Limit behaviour of random walks with elastic screens

Oleksandr Prykhodko

14.03 .2019

Let $\{S(n)\}$ be a simple random walk, i.e.

$$
S(n)=\sum_{i=1}^{n} \xi_{i}
$$

where $\left\{\xi_{i}\right\}$ are independent ± 1 with probability $\frac{1}{2}$.
Extend $S(n)$ for all t by linearity:

$$
S(t)=S(n)+(t-n)(S(n+1)-S(n)), t \in[n, n+1]
$$

Problem

Consider a random walk $\{\tilde{S}(n)\}$, which behaves as $\{S(n)\}$ everywhere except 0 . In 0 it stops for some random amount of time and then continues its way as $\{S(n)\}$.

Figure: $\tilde{S}(n)$

Two random walks together.

Problem

The Donsker Theorem

$\ln \mathrm{C}([0, T])$

$$
\begin{equation*}
\frac{S(n t)}{\sqrt{n}} \xrightarrow{w} W(t), n \rightarrow \infty . \tag{1}
\end{equation*}
$$

Our goal is to analyse the behaviour of a limiting random process for:

$$
\tilde{X}_{n}(t)=\frac{\tilde{S}(n t)}{\sqrt{n}} .
$$

Let times of lagging in zero be a sequence of i.i.d.r.v. $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ and

$$
\begin{equation*}
\alpha(t)=t+\sum_{i=1}^{\tau_{0}(n t)} \eta_{i}, t \geq 0 \tag{2}
\end{equation*}
$$

where $\tau_{0}(t)=\#\{k: S(k)=0,0<k \leq t\}$, i.e. number of returns to zero before the time t.

Consider

$$
\begin{equation*}
\alpha^{-1}(t)=\inf \{x: \alpha(x) \geq t\}, t \geq 0 \tag{3}
\end{equation*}
$$

Lemma

Theorem 1.

Let $\eta_{i} \geq 0$ be i.i.d.r.v. with $\mathbb{E} \eta_{i}<\infty, i \geq 1$. Then the sequence $\tilde{X}_{n}(t)=\frac{\tilde{S}(n t)}{\sqrt{n}}, n \geq 1$ converges weakly in $\mathrm{C}([0, T])$ to a Wiener's process $W(t)$:

$$
\begin{equation*}
\tilde{X}_{n}(t) \xrightarrow{w} W(t), n \rightarrow \infty . \tag{5}
\end{equation*}
$$

Let

$$
h_{n}(t)=\frac{\alpha^{-1}(n t)}{n}
$$

then

$$
\begin{equation*}
\tilde{X}_{n}(t)=\frac{\tilde{S}(n t)}{\sqrt{n}}=\frac{S\left(\alpha^{-1}(n t)\right)}{\sqrt{n}}=\frac{S\left(n \frac{\left.\alpha^{-1}(n t)\right)}{n}\right)}{\sqrt{n}}=X_{n}\left(h_{n}(t)\right) \tag{6}
\end{equation*}
$$

Recall that

$$
h_{n}(t)=\frac{\alpha^{-1}(n t)}{n}, \quad \frac{\alpha(n t)}{n}=t+\frac{1}{n} \sum_{i=1}^{\tau_{0}(n t)} \eta_{i}, \quad \tilde{X}_{n}(t)=X_{n}\left(h_{n}(t)\right)
$$

We will proceed by the following steps:
(1) We will show that

$$
\forall T>0 h_{n}(t) \stackrel{[0, T]}{\rightrightarrows} t, n \rightarrow \infty, \text { a.s. }
$$

by means of showing:
(1) $\frac{\alpha(n)}{n} \rightarrow 1, n \rightarrow \infty$, a.s.
(3) $\forall T>0 \frac{\alpha(n t)}{n} \stackrel{[0, T]}{\rightrightarrows} t, n \rightarrow \infty$, a.s.
(2) Use Skorohod's representation theorem for the pair $\left(X_{n}, h_{n}\right)$ to obtain a.s. convergence of copies, that are subjected to the same distributions:

$$
X_{n}(t) \underset{n \rightarrow \infty}{\rightrightarrows} W(t) \text { a.s., } \quad h_{n}(t) \underset{n \rightarrow \infty}{\rightrightarrows} t \text { a.s.. }
$$

(3) Derive the claim on the new probability space and thus on the original one.

Example

Consider the Markov chain $S^{p}(n)$ which if it is in state 0 has probability p of leaving zero during the current step. That is

$$
S^{p}(n)= \begin{cases} \begin{cases}S_{n-1}^{p}+1, \text { w. pr. } 0.5 & \text { if } S_{n-1}^{p} \neq 0 \\ +1, \text { w. pr. } 0.5 & \text { w. pr. } p \text { if } S^{p}(n-1)=0, \\ -1, \text { w. pr. } 0.5 & \text { w. pr. } 1-p \text { if } S^{p}(n-1)=0,\end{cases} \tag{7}\\ 0, & \text {. } \quad \text {. }\end{cases}
$$

$S^{p}(n)$ is equivalent to $\tilde{S}(n)$ with η_{i} geometrically distributed with parameter p. So in $\mathrm{C}([0, T])$

$$
\frac{S^{p}(n t)}{\sqrt{n}} \xrightarrow{w} W(t), n \rightarrow \infty .
$$

Lagging depending on n

Let $S^{p}(n)$ be a Markov chain on \mathbb{Z} with

$$
\begin{aligned}
& p_{0,0}=1-p, p_{0, \pm 1}=\frac{p}{2} \\
& \forall i \neq 0 p_{i, i \pm 1}=\frac{1}{2}
\end{aligned}
$$

And let $p=p_{n}=\frac{\rho}{n \gamma}$. Consider

$$
X_{n}^{p_{n}}(t)=\frac{S^{p_{n}}(n t)}{\sqrt{n}} .
$$

Theorem 2

In C($[0, T])$:

$$
\begin{aligned}
& \text { if } \gamma<0.5 \text {, then } X_{n}^{p_{n}}(t) \xrightarrow[n \rightarrow \infty]{w} W(t), \\
& \text { if } \gamma>0.5 \text {, then } X_{n}^{p_{n}}(t) \underset{n \rightarrow \infty}{w} 0, \\
& \text { if } \gamma=0.5 \text {, then } X_{n}^{p_{n}}(t) \underset{n \rightarrow \infty}{w} W_{\text {sticky }}(t) .
\end{aligned}
$$

As we have seen in example, $S^{p_{n}}(n) \stackrel{d}{=} \tilde{S}(n)$ with $\eta_{i}^{(n)} \sim \operatorname{Geom}\left(p_{n}\right)$. So we will prove the theorem for such $\tilde{S}(n)$.

Now $\alpha(t)=\alpha_{n}(t)$ depends on n. Still we write

$$
\begin{equation*}
X_{n}^{p_{n}}(t)=X_{n}\left(h_{n}(t)\right), \quad h_{n}(t)=\frac{\alpha_{n}^{-1}(n t)}{n} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\alpha_{n}(n t)}{n}=t+\frac{1}{n} \sum_{i=1}^{\tau_{0}(n t)} \eta_{i}^{(n)}=t+\frac{n^{\gamma}}{\sqrt{n}} \frac{1}{\sqrt{n}} \sum_{i=1}^{\tau_{0}(n t)} \frac{\eta_{i}^{(n)}}{n^{\gamma}} . \tag{9}
\end{equation*}
$$

Theorem

Let $W(t)$ - be a Brownian motion in \mathbb{R} and $L_{W}^{0}(t)$ — be its local time at 0 , i.e

$$
L_{W}^{0}(t)=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \epsilon} \int_{0}^{t} 1_{|W(s)| \leq \epsilon} d s
$$

Then in $\mathrm{C}([0, T])$:

$$
\left(\frac{\tau_{0}(n t)}{\sqrt{n}}, \frac{S(n t)}{\sqrt{n}}\right) \xrightarrow{w}\left(L_{W}^{0}(t), W(t)\right), n \rightarrow \infty
$$

We will proceed by the following steps:
(1) Use Skorohod's representation theorem to the pair $\left(\tau_{0}(t), S(t)\right)$.
(2) On a new probability space prove convergence of

$$
\begin{equation*}
\forall T>0 \sup _{t \in[0, T]}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{\sqrt{n} L_{W}^{0}(t)} \frac{\eta_{i}^{(n)}}{n^{\gamma}}-\frac{L_{W}^{0}(t)}{\rho}\right| \xrightarrow{\mathbb{P}} 0, n \rightarrow \infty \tag{10}
\end{equation*}
$$

©

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{\sqrt{n} t} \frac{\eta_{i}^{(n)}}{n^{\gamma}} \xrightarrow{\mathbb{P}} \frac{t}{\rho}, n \rightarrow \infty
$$

(3)

$$
\forall T>0 \sup _{t \in[0, T]}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{\sqrt{n} t} \frac{\eta_{i}^{(n)}}{n^{\gamma}}-\frac{t}{\rho}\right| \xrightarrow{\mathbb{P}} 0, n \rightarrow \infty,
$$

Recall that

$$
\tilde{X}_{n}(t)=X_{n}\left(h_{n}(t)\right), \quad \frac{\alpha_{n}(n t)}{n}=t+\frac{n^{\gamma}}{\sqrt{n}} \frac{1}{\sqrt{n}} \sum_{i=1}^{\tau_{0}(n t)} \frac{\eta_{i}^{(n)}}{n^{\gamma}} .
$$

(1) For $\gamma<0.5$:

$$
\begin{equation*}
\frac{\alpha_{n}(n t)}{n} \underset{n \rightarrow \infty}{\stackrel{w}{\rightarrow}} t \tag{11}
\end{equation*}
$$

(2) Invoke Skorohod's theorem once again for the triplet of random elements

$$
\left(\tau_{0}(t), S(t), \alpha_{n}(t)\right)
$$

(3) Appeal to the proof of theorem 1 .

$$
X_{n}^{p_{n}}(t) \underset{n \rightarrow \infty}{w} W(t) .
$$

Recall that

$$
\tilde{X}_{n}(t)=X_{n}\left(h_{n}(t)\right), \quad \frac{\alpha_{n}(n t)}{n}=t+\frac{n^{\gamma}}{\sqrt{n}} \frac{1}{\sqrt{n}} \sum_{i=1}^{\tau_{0}(n t)} \frac{\eta_{i}^{(n)}}{n^{\gamma}} .
$$

(1) For $\gamma>0.5$:
for every $\delta>0$ on $[\delta, T]$

$$
\begin{equation*}
\frac{\alpha_{n}(n t)}{n} \underset{n \rightarrow \infty}{\stackrel{w}{\rightarrow}} \infty . \tag{12}
\end{equation*}
$$

(2) Invoke Skorohod's theorem once again for the triplet of random elements

$$
\left(\tau_{0}(t), S(t), \alpha_{n}(t)\right)
$$

(3) Show that

$$
h_{n}(t) \rightrightarrows 0
$$

(9) Hence the claim on the new probability space.
(6) Hence on the original one.

$$
X_{n}^{p_{n}}(t) \underset{n \rightarrow \infty}{w} 0 .
$$

Recall that

$$
\frac{\alpha_{n}(n t)}{n}=t+\frac{n^{\gamma}}{\sqrt{n}} \frac{1}{\sqrt{n}} \sum_{i=1}^{\tau_{0}(n t)} \frac{\eta_{i}^{(n)}}{n^{\gamma}} .
$$

(1) For $\gamma=0.5$:

$$
\begin{equation*}
\frac{\alpha(n t)}{n} \underset{n \rightarrow \infty}{\stackrel{w}{\rightarrow}} t+L_{W}^{0}(t) / \rho . \tag{13}
\end{equation*}
$$

(2) As $\frac{\alpha(n t)}{n}$ is strictly monotonous, its generalized inverse is continious.
(3) Hence

$$
\begin{equation*}
\frac{\alpha^{-1}(n x)}{n}=\operatorname{Inv}\left[\frac{\alpha(n t)}{n}\right](x) \xrightarrow{w} \operatorname{Inv}\left[t+L_{W}^{0}(t) / \rho\right](x) . \tag{14}
\end{equation*}
$$

(c) Set

$$
W_{\text {sticky }}(x)=W\left(\operatorname{Inv}\left[t+L_{W}^{0}(t) / \rho\right](x)\right)
$$

Thank you for your attention!

