Limit behaviour of random walks with elastic screens

Oleksandr Prykhodko

14.03.2019

Oleksandr Prykhodko Limit behaviour of random walks with elastic screens

E > < E >

Э

5900

Let $\{S(n)\}$ be a simple random walk, i.e.

$$S(n) = \sum_{i=1}^{n} \xi_i,$$

where $\{\xi_i\}$ are independent ± 1 with probability $\frac{1}{2}$. Extend S(n) for all t by linearity:

$$S(t) = S(n) + (t - n)(S(n + 1) - S(n)), \ t \in [n, n + 1].$$

Oleksandr Prykhodko Limit behaviour of random walks with elastic screens

5900

Problem

Consider a random walk $\{\tilde{S}(n)\}$, which behaves as $\{S(n)\}$ everywhere except 0. In 0 it stops for some random amount of time and then continues its way as $\{S(n)\}$.

Figure: $\tilde{S}(n)$

nac

Two random walks together.

I ► < E ►</p>

590

문 > 문

The Donsker Theorem

In C([0,T])

$$\frac{S(nt)}{\sqrt{n}} \xrightarrow{w} W(t), n \to \infty.$$
(1)

Our goal is to analyse the behaviour of a limiting random process for:

$$\tilde{X}_n(t) = \frac{\tilde{S}(nt)}{\sqrt{n}}.$$

Oleksandr Prykhodko Limit behaviour of random walks with elastic screens

(日) (四) (王) (王) (王)

= 990

Let times of lagging in zero be a sequence of i.i.d.r.v. $\{\eta_n\}_{n=1}^\infty$ and

$$\alpha(t) = t + \sum_{i=1}^{\tau_0(nt)} \eta_i, \ t \ge 0,$$
(2)

where $\tau_0(t) = \#\{k: S(k) = 0, 0 < k \leq t\},$ i.e. number of returns to zero before the time t.

nac

-

(E) < E)</p>

Theorem 1.

Let $\eta_i \geq 0$ be i.i.d.r.v. with $\mathbb{E}\eta_i < \infty$, $i \geq 1$. Then the sequence $\tilde{X}_n(t) = \frac{\tilde{S}(nt)}{\sqrt{n}}$, $n \geq 1$ converges weakly in C([0,T]) to a Wiener's process W(t):

$$X_n(t) \xrightarrow{w} W(t), \ n \to \infty.$$
 (5)

Let

$$h_n(t) = \frac{\alpha^{-1}(nt)}{n},$$

then

$$\tilde{X}_{n}(t) = \frac{\tilde{S}(nt)}{\sqrt{n}} = \frac{S(\alpha^{-1}(nt))}{\sqrt{n}} = \frac{S(\alpha^{\frac{\alpha^{-1}(nt)}{n}})}{\sqrt{n}} = X_{n}(h_{n}(t)).$$
(6)

伺下 イヨト イヨト

= nar

Recall that

$$h_n(t) = \frac{\alpha^{-1}(nt)}{n}, \quad \frac{\alpha(nt)}{n} = t + \frac{1}{n} \sum_{i=1}^{\tau_0(nt)} \eta_i, \quad \tilde{X}_n(t) = X_n(h_n(t)).$$

We will proceed by the following steps:

We will show that

$$\forall T>0 \ h_n(t) \stackrel{[0,T]}{\rightrightarrows} t, n \to \infty, \text{a.s.}$$

by means of showing:

$$\begin{array}{l} \mathbf{0} \quad \frac{\alpha(n)}{n} \rightarrow 1, n \rightarrow \infty, \text{a.s.} \\ \\ \mathbf{0} \quad \forall T > 0 \quad \frac{\alpha(nt)}{n} \stackrel{[0,T]}{\rightrightarrows} t, n \rightarrow \infty, \text{a.s.} \end{array}$$

② Use Skorohod's representation theorem for the pair (X_n, h_n) to obtain a.s. convergence of copies, that are subjected to the same distributions:

$$X_n(t) \underset{n \to \infty}{\Rightarrow} W(t) \text{ a.s.}, \quad h_n(t) \underset{n \to \infty}{\Rightarrow} t \text{ a.s.}.$$

• Derive the claim on the new probability space and thus on the original one.

イロト イラト イラト

SQA

Example

Consider the Markov chain $S^p(n)$ which if it is in state 0 has probability p of leaving zero during the current step. That is

$$S^{p}(n) = \begin{cases} \begin{cases} S_{n-1}^{p} + 1, \text{w. pr. } 0.5 & \text{if } S_{n-1}^{p} \neq 0 \\ + 1, \text{w. pr. } 0.5 & \text{w. pr. } p \text{ if } S^{p}(n-1) = 0, \\ -1, \text{w. pr. } 0.5 & \text{w. pr. } 1 - p \text{ if } S^{p}(n-1) = 0, \end{cases}$$
(7)

 $S^p(n)$ is equivalent to $\tilde{S}(n)$ with η_i geometrically distributed with parameter p. So in $\mathrm{C}([0,T])$

$$\frac{S^p(nt)}{\sqrt{n}} \xrightarrow{w} W(t), n \to \infty.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

nac

3

Lagging depending on n

Let $S^p(n)$ be a Markov chain on \mathbb{Z} with

$$p_{0,0} = 1 - p, \ p_{0,\pm 1} = \frac{p}{2},$$

 $\forall i \neq 0 \ p_{i,i\pm 1} = \frac{1}{2}.$

And let $p = p_n = \frac{\rho}{n^{\gamma}}$. Consider

$$X_n^{p_n}(t) = \frac{S^{p_n}(nt)}{\sqrt{n}}.$$

Theorem 2

In C([0,T]):

$$\begin{split} &\text{if } \gamma < 0.5, \text{ then } X_n^{p_n}(t) \xrightarrow[n \to \infty]{w} W(t), \\ &\text{if } \gamma > 0.5, \text{ then } X_n^{p_n}(t) \xrightarrow[n \to \infty]{w} 0, \\ &\text{if } \gamma = 0.5, \text{ then } X_n^{p_n}(t) \xrightarrow[n \to \infty]{w} W_{\text{sticky}}(t) \end{split}$$

As we have seen in example, $S^{p_n}(n) \stackrel{d}{=} \tilde{S}(n)$ with $\eta_i^{(n)} \sim \text{Geom}(p_n)$. So we will prove the theorem for such $\tilde{S}(n)$.

nar

Now $\alpha(t) = \alpha_n(t)$ depends on n. Still we write

$$X_n^{p_n}(t) = X_n(h_n(t)), \quad h_n(t) = \frac{\alpha_n^{-1}(nt)}{n}$$
 (8)

and

$$\frac{\alpha_n(nt)}{n} = t + \frac{1}{n} \sum_{i=1}^{\tau_0(nt)} \eta_i^{(n)} = t + \frac{n^{\gamma}}{\sqrt{n}} \frac{1}{\sqrt{n}} \sum_{i=1}^{\tau_0(nt)} \frac{\eta_i^{(n)}}{n^{\gamma}}.$$
 (9)

Theorem

Let W(t) — be a Brownian motion in ${\mathbb R}$ and $L^0_W(t)$ — be its local time at 0, i.e

$$L_W^0(t) = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_0^t \mathbb{1}_{|W(s)| \le \epsilon} ds.$$

Then in C([0,T]):

$$\left(\frac{\tau_0(nt)}{\sqrt{n}}, \ \frac{S(nt)}{\sqrt{n}}\right) \xrightarrow{w} (L^0_W(t), \ W(t)), \ n \to \infty.$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 · クヘ ()

We will proceed by the following steps:

- **O** Use Skorohod's representation theorem to the pair $(\tau_0(t), S(t))$.
- ② On a new probability space prove convergence of

$$\forall T > 0 \sup_{t \in [0,T]} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^{\sqrt{n}L_W^0(t)} \frac{\eta_i^{(n)}}{n^{\gamma}} - \frac{L_W^0(t)}{\rho} \right| \xrightarrow{\mathbb{P}} 0, n \to \infty, \tag{10}$$

0

0

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{\sqrt{n}t}\frac{\eta_i^{(n)}}{n^{\gamma}} \xrightarrow{\mathbb{P}} \frac{t}{\rho}, n \to \infty.$$

$$\forall T>0 \; \sup_{t\in[0,T]} \Big| \frac{1}{\sqrt{n}} \sum_{i=1}^{\sqrt{n}t} \frac{\eta_i^{(n)}}{n^\gamma} - \frac{t}{\rho} \Big| \stackrel{\mathbb{P}}{\to} 0, n \to \infty,$$

SQA

-

글 🕨 🔺 글 🕨

Recall that

$$\tilde{X}_n(t) = X_n(h_n(t)), \quad \frac{\alpha_n(nt)}{n} = t + \frac{n^{\gamma}}{\sqrt{n}} \frac{1}{\sqrt{n}} \sum_{i=1}^{\tau_0(nt)} \frac{\eta_i^{(n)}}{n^{\gamma}}.$$

• For $\gamma < 0.5$:

$$\frac{\alpha_n(nt)}{n} \xrightarrow[n \to \infty]{w} t. \tag{11}$$

2 Invoke Skorohod's theorem once again for the triplet of random elements

$$(\tau_0(t), S(t), \alpha_n(t)).$$

O Appeal to the proof of theorem 1.

$$X_n^{p_n}(t) \xrightarrow[n \to \infty]{w} W(t).$$

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q ()

in case of $\gamma > 0.5$

Recall that

$$\tilde{X}_n(t) = X_n(h_n(t)), \quad \frac{\alpha_n(nt)}{n} = t + \frac{n^{\gamma}}{\sqrt{n}} \frac{1}{\sqrt{n}} \sum_{i=1}^{\tau_0(nt)} \frac{\eta_i^{(n)}}{n^{\gamma}}$$

• For $\gamma > 0.5$:

for every $\delta > 0$ on $[\delta, T]$ $\xrightarrow[n]{} \frac{\alpha_n(nt)}{n} \xrightarrow[n \to \infty]{} \infty.$ (12)

2 Invoke Skorohod's theorem once again for the triplet of random elements

 $(\tau_0(t), S(t), \alpha_n(t)).$

Show that

$$h_n(t) \rightrightarrows 0,$$

I Hence the claim on the new probability space.

Hence on the original one.

$$X_n^{p_n}(t) \xrightarrow[n \to \infty]{w} 0.$$

Jac.

Recall that

$$\frac{\alpha_n(nt)}{n} = t + \frac{n^{\gamma}}{\sqrt{n}} \frac{1}{\sqrt{n}} \sum_{i=1}^{\tau_0(nt)} \frac{\eta_i^{(n)}}{n^{\gamma}}.$$

• For $\gamma = 0.5$:

$$\frac{\alpha(nt)}{n} \xrightarrow[n \to \infty]{w} t + L_W^0(t)/\rho.$$
(13)

As $\frac{\alpha(nt)}{n}$ is strictly monotonous, its generalized inverse is continious.
 Hence

$$\frac{\alpha^{-1}(nx)}{n} = Inv \Big[\frac{\alpha(nt)}{n}\Big](x) \xrightarrow{w} Inv[t + L_W^0(t)/\rho](x).$$
(14)

Set

$$W_{\text{sticky}}(x) = W(Inv[t + L_W^0(t)/\rho](x))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Thank you for your attention!

< 61 ►

→ □ → → □ →

= nar