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Outline: what are the objects?

Diffusions:
dXt = a(Xt)dt+ σ(Xt)dWt

Solution to Lévy-driven SDEs:

dXt = a(Xt)dt+ σ(Xt−)dZt

Lévy-type processes: Markov processes with generator

Lf(x) = a(x) · ∇f(x) +
1

2
b(x) · ∇2f(x)

+

∫
R

(
f(x+ z)− f(x)− z · ∇f(x)1|z|<1

)
µ(x; dz), f ∈ C2

∞

(1)
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Heuristically, a Brownian motion/Lévy process with state dependent
characteristics.

One famous example: Millenial climate changes.

Ice core data, concentration of CO2 99K annual temperature
Available data: 8 000 000 years with step 100, sample of 80 000 points,
30 drastic changes 99K out of range of Gaussian deviations

Ditlevsen 1999: model based on an SDE driven by α-stable noise.

It would be be physically more realistic to have all the parameters of the
noise state-dependent; e.g. the skewness parameter should be positive in
the cold glacial periods and negative in the warmer interstadials
(communicated by I.Pavlyukevich).
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Outline: what are the general objectives?

I. ‘Mathematical’ specification of a ‘physically defined’ object:
existence/uniqueness type results

II. Local properties of the law: existence, bounds, regularity etc of the
transition probability density pt(x, y),

Pt(x, dy) = pt(x, y)dy

III. Approximation of implicit pt(x, y) by an explicit kernel papproxt (x, y)
with a ‘controllable’ accuracy

Example: a Conditionally Gaussian/Euler-Maruyama approximation of the
heat kernel of a diffusion,

pEMt (x, y) = (2πt)−d/2
(

det b(x)
)1/2

× exp

(
− 1

2t

(
b(x)−1(y − x− a(x)t), y − x− a(x)t

)) (2)
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Statistics, I: QMLE

Let ‘coefficients’ of X depend on θ ∈ Θ and X be observed at discrete
time moments h, 2h, . . . , nh.
The likelikhood function

Ln (θ;x1, · · · , xn) =

n∏
k=1

ph(θ;xk−1, xk)

is highly implicit, hence the ‘usual’ efficient statistical methods such as
Maximum Likelikhood Estimation (MLE) are not (easily) applicable.

Prakasa Rao, 1982: replace ph(θ;x, y) by pEMh (θ;x, y) and maximize the
new Quasi-likelikhood function. Requires (statistic) stability condition

nh2n → 0
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Pedersen, 1994, Kessler, 1995: better approximations to pt(x, y) lead to
less restrictive stability conditions

The core of the method: to design an approximation papproxt (x, y) in such
a way that the sampled log-derivative

∇θpapproxt (θ;Xtk−1
, Xtk), k = 1, . . . , n

is a ‘quasi martingale difference’.
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Statistic, II: LA(M)N property

Define sampled likelihood ratio function:

Zn(θ0, θ;x1, · · · , xn) =
Ln
(
θ;Xt1,n , · · · , Xtk,n

)
Ln
(
θ0;Xt1,n , · · · , Xtk,n

) .
The Local Asymptotic Normality property holds true at θ ∈ Θ with the
matrix rate r(n) and the asymptotic covariance matrix Σ(θ), if for any
u ∈ Rd if

Zn(θ, θ + r(n)u) = exp

{
u>Γn(θ)− 1

2
u>Σ(θ)u+ Ψn(u, θ0)

}
, (3)

Γn(θ)⇒P θ N (0,Σ(θ)) (4)

Ψn(u, θ0)→ 0, (5)

in P θ-probability. Vaguely,

In(θ)−1 = r(n)Σ(θ).

LAMN property: Σ(θ) is random, the limit of Γn is conditionally Gaussian
with the covariance Σ(θ).
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Le Cam, 1960: definition and application to construction of estimators

Hajek, 1972: the minimax theorem, an asymptotic version of the
Cramer-Rao efficiency bound for biased estimators

Requires relative bounds rather than absolute ones:

papproxt (x, y)− pt(x, y)

pt(x, y)

A crucial problem; just think of applying Aronson estimates

upper

lower
≈ t−d/2e−c1(y−x)

2/t

t−d/2e−c2(y−x)2/t
= eC(y−x)2/t

with possibly large C = c2 − c1; not integrable.
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One possible solution: Malliavin Calculus approach

Diffusions: Gobet, 2001, 2002

Lévy-driven SDEs:

Corcuera, Kohatsu-Higa
Ivanenko, K., Masuda
Clement, Gloter, Nguyen

The main tool: integral representation of the sensitivity:

∇θpt(x, y) = pt(x, y)Etx,yΞ

with a certain ‘weight’ Ξ.
To be discussed in the talk of D.Ivanenko
Hidden limitations:

requires specific structure of the noise;

requires SDE representation;

implicit, and thus hardly can be used for estimation purposes.
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Analytic description of pt(x, y): the parametrix method

Backward Kolmogorov equation:

(∂t − Lx)pt(x, y) = 0. (6)

‘Choose wisely’ p0t (x, y) and take

Φt(x, y) = −(∂t − Lx)p0t (x, y).

Then (6) is transformed to integral equation

pt(x, y) = p0t (x, y) + (p~ Φ)t(x, y), (7)

(p~ Φ)t(x, y) =

∫ t

0

∫
Rd
pt−s(x, z)Φs(z, y) dz,

which can be solved as

pt(x, y) = p0t (x, y) + (p0 ~ Φ)t(x, y) + (p0 ~ Φ ~ Φ)t(x, y) + . . . (8)
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One example: locally α-stable Lévy-type model

A.Kulik, Approximation in law of locally α-stable Lévy-type processes by
non-linear regressions, arXiv:1808.06779

real-valued case d = 1;

no diffusion term b(x) ≡ 0;

locally α-stable Lévy kernel: a mixture

µ(x; du) = µ(α)(x; du) + ν(x; du).

‘Principal’ α-stable part,

µ(α)(x; du) = λ(x)
1 + ρ(x) sgnu

|u|α+1
du,

thanks to state dependent skewness coefficient ρ(x) covers Pavlyukevich’s
extension of the Dietlevsen model.
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The ‘nuisance’ part ν(x; du) is allowed to be structured. The main
assumption is on the Blumenthal-Getour index, i.e. the intensity of small
jumps: for some β < α,

|ν|(x; {|z| > r}) ≤ Cr−β, r ∈ (0, 1]. (9)

‘Microstructural noises’ in the spirit of Äıt-Sakhalia& Jacod (2006, 2007)
are covered.
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Conditions

compensated drift coefficient

ã(x) = a(x)− 1α<1

∫
|u|≤1

uµ(α)(x; du)− 1β<1

∫
|u|≤1

u ν(x; du)

satisfies
|ã(x)− ã(y)| ≤ C|x− y|η, |x− y| ≤ 1, (10)

and the balance condition holds:

α+ η > 1 (11)

(Tanaka, Tsuchiya, Watanabe 1974: necessity and sufficiency in
1-dim, Kulik 2018: d-dim with isotropic α-stable)

λ, ρ are ζ-Hölder continuous, for some 0 < λmin < λmax

λmin ≤ λ(x) ≤ λmax.

The functions a(x), ν(x, dz) are continuous in x.
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Theorem

The martingale problem (L,C2
0 ) is well posed in D(R+) and, at the same

time, the solution X of this martingale problem is the unique Feller
process, whose generator A restricted to C∞0 coincides with L. This
process is strong Feller and possesses a transition probability density
pt(x, y).
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Regression approximation

Define partially compensated drift coefficient with the truncation level t1/α,

at(x) = a(x)−
∫
t1/α<|u|≤1

uµ(x, du), (12)

let1 at be uniformly bounded and uniformly Lipschitz. Define the regressor
function fs(x) as the solution to the Cauchy problem

d

dt
ft(x) = at(ft(x)), f0(x) = x. (13)

Denote by gλ,ρ,υ the stable density with intensity parameter λ, skewness
parameter ρ, and an external shift υ. Define

pregressiont (x, y) = t−1/αg(λ(x),ρ(x),2λ(x)ρ(x))
(
y − ft(x)

t1/α

)
.

1In this presentation only
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Regression approximation

pt(x, y) = pregressiont (x, y) +Rt(x, y)

The first summand is the distribution density of

X̃x
t = ft(x) + t1/αU t,x, Law(St,x) ∼ g(λt(x),ρt(x),υt(x)),

a conditionally stable approximation to Xt with regressor ft(x) and
innovation term U t,x. Any regressor would do, which satisfies

ft(x)− ft(x) = o(t1/α).

For instance, the Euler regressor ft(x) = x+ a(x)t is OK for α > 1/2.
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Bounds for the residual term

∫
R
|Rt(x, y)| dy ≤ Ctδ, δ = min

[
α+ η − 1

α
,
ζ

α
, 1− β

α

]
.

If η = ζ = 1, β = 0, the TV-accuracy of approximation t1/α.
For diffusions: t1/2,

|Rt(x, y)| ≤ Ct1/2t−d/2 exp{−c(y − x)2

t
}.

Such kernel estimates for Lévy-type setting require additional assumptions
on the noise. Actually a line of estimates instead of a fixed one can be
obtained:

integral tdelta

uniform-in-x t−1/α+δ

kernel,

the second and the third requiring more structure of the noise. A
by-product of non-locality of the dynamics.
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One application: the LAD estimator for unknown drift
coefficient

The objective: to estimate the parametric drift coefficient of (SDE)

dXt = b(θ;Xt) dt+ σ(Xt−) dZ
(α)
t + Σ(Xt−) dUt

on the basis of a discrete-time sample (Xtk,n)nk=0, where tk,n = khn with
the sampling step size hn → 0 as n→∞, that is, we consider
high-frequency sampling.

The model is inspired by Äıt-Sakhalia& Jacod:

Drift+ Structured noise part + ‘microstructural’ noise
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The Least Absolute Deviation estimator:

θ̂n = argminθLn(θ)

with

Ln(θ) :=

n∑
k=1

∣∣Xtk,n − ft(θ;Xtk−1,n
)
∣∣ , (14)

where ft(θ;x) is a (fixed) regressor.
Hiroki Masuda has previously studied the performance of the method for
(linear) OU type model

Analogue of LS estimator with the quardatic loss (· − ·)2 replaced by
the absolute loss | · − · |;
Has many advantages of LSE (e.g. noise insensitive)

Is rate efficient while LSE is not because of heavy tails.
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The statement

Conditions:

b ∈ Hη, η + α > 1, some regularity in θ;

σ ∈ Hζ , bounded, uniformly non-degenerate;

statistic stability condition:

nh2δn → 0;

the support of µU (du) is bounded by r and

r sup
x
|Σ′(x)| < 1.

The statement: θ̂n is consistent and asymptotically normal at the rate

r(n) =
√
nh1−1/αn .

The rate is optimal in the sense that the Fischer information of the model

In(θ) � r(n)−1
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A hint to understand the argument

As for LSEs, one has to study (the limit behavior of)

∂θLn(θ), ∂2θθLn(θ)

(|x|)′ = sgn (x), bounded, requires L1 bound for the heat kernel only;

(|x|)′′ = δ0(x), a finite measure, requires uniform bound (but not a kernel
one!)
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Improving the approximation

Let X be a diffusion,
pt(x, y) ≈ pEMt (x, y)

with accuracy t1/2 (⇔ the difference allows a kernel estimate of the order
t1/2), the conditionally Gaussian approximation of the order 1/2.

The Hermite polynomial approximation of the order 1

pt(x, y) ≈ pEMt (x, y)

1 + t2
∑
i,j,k

cijk(x)H
(i,j,k)
t (x, y)


with accuracy t,

cijk(x) =
1

4

d∑
l=1

(
bij(x)

)′
xl
bkl(x).

Higher order approximations are also available; current project with
D.Ivanenko and A.Kohatsu-Higa

Alex Kulik Regression approximation 22/29 22 / 29



Application to LAMN, I: finite observation horizon

Tn = T , a(θ;x) = a(x), b(θ;x) = b(β;x).

Theorem 1.

Let for some γ ∈ (0, 1] a ∈ Cγb , b ∈ C
1,1+γ
b . Then the model satisfies the

LAMN property w.r.t. parameter β at any point β0 with the scalar rate
r(n) = n−1/2 and the asymptotic variance

Σ(β0) =
1

2T

∫ T

0

(
∂βb(β0;Xt)

b(β0;Xt)

)2

dt.
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Application to LAMN, II: infinite observation horizon

Tn →∞, a(θ;x) = a0(x) + a1(α;x), b(θ;x) = b(β;x).

Theorem 2

Let a0 ∈ Cγb , a1 ∈ C
1,1+γ
b , b ∈ C1,1+γ

b . Assume

nh1+γn → 0,

the stability condition, and

ΣTn(θ) :=

 1
Tn

∫ Tn
0

(∂αa(α;Xt))2

b(β;Xt)
dt 0

0 1
2Tn

∫ Tn
0

(
∂βb(β;Xt)
b(β;Xt)

)2
dt

→ Σ(θ)

in Pθ0-probability, and for any ε > 0

Eθ0
∣∣∣ΣTn(θ0)−Eθ0 [ΣTn(θ0)|FεTn ]

∣∣∣→ 0, n→∞. (15)
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Then the model satisfies the LAMN property at the point θ0 = (α0, β0)
with the matrix rate

r(n) =
1√
n

(
1/
√
hn 0

0 1

)
and the asymptotic variance Σ(θ0).

Depending on the limit behaviour a(θ0;x), x→∞, we may get
substantially different asymptotic behavior of X: ergodic, zero-recurrent,
and transient. In each of these cases the conditions of part of Theorem 2
can be verified.
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The proofs are highly technical, but the backbone argument is easy to
explain. Instead of bounds for ratios (which are difficult to handle) we use
regression approximations with bounds for residual parts which are
individual (i.e. are estimated w/o taking ratios), but small (i.e. the
accuracy of approximation is high). The latter circumstance allows us to
‘cut off’ the residual terms using vague L1 bounds (instead of more
accurate L2 bounds which are not available because of the lack of
martingale structure), and analyze further the well structured and explicit
regression part.

Such argument is not sensitive to the structure of the process; Lévy-type
processes are visible.
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Application to simulation, I: Improved weak approximation
schemes for diffusions

Question: numeric procedure to calculate

PT f(x).

Standard scheme:
PT f(x) ≈ (PEMT/N )Nf(x)

Talay, Tubaro 1990: approximation rate N−1; N steps with accuracy N−2

each.
Improved weak schemes, Klöden, Platen 1992: correction of the
Euler-Maruyama scheme by auxiliary random ‘seeds’ with prescribed
moments, which would ‘kill’ the terms with t2 in the expansion for

Ptf(x)− PEMt f(x).

Bodnarchuk, K. 2018: an alternative improved scheme, based on a
polynomial regression.
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Application to simulation II: Exact approximation schemes
for diffusions

Bally, Kohatsu-Higa, 2015
The parametrix representation of the heat kernel

pt(x, y) = p0t (x, y) + (p0 ~ Φ)t(x, y) + (p0 ~ Φ ~ Φ)t(x, y) + . . .

can be written in a ‘probabilistic’ form

pt(x, y) = e−1E

Nt∏
k=1

θτk−τk−1
(X̂x

τk−1,τk
)δ(X̂x

t ∈ dy).
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Pro’s:

exact simulation scheme

Contra’s

requires arbitrary large size of products (unless a cutoff is involved,
and then the scheme becomes quasi-exact);

p0t (x, y) is not a density, X̂x
t is not well defined; requires forward

parametrix expansion rather than backward, which requires more
smoothness;

infinite variance of the weight

Nt∏
k=1

θτk−τk−1
(X̂x

τk−1,τk
).

Anderson, Kohatsu-Higa, Yuasa, SPA, 2019+: improved (forward)
parametrix-based expansion, the weights with finite vairances
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Ongoing projects and perspectives

Ongoing:

Asymptotic expansions of arbitrary order for diffusions, based on
Hermite polynomials (with Ivanenko, Kohatsu-Higa)

Stronger approximations based on parametrix and asymptotic
expansions (with Bodnarchuk, Ivanenko, Kohatsu-Higa)

Statistics for Lévy-type models:

LA(M)N property (with Kohatsu-Higa, strong stability condition);
LAD-type estimators for ‘real world models’ (with Masuda,
Pavlyukevich).

Parametrix-based simulation for ‘non-flat’ Lévy-type models (Marcus
type equations, with Bodnarchuk, Pavlyukevich).
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Perspectives and challenges:

QMLE study based on Hermite polynomials expansions (essentially
the Äıt-Sakhalia’s program since mid-2000, open to go)

Asymptotic expansions for ‘heat kernels’ of Lévy-type processes; the
gains would be visible and quite powerful (statistics and simulation for
Lévy-type systems without ‘accuracy limits’)

No ‘Hermite functions’ machinery visible, the ‘asymptotic scale’ is not
clear

One possible way to proceed: instead of ‘refining of backward
parametrix representation’, some other analytic construction can be
used in a more straightforward and thus more effective way. ‘Three
point parametrix’ is a promising candidate (ongoing, with Bogdan)
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