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1. In�nite systems

N ∼ 1023 − 1027

Phase space

Γ̃ 3 γ̃ := {(x1, p1), ..., (xn, pn)...}, xn ∈ Rd, pn ∈ Rd. (1)

Hamilton equations:

dx
(α)
i

dt
=
∂H(γ̃)

∂p
(α)
i

,
dp

(α)
i

dt
= −∂H(γ̃)

∂x
(α)
i

, i ∈ {1, ..., N}, α ∈ {1, ..., d}

(2)
Mean values of observables

F ≈ 1

T

∫ T

0

F (γ̃(t))dt. (3)
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2. Gibbs ensembles

Josiah Willard Gibbs
proposed instead of one system to introduce an ensemble of identical
systems that each time with some probability occupy some con�guration.
Such identical systems are called Gibbs ensembles.
The basic postulate of Gibbs is the existence of some probabilistic
measure µ on the phase space Γ̃:∫

Γ̃

µ(dγ̃) = 1, F =

∫
Γ̃

F (γ̃)µ(dγ̃) (4)

and the identity

lim
T→∞

1

T

∫ T

0

F (γ̃(t))dt =

∫
Γ̃

F (γ̃)µ(dγ̃). (5)

which is called Ergodic hypothesis, and which is a basic mathematical
justi�cation of statistical physics.
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3. Gibbs measure
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4. Great Canonical Ensemble

Expression for density:

DΛ
gc(γ̃, N, β, µ) =

1

ΞΛ(β, µ)

1

N !
eβµN−βH(γ̃), N = |γ̃|, β =

1

kT
, (6)

where ΞΛ(β, µ) is called Great Partition Function:

ΞΛ(β, µ) =
∑
N≥0

1

N !

∫
Γ̃

(N)
Λ

eβµN−βH(γ̃) dγ̃

h3N
, (7)

and

H(γ̃) =

N∑
i=1

p2
i

2m
+ U(x1, . . . , xN ). (8)

The physical justi�cation of this formula can be found in:

Yu. B. Rumer, M. Sh. Ryvkin, Thermodynamics, Statistical Physics and
Kinetics, Mir Publishers, Moscow, 1980.
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5. Gibbs distributions in the con�guration space

DΛ
gc(γ,N, β, µ) =

1

ΞΛ(β, µ)

zN

N !
e−βU(γ), N = |γ|, (9)

ΞΛ(β, µ) =
∑
N≥0

zN

N !

∫
Γ

(N)
Λ

e−βU(γ)dγ, (10)

where

z =
eβµ

hd

∫
Rd
e−

p2

2m dp = eβµ
(

2πm

βh2

)d/2
(11)

is called activity of the system.
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6. Thermodynamic limit

The transition N →∞, Λ ↑ Rd is a necessary operation in studying the
macroscopic properties of physical systems. This is due to the fact that
at the �nite values of volume V = σ(Λ) the behavior of thermodynamic
functions is regular (analytical). Therefore, the point of a phase transition
on a rigorously mathematical level can not be detected.
Consequently, from the point of view of physical considerations, an
important mathematical problem is the rigorous proof of existence limit
in expression for the mean observed value:

F = lim
Λ↑Rd

∫
ΓΛ

F (γ)µΛ(dγ). (12)

On the other hand, in terms of a rigorous approach to the mathematical
problem of constructing a theory, it is not unreasonable to �nd out
whether there exists a Gibbs measure on the space of in�nite
con�gurations Γ.
This is a topic of a separate lecture!
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7. Mixing property for measures

This talk is related to such characteristic of probability measures as
mixing property. In the language of Gibbs distributions for the systems of
interacting particles, the property of mixing means that the behavior of
subsystems of particles in some volumes, which are located at great
distances from each other is statistically independent:

µ(F1F2) − µ(F1)µ(F2) → 0,

dist(suppF1, suppF2) → ∞. (13)

The mixing property ensures ergogodicity and allows to state that the
nonequilibrium distribution will go to equilibrium:

I. P. Cornfeld, S. V. Fomin, Y. G. Sinai,
Ergodic Theory, Springer-Verlag, N.Y., Heidelberg, Berlin, 1982.
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8. Mixing property for Correlation functions

It is most convenient from a technical point of view to prove this
property by estimating the correlation between clusters of particles, that
is, the behavior of correlation functions, in which one group of variables is
at a considerable distance from another group.

Theorem

(A.L.R., M.V. Tertychnii, Ukr.Math.J.(2017), v.69, No. 8)
Let φ(|x|) is continuous on R+ \ {0} strong superstable interaction
potential of radius R. Then for any subcon�gurations η1 = {x1, ..., xm1}
and η2 = {y1, ..., ym2}, with dist(η1, η2) := minx∈η1

y∈η2

|x− y| > R and

su�ciently small z, the next inequality is true

|ρ(η1 ∪ η2)− ρ(η1)ρ(η2)| ≤ Cm1+m2λ
dist(η1,η2)

R , (14)

where λ < 1, C > 0, does not depand on η1, η2.
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10. Content

1. Mathematical background.
2. Correlation functions.
3. Truncated (connected) correlation functions.
4. Partially truncated correlation functions(PTCF).
5. Equations for PTCF and their solutions.
6. Strong decay properties for PTCF.
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11. Con�guration spaces

Rd � d-dimensional Euclidean space.
γ = {xi}i∈N�set of positions of identical particles (xi ∈ Rd).
B(Rd)�family of all Borel sets. Bc(Rd)�family of all bounded Borel sets.

Con�guration space in Rd:

Γ = ΓRd :=
{
γ ⊂ Rd

∣∣ |γ ∩ Λ| <∞, for all Λ ∈ Bc(Rd)
}
, (15)

Spaces of �nite con�gurations Γ0 in Rd and ΓΛ in Λ:

Γ0 =
⊔
n∈N0

Γ(n), Γ(n) := {η ∈ Γ | |η| = n}, N0 = N ∪ {0}, (16)

ΓΛ := {γ ∈ Γ0| γ ⊂ Λ} . (17)

Oleksii Rebenko Correlation of clusters



12. Poisson measure on con�guration spaces

States of ideal gas in equilibrium is described by a Poisson random point
measure πzσ on the con�guration space Γ, where z > 0 is
activity(physical parameter which is connected with density of particles)
and by σ we denote Lebesgue measure on Rd. πzσ means Poisson
measure with intensity measure zσ. To de�ne πzσ on the con�guration
space Γ, we �rst introduce a Lebesgue-Poisson measure λzσ = λΛ

zσ on
the space of �nite con�gurations ΓΛ (or Γ0 ) by the formula∫

ΓΛ

F (γ)λzσ(dγ) :=
∞∑
n=0

zn

n!

∫
Λ

· · ·
∫

Λ

Fn(x1, ..., xn)dx1 · · · dxn, F = {Fn}n≥0.

(18)
It is clear from (18) that the family of probability measures

πΛ
zσ := e−zσ(Λ)λΛ

zσ, Λ ∈ Bc(Rd) (19)

is consistent and by the Kolmogorov theorem there exists a unique
probability measure πzσ on the con�guration space Γ.
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13. Properties of the λzσ

Lemma

Let X1 ∈ Bc(Rd), X2 ∈ Bc(Rd) and X1 ∩X2 = ∅, X1 ∪X2 = Λ.
Functions Fi, (i = 1, 2) are B(ΓXi)-measurable. Then∫

ΓΛ

F1(γ)F2(γ)λzσ(dγ) =

∫
ΓX1

F1(γ)λzσ(dγ)

∫
ΓX2

F2(γ)λzσ(dγ).

(20)

Lemma

For all positive measurable functions G : Γ0 7→ R and H : Γ0 × Γ0 7→ R
the following identity is true:∫

Γ0

G(γ)
∑
η⊂γ

H(η, γ\η)λσ(dγ) =

∫
Γ0

∫
Γ0

G(η∪γ)H(η, γ)λσ(dη)λσ(dγ).

(21)
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14. Some distributions in D′(Γ0)

The space of test functions D(Γ0) we de�ne in the following way. Any

G : Γ0 7→ R such that G ∈ D(Γ0) and any γ ∈ Γ
(n)
0

G(γ) = G({x1, ..., xn}) = Gn(x1, ..., xn) ∈ C∞0 (Rdn). Then for any
η ∈ Γ0 we de�ne distributions δη in such a way that for any G ∈ D(Γ0)

(δη, G) :=

∫
Γ0

δη(γ)G(γ)λzσ(dγ) = z|η|G(η). (22)

The identity (21) in the sense of distributions at
H(η, γ \ η) = δηi(η)11Γ0(γ \ η):∫

Γ0

G(γ)
∑
ξi⊂γ

δηi(ξi)λzσ(dγ) = z|ηi|
∫

Γ0

G(ηi ∪ γ)λzσ(dγ), (23)

Due to (23) for distribution ∆(α,η)(γ) := 1 + α
∑
ξ⊂γ δη(ξ),

α ∈ R, η 6= ∅:

(∆(α,η), G) =

∫
Γ0

G(γ)∆(α,η)(γ)λzσ(dγ) =

=

∫
Γ0

G(γ)λzσ(dγ) + αz|η|
∫

Γ0

G(η ∪ γ)λzσ(dγ). (24)
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15. Interaction energy

We consider a general type of two-body interaction potential
V2(x, y) = φ(|x− y|). For any η, γ ∈ Γ0 an energy U(γ) of particles in a
con�guration γ and an interaction energy W (η; γ) between particles in η
and γ have the following forms:

U(γ) = Uφ(γ) :=
∑
{x,y}⊂γ

φ(|x− y|), (25)

W (η; γ) :=
∑
x∈η
y∈γ

φ(|x− y|). (26)

Interaction potential satis�es the following properties.
(A): 1. Stability:

U(γ) ≥ −B|γ|, B ≥ 0, γ ∈ Γ0, (27)

2. Regularity:

C(β) =

∫
Rd
dx|e−βφ(|x|) − 1| < +∞, β =

1

kT
. (28)
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16. Strong Superstability

(SSS) Strong superstability. There exist A > 0, B ≥ 0, p > 2 and the
partition ∆a0

such that for any γ = {x1, . . . , xN} ∈ Γ0 the following
holds:

U(γ) ≥
∑

∆∈∆a

[A|γ∆|p −B|γ∆|] . (29)

for any a ≤ a0, where ∆a is the partition of the space Rd into cubes ∆
with a rib a and center in r ∈ Zd:

∆ = ∆a(r) :=
{
x ∈ Rd | a

(
ri − 1/2

)
≤ xi < a

(
ri + 1/2

)}
. (30)
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17. Gibbs measure and correlation measure

In the above notations, the Gibbs measure in �nite volume Λ has the
form:

µΛ(dγ) =
1

ΞΛ
e−βU(γ)λzσ(dγ), (31)

ΞΛ =

∫
ΓΛ

e−βU(γ)λzσ(dγ), (32)

Physical observables are functions on the con�guration space Γ. They
have the summatory form: F (γ) =

∑
ηbγ H(η) (see., for example, the

energy (25)). Then one can rewrite mean values of them in the form:

F =

∫
Γ

∑
ηbγ

H(η)µ(dγ) =

∫
Γ0

H(η)ρ(η)λσ(dη). (33)

In this formula ρ(η)λσ(dη) is correlation measure and for the case when
this measure is absolutely continuous with respect to the
Lebesgue-Poisson measure λσ the corresponding derivative of
Radon-Nicodym is called a correlation function ρ(η):

ρΛ(η) =
z|η|

ΞΛ

∫
ΓΛ

e−βU(η∪γ)λzσ(dγ). (34)

.
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18. Justi�cation of the formula (33)

LetM+(Rd) denote the space of nonnegative Radon measures in B(Rd).
With every con�guration γ ∈ Γ can be associated an occupation measure

Γ 3 γ 7→
∑
x∈γ

δx ∈M+(Rd), (35)

where δx is the Dirac measure. Let F : Γ0 → R be a function on the
con�guration space Γ0 such that

F � Γ(n) := F (n)({x1, . . . , xn}) = Fn(x1, . . . , xn), n ∈ N. (36)

Then we de�ne the n-th Wick power by

〈F (n), : γ⊗n :〉 :=
∑

x1,...,xn∈Rd:
{x1,...,xn}⊆γ

Fn(x1, . . . , xn). (37)
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19. Correlation measure

The correlation measures ρ(n) are de�ned by∫
Γ(n)

〈F (n), : γ⊗n :〉µ(dγ) :=

∫
Rdn

Fn(x1, . . . , xn) ρ(n)(dx1, . . . , dxn).

(38)
In case that the correlation measures ρ(n) are absolutely continuous with
respect to the Lebesgue measure in Rdn, correlation functions are de�ned
as

ρ(n)(dx1, . . . , dxn) :=
1

n!
ρn(x1, . . . , xn) dx1 · · · dxn. (39)

Using (37), (38), we can now de�ne the correlation measure ρ on the
con�guration space ΓΛ by∫

ΓΛ

F (η) ρ(dη) =

∞∑
n=0

∫
Γ

(n)
Λ

∑
x1,...,xn∈Rd:
{x1,...,xn}⊆γ

Fn(x1, . . . , xn)µ(dγ), (40)

which is exactly (33) in the limit Λ ↑ Rd.
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20. Truncated(connected) correlation functions

In fact, correlation functions are the probability densities of the
distributions of the correlation measures. N. N. Bogolyubov gave them
the name of m-particle distribution functions. Real physical correlations
between particles are described by the so-called truncated correlation
functions(TCF):

ρT (η) = ρ(η) −
|η|∑
k=2

∗∑
{η1,...,ηk}⊂η

ρT (η1)ρT (η2) · · · ρT (ηk), ρT ({x1}) = ρ({x1}),

(41)
where the asterisk over the sum means that the sum is over all partitions
of the set η into k non-empty disjoint subsets. They can be also
represented by correlation functions ρ(η):

ρT (η) =

|η|∑
k=1

(−1)k−1(k − 1)!

∗∑
{η1,...,ηk}⊂η

ρ(η1)ρ(η2) · · · ρ(ηk). (42)

Two-point correlation function:

ρT ({x1, x2}) = ρT2 (x1, x2) = ρ2(x1, x2) − ρ1(x1)ρ1(x2). (43)
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21. Partially truncated correlation functions

Partially truncated(connected) correlation functions(PTCF) describe
correlations between clusters of particles. Let the set η̃ = {η1, . . . , ηm}
is the set of partition of con�guration η into m non-empty disjoint
subsets(|η1|+ · · ·+ |ηm| = |η|). Then PTCF can be also de�ned
recurrently by:

ρ̃Tm(η1; . . . ; ηm) = ρ1(∪mi=1ηi) −
m∑
k=2

∗∑
{η̃1,...,η̃k}⊂η̃

ρ̃Tm1
(η̃1)ρ̃Tm2

(η̃2) · · · ρ̃Tmk(η̃k),

(44)
where

η̃i = (ηi1 ; . . . ; ηimi ), ρ̃
T
mi(η̃i) = ρ̃Tmi(ηi1 ; . . . ; ηimi ), ρ̃

T
1 (η) = ρ(η).

(45)
So, this de�nition coincides with de�nition (41) when all con�gurations
ηi consist of one point:

ρ̃Tm(η1; . . . ; ηm) =

m∑
k=1

(−1)k−1(k−1)!

∗∑
{η̃1,...,η̃k}⊂η̃

ρ1(η̃1)ρ1(η̃2) · · · ρ1(η̃k).

(46)
Two-point PTCF: ρ̃T2 (η1; η2) = ρ2(η1 ∪ η2) − ρ1(η1)ρ1(η2).
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22. Generating functional of PTCF

To derive equations for these functions we de�ne the generating
functional:

F̃Tρj (α, η)m1 = logZj(α, η)m1 , (47)

Zj(α, η)m1 =

∫
Γ0

m∏
i=1

∆(αiηi)(γ)χj(γ)e−βU(γ)λzσ(dγ), (48)

where ∆(α,η)(γ) := 1 + α
∑
ξ⊂γ δη(ξ) and

χj(γ) =

{
1, γ = ∅∏
x∈γ j(x), |γ| ≥ 1.

(49)

with j ∈ C∞0 (Rd) and |j| ≤ 1. The product of the distributions
∆(αiηi)(γ) in (48) is well de�ned because of all sets ηi, i = 1, ...,m are
disjoint. Then

ρ̃Tj;m(η1; ...; ηm) =
∂m

∂α1 · · · ∂αm
F̃Tρj (α, η)m1 |α1=···=αm=0. (50)

Note, that at j(x) = 11Λ(x) and α1 = α2 = · · · = αm = 0 the formula
(48) is the great partition function (32) and ρ̃Tj;m(η1; ...; ηm), calculated
by the formula (51), coincide with (46) in �nite volume.
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23. Intermediate Functional

De�ne also:

ρ̃Tj;k(η1; ...; ηk|(α, η)mk+1) =
∂k

∂α1 · · · ∂αk
F̃Tρj (α, η)m1 |α1=···=αk=0, 1 ≤ k ≤ m.

(51)
For k = m = 1, using standard procedure of decomposition:

e−βU(η1∪γ) = e−βW (x1;η1\{x1})
∑
ξ⊂γ

K(x1; ξ)e−βU(η1\{x1}∪γ), (52)

where

K(x1; ξ) =
∏
y∈ξ

(
e−βφ(|x1−y|) − 1

)
, W (x1; η1 \ {x1}) ≥ −2B, B ≥ 0,

(53)
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24. Kirkwood-Salzburg type equations for PTCF

we obtain:

ρ̃Tj;1(η1) = ze−βW (x1;η1\{x1})j(x1)

∫
Γ0

K(x1; ξ)ρ̃Tj;1(η1 \ {x1} ∪ ξ)λσ(dξ)

(54)
and for m ≥ 2:

ρ̃Tj;m(η1; . . . ; ηm) = ze−βW (x1;η
′
1)j(x1)

∑
I⊂{2,...,m}

∗∑
ξ⊆∪i∈Iηi

∫
Γ0

K(x1; ξ∪γ)

× ρ̃Tj;m−|I|(η1 \ {x1} ∪i∈I ηi ∪ γ; η{2,...,m}\I)λσ(dγ), (55)

where W (x1; η
′

1) = W (x1; η1 \ {x1}) and

η{2,...,m}\I := (ηi2 ; . . . ; ηim−|I|) if {2, . . . ,m} \ I = {i2, . . . , im−|I|}.
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25. Solution in the thermodynamic limit

Following the strategy proposed in
Minlos R. A. and Pogosyan S. K., Theor. Math. Phys. 31(2), 408 (1977),
we seek a solution of the equation (73) in the form

ρ̃Tj;m(η1; . . . ; ηm) =

∫
Γ0

χj(

m⋃
i=1

ηi ∪ γ)Tm(η1; . . . ; ηm | γ)λσ(dγ), (56)

where Tm(η1; . . . ; ηm | γ), m ≥ 2 and γ ∈ Γ0 is a family of kernels such
that

Tm(η1; . . . ; ηm | γ) = 0 if γ ∩
m⋃
i=1

ηi 6= ∅. (57)

Oleksii Rebenko Correlation of clusters



26. Equations for kernels Tm

Tm(η1; . . . ; ηm | γ) =

ze−βW (x1;η
′
1)
∑
ξ⊂γ

∑
I⊂{2,...,m}

∗∑
η⊂ηI

K(x1; η∪ξ)Tm−|I|(η′1∪ηI∪ξ; η{2,...,m}\I | γ\ξ),

(58)

where η′1 = η1 \ {x1} and where we set ηI :=
⋃
i∈I ηi. Subject to the

initial conditions

T1(∅ | ∅) = 1, T1(∅ | γ) = 0 if γ 6= ∅, (59)

and also, for all m > 1,

Tm(η1; . . . ; ηm | γ) = 0 if γ 6= ∅ and ηj = ∅ for some j = 1, . . . ,m;
(60)
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27. Family of kernels Qm

Qm(η1; . . . ; ηm | γ) =

h
∑
ξ⊂γ

∑
I⊂{2,...,m}

∗∑
η⊂ηI

Kν(x1; η∪ξ)Qm−|I|(η′1∪ηI∪ξ; η{2,...,m}\I | γ\ξ),

(61)

with initial conditions like (59), (60), and where

Kν(x1; ξ) :=

{
1, if ξ = ∅,∏
x∈ξ

ν(x1 − x), if |ξ| ≥ 1. (62)

and
ze2βB = h and |e−βφ(|x−y|) − 1| = ν(x− y). (63)

It is clear that if the interaction potential φ satis�es (71)�(72), then

|Tm(η1; . . . ; ηm | γ)| ≤ Qm(η1; . . . ; ηm | γ). (64)

Oleksii Rebenko Correlation of clusters



28. The solution for Qm

The solution Qm(η1; . . . ; ηm | γ) of the equation (61) with conditions
like (59)-(60) can be written with the help of forest graphs:
(connected components of every forest graph are tree graphs; vertices are
points of clusters con�gurations and points of γ; each edge cannot
connect vertices in the same cluster; if we connect all points of each
cluster ηi into one point we get the usual tree graph)
The analytical contribution of each con�guration point is constant h.
The analytical contribution of each edges is function ν(x− y).

Qm(η1; . . . ; ηm | γ) =
∑

f̃∈S(η1;...;ηm|γ)

Gν(f̃ ; η1; . . . ; ηm | {y1, . . . , yn}) =

=
∑

f̃∈S(η1;...;ηm|γ)

hl+|γ|
∏

(x,y)∈E(f̃)

ν(x− y), (65)

where E(f̃) denotes the set of the edges of f̃ , and where,

l :=

m∑
i=1

li with li := |ηi|, i = 1, . . . ,m. (66)

Oleksii Rebenko Correlation of clusters



29. Estimates of Gν

Analytic contributions are easily estimated due to this lemma:

Lemma

Set

ν0 := max
x∈Rd

ν(x) < +∞, ν1 :=

∫
Rd
ν(x) dx < +∞. (67)

Then, given a forest graph f̃ ∈ S(η1; . . . ; ηm | γ) with |γ| = n ∈ N,∫
Rdn

Gν(f̃ ; η1; . . . ; ηm | {y1, . . . , yn})dy1 · · · dyn ≤ hl+nν
|Eη(f̃)|
0 νn1 ,

(68)
where l is de�ned in (66), and

|Eη(f̃)| ≤ l − l1, η :=

m⋃
i=1

ηi,

stands for the number of edges in which one or two ends belong to the
set
⋃m
i=1 ηi.
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30. Number of forest graphs

The number of forest graphs N
(m)
n (l1, . . . , lm) at �xed con�gurations⋃m

i=1 ηi ∪ γ follows from combinatoric lemma.

Lemma

Let n ∈ N0 and m ∈ N, m ≥ 2. Set Li := 2li − 1 for i = 2, . . . ,m. Then,

N (m)
n (l1; . . . ; lm) = l1(

m∏
i=2

Li)

(
m∑
i=1

li + n

)m+n−2

. (69)

The proof follows from recurrent relation

N (m)
n (l1; . . . ; lm) =

n∑
k=0

(
n

k

) ∑
I⊂{2,...,m}

LIN
(m−|I|)
n−k (l1+lI+k−1; li2 ; . . . ; lim−|I|),

(70)
where we denote LI :=

∏
i∈I Li, lI :=

∑
i∈I li (with the convention

l∅ := 0) and {i2, . . . , im−|I|} := {2, . . . ,m} \ I.
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31. Generalization of Cayley's formula

It is clear that in the case when every cluster has only one particle
(li = 1, i = 1, . . . ,m) the formula (69) is exactly Cayley's formula for the
number of connected tree-graphs with k = m+ n vertices:

N = kk−2 !!!
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32. Potential and Equation

(A): 1. Stability:

U(γ) ≥ −B|γ|, B ≥ 0, γ ∈ Γ0, (71)

2. Regularity:

C(β) =

∫
Rd
dx|e−βφ(|x|) − 1| < +∞, β =

1

kT
. (72)

Equation

ρ̃Tj;m(η1; . . . ; ηm) = ze−βW (x1;η
′
1)j(x1)

∑
I⊂{2,...,m}

∗∑
ξ⊆∪i∈Iηi

∫
Γ0

K(x1; ξ∪γ)

× ρ̃Tj;m−|I|(η1 \ {x1} ∪i∈I ηi ∪ γ; η{2,...,m}\I)λσ(dγ), (73)
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33. Solution of Eq. for ρ̃Tm

Theorem

Assume that the interaction potential φ satis�es (71)�(72).Then there
exists a unique solution of the equation (73) in the thermodynamic limit
j → 1, which can be written in the form

ρ̃Tm(η1; . . . ; ηm) =

∫
Γ0

Tm(η1; . . . ; ηm | γ)λσ(dγ), (74)

Tm(η1; . . . ; ηm | γ) =
∑

f̃∈S(η1;...;ηm|γ)

Gφ(f̃), (75)

Gφ(f̃) = zl+n
∏

(x,y)∈E(f̃)

(
e−βφ(|x−y|) − 1

) ∏
(x,y)∈S(f̃)

e−βφ(|x−y|), (76)

where S(f̃) denotes the set of pairs of points of the set
⋃m
i=1 ηi ∪ γ for

which there are no edges in the graph forest f̃ and (74) converges in the
region

ze2βB+2ν1(β) < 1. (77)
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34. Strong Decay property of ρ̃Tm

Theorem

Suppose that the interaction potential φ satis�es (71)�(72). Assume in
addition that there exists α > d and C(β) > 0, such that

νβ(x) := |e−βφ(x) − 1| ≤ C(β)

1 + |x|α
, (78)

Then, provided that,

ze2βB [ν1(β)e + ν1(β)(e + 21+α)] < 1, (79)

there exist, constants Am,σ = Am,σ(β, z, α) > 0, m ≥ 2, 1 ≤ σ ≤ m
such that the PTCF in (74) admit the following bounds

|ρ̃Tm(η1; . . . ; ηm)| ≤
m∑
σ=1

Am,σ max
Tm∈Tm

νTm , (80)

νTm :=
∏

(i,j)∈Tm

max
xi∈ηi;xj∈ηj

ν(xi − xj). (81)
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35. Constant for m = 2

In the case m = 2:

A2,1 = A2,2 :=
1

2
l1l2C(1 + C)l2−1

(
h

1− hν1e

)l
1− hν1e

1− hν1e− hν121+αC
.

(82)
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36. Constants Am,σ

In the case m ≥ 4 and for any 3 ≤ σ ≤ m:

Am,σ := (σ−2)σ
(
m− 1

σ − 1

)
2α(σ−1)2

lm−σCm(1+C)l−l1−σ+1

(
h

1− hν1e

)l
×
(

1− hν1e

1− hν1e− hν121+αC

)σ
hν1e(1− hν1e− hν121+αC)

1− hν1e− hν1(e + 21+α)C
. (83)
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THANK YOU!
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