of a configuration by considering an energy
functional that takes into account both the locations and the marks.

Assumption 1.1 For any finite marked point configuration g = {x1, . . . ,xN} 2 M f , N �
1, its energy is given by the following functional

H(g) =
N

Â
i=1

Y(xi)+
N

Â
i=1

Â
j<i

F(xi,x j) 2 R[{+•}, (1.4)

where

⇧ The self-potential term Y satisfies infx2Rd Y(x,m) � �kYkmkd+d
• for some con-

stant kY > 0;

⇧ The two-body potential F is defined by

F(xi,x j) =

✓
f(xi � x j)+

Z 2b

0
f̃(mi(s)�m j(s))ds

◆
1{|xi�x j |a0+kmik•+km jk•},

(1.5)
where f (acting on on the initial location of the diffusions) is a radial (i.e.
f(x) = f(|x|)) and stable R-valued pair potential in the sense of [13], with sta-
bility constant f � 0, bounded from below, with f(u)  0 for u � a0 (see Figure
1.1); f̃ (acting on the dynamics of the diffusions) is a non-negative pair potential.
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Figure 1.1: An example of radial and
stable pair potential f is
the Lennard-Jones potential
f(u) = 16(

� 3/2
u
�12 �

� 3/2
u
�6�;

its zero is at a0 =
3
2 .

Remark 1.2 (i) The stability of the point-interaction potential f and the non-negativity
of the mark-interaction potential f̃ guarantee stability (in the sense introduced in
Lemma 1.5) of the energy H of a marked-point configuration; the fact that f is
bounded from below is used to prove the stability of the conditional energy (see
Lemma 1.7).

(ii) The indicator function in (1.5) can be interpreted as follows: when the starting
points are far enough from each other, the two diffusions do not interact; if their
paths do not intersect, they may interact only if |x1 � x2| a0 +km1k• +km2k•.
See Figure 1.2. Notice that the range of interaction is finite but not uniformly
bounded.

Definition 1.3 For any L 2 Bb(Rd), the free-boundary-condition finite-volume Gibbs
measure on L with energy H and activity z > 0 is the probability measure Pz

L on ML

Figure 1.2: The paths of two Langevin
diffusions in R2 which inter-
act. Each circle is centred
in the starting point, and its
radius corresponds to their
maximum displacement in
the time interval [0,1]. The
dotted circle represent the
“security” distance a0/2.
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defined by

Pz
L(dg) ..=

1
Zz

L
e�H(gL) pz

L(dg). (1.6)

In this work we investigate the existence and uniqueness, as L increases to cover the
whole space Rd , of an infinite-volume Gibbs measure, in the following sense:

Definition 1.4 A probability measure P on M is said to be an infinite-volume Gibbs
measure with energy H and activity z > 0, denoted by P 2 G (H,z), if it satisfies, for
any L 2 Bb(Rd) and any positive, bounded, and measurable functional F : M ! R, the
following DLR equation (for Dobrushin-Landford-Ruelle)

Z

M
F(g)P(dg) =

Z

M

1
Zz

L(x )

Z

ML
F(gLxLc)e�HL(gLxLc )pz

L(dg) P(dx ), (DLR)

where HL(g) is the conditional energy of the configuration g in L given its exterior:

HL(g) ..= lim
r!+•

H
�
gL�B(0,r)

�
�H

�
gL�B(0,r)\L

�
, (1.7)

with L�B(0,r) ..=
�

x 2 Rd : 9y 2 L, |y� x| r
 

.

3 Existence of an infinite-volume Gibbs point process via the
entropy method

Under Assumption 1.1 on the energy functional H, the following three lemmas provide
the groundwork for the existence theorem.

Lemma 1.5 The following stability condition holds: setting H
..= kY _ f ,

H(g)�� H Â
(x,m)2g

�
1+kmkd+d

•
�
, g 2 M f . (1.8)

In order to control the support of the Gibbs point process, we define the subset of
tempered configurations as the union M temp ..=

S

2N
M , where M is the set of all con-

figurations g 2 M such that, for all l 2 N⇤, Â(x,m)2gB(0,l)
(1+kmkd+d

• ) ld .
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Lemma 1.6 For any bounded L ⇢ Rd and � 1, there exists a random variable
= (gL, )<+• such that the limit in (1.7) stabilises, i.e.

HL(g) = H
�
gL�B(0, )

�
�H

�
gL�B(0, )\L

�
.

We say that (gL, ) is the finite but random range of the interaction HL(g).

Lemma 1.7 Fix L 2Bb(Rd). For any � 1, there exists a constant 0(L, )� 0 such that
the following stability of the conditional energy holds: uniformly for all x 2 M ,

HL(gLxLc)�� 0(L, ) Â
(x,m)2gL

�
1+kmkd+d

•
�
, gL 2 ML. (1.9)

We endow the set P(M ) of probability measures on M with the topology of local
convergence (see [4], [5]). More precisely,

Definition 1.8 A functional F on M is called local and tame if there exist a set
D 2 Bb(Rd) and a constant a > 0 such that, for all g 2 M , F(g) = F(gD) and
|F(g)| a

�
1+Â(x,m)2gD(1+kmkd+d

• )
�
.

We denote by L the set of all local and tame functionals. The topology tL of local
convergence on P(M ) is defined as the weak* topology induced by L , i.e. the smallest
topology on P(M ) under which all the mappings P 7!

R
F dP, F 2 L , are continuous.

Let us now recall the concept of specific entropy of a probability measure on M .

Definition 1.9 Given two probability measures Q and Q0 on M , the specific entropy of
Q with respect to Q0 is defined by

I(Q|Q0) = lim
Ln%Rd

1
|Ln|

ILn(Q|Q0),

where Ln = [�n,n)d , and the relative entropy of Q with respect to Q0 on L is defined as

IL(Q|Q0) ..=

8
<

:

Z
log f dQL if QL 4 Q0

L with f ..= dQL
dQ0

L
,

+• otherwise,

where QL (resp. Q0
L) is the image of Q (resp. Q0) under the mapping g 7! gL.
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The specific entropy with respect to pz is well defined as soon as Q is invariant under
translations on the lattice. Moreover, we underline that for any a > 0, the a-entropy level
set

P(M )a
..=

n
Q 2 P(M ) : I(Q|pz) a

o

is relatively compact for the local convergence topology tL , as proved in [5].
Putting together the technical conditions described in this section yields the existence

of an infinite-volume Gibbs measure Pz, for any activity z > 0.

Theorem 1.10 For any energy functional H as in Assumption 1.1 and any activity z > 0,
there exists at least one infinite-volume Gibbs measure Pz 2 G (H,z).

Sketch of proof. (i) For Ln = [�n,n)d , consider the sequence (Pz
Ln
)n�1 of finite-

volume Gibbs measures, and build the empirical field (P̄z
n)n�1 by stationarising

it w.r.t. lattice translations.

(ii) Use uniform bounds on the specific entropy to show the convergence, up to a
subsequence, to an infinite-volume measure Pz.

(iii) Prove, using an ergodic property, that Pz carries only the space of tempered con-
figurations.

(iv) Noticing that P̄z
n does not satisfy the (DLR) equations, introduce a new sequence

(P̂z
n)n asymptotically equivalent to (P̄z

n)n but satisfying (DLR).

(v) Use appropriate approximation technique to show that Pz satisfies (DLR) too.
For details, see [11].

Example 1.11 Let d = 2. A concrete example of functions satisfying the above assump-
tions is as follows:

Consider as reference diffusion a Langevin dynamics with V (x) = |x|4; the diffusion is
ultracontractive with d 0 = 2. The invariant measure µ(dx) = e|x|

4
dx is a Subbotin measure

(see [15]).
Consider as self interaction Y(x) =�kmk5/2

• ; as interaction between the initial loca-
tions a Lennard-Jones pair potential f(u) = au�12 � bu�6, a,b > 0; as interaction be-
tween the marks any non-negative pair potential f̃ .
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4 Uniqueness of Gibbs measure via cluster expansion
The method of cluster expansion relies in finding a regime of small activity 0 < z  z̄
in which the partition function Zz

L can be written as the exponential of an absolutely
converging series of cluster terms. It should then be possible to write an equation (the
so-called Kirkwood-Salsburg equation, see e.g. [14]) for the correlation functions of the
infinite-volume Gibbs measure Pz constructed above. We conjecture that under some
assumptions, such an equation has a unique solution, which would lead to the uniqueness
of the infinite-volume Gibbs measure. Here we use a strategy developed in [9]. For this
section, we make the following additional

Assumption 1.12 The potential f (on initial locations of the diffusions) is integrable
in Rd : kfk1 < +•; the potential f̃ (on the dynamics of the diffusions) is bounded:
kf̃k• <+•.

The partition function is given, for any L ⇢ Rd , by

Zz
L = 1+ Â

N�1

zN

N!

Z

(L⇥C0)N
exp

⇢
� Â

1iN
Y(xi,mi)� Â

1i< jN

✓
f
�
|xi � x j|

�

+
Z 2b

0
f̃
�
|mi(s)�m j(s)|

�
ds
◆

1{|xi�x j |a0+kmik•+km jk•}

�

dx1 · · ·dxN R(dm1) · · ·R(dmN).
(1.10)

Theorem 1.13 Consider an energy functional H satisfying Assumption 1.1 and Assump-
tion 1.12. Then the two-body potential F satisfies a modified regularity condition. There-
fore, there exists z̄ > 0 such that, for any activity z  z̄, the partition function above
converges absolutely and a Ruelle bound holds.

Proof. In order to guarantee the absolute convergence of (1.10), we check whether the
pair potential F satisfies a modified -regularity for the functional (terminology from
[10]; introduced in [8]), i.e. that for any x1 = (x1,m1), the following inequality holds

ze
Z

e (x2)|F(x1,x2)|e�Y(x2)dx2 R(dm2) (x1). (1.11)

We consider here = f , and a function of the form (x,m) = (m) = a1kmkd
•, where

a1 = kfk1 +
⇣

2bkf̃k•kdbd(ad
0 +1)

⌘
,
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with kd such that (x + y + z)d  kd(xd + yd + zd), and bd the volume of the unit ball
in Rd . Recalling that the self potential Y is such that Y(x) � �kYkmkd+d

• . Set

r :=
R

e(a1+kY)kmkd+2d
• R(dm)

(1.3)
< +•; the modified regularity condition reads

ze f
Z

C0
ea1km2kd

•
Z

Rd

��f(x2 � x1)
��+

✓Z 2b

0
f̃(m2(s)�m1(s))ds

◆
1{|x1�x2|a0+km1k•+km2k•}

dx2 ekYkm2kd+d
• R(dm2) a1km1kd

•.

Estimating the l.h.s. leads to the following condition:

z  km1kd
•

re f (km1kd
• +1)

,

which holds as soon as z  (2re f )�1 =.. z̄ = infm1
km1kd

•
re f (km1kd•+1)

. Applying results in [8],

this implies the absolute convergence of (1.10). Moreover, in [9] S. Poghosyan and H.
Zessin prove that a Ruelle bound also holds.

The unique step towards uniqueness which is now missing is the proof that the
Kirkwood-Salsburg equation has a unique solution. We state the following conjecture:

Conjecture 1.14 For any activity z  z̄, the Kirkwood-Salsburg equation has a unique
solution.

Assuming the above conjecture to hold true, we obtain the following

Corollary 1.15 For any activity z  z̄, the infinite-volume measure Pz constructed in
Theorem 1.10 is the unique Gibbs measure in G (H,z).

Conclusions and outlook. In [3], D. Dereudre showed the equivalence between the law
of an infinite-dimensional interacting SDE with Gibbsian initial law, and a Gibbs point
process on the path space, with a certain energy functional.

It is a natural question to ask whether a Gibbs point process with energy functional H
as in Assumption 1.1 is the law of infinite dimensional interacting SDE. Using Malliavin
derivatives, D. Dereudre proved that Gibbs point processes with regular H are the law of
SDEs with a certain non-markovian drift. See [1] and [7] in the lattice case.

The existence and uniqueness results presented here could therefore be useful to obtain
a criterium for the solution of infinite-dimensional SDEs. This is a work in progress.
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