Semilinear Dirichlet problem for the fractional Laplacian

Krzysztof Bogdan

Wrocław University of Science and Technology

Singular diffusions: analytic and stochastic approaches, I 1-3 April 2019, University of Potsdam

This is joint work work with Sven Jarohs (Goethe University Frankfurt) and Edyta Kania (University of Wrocław).

The semilinear equation

Let
$$d \in \{1, 2, ...\}$$
, $0 < \alpha < 2$,

$$\nu(z) = \frac{2^{\alpha} \Gamma((d + \alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} |z|^{-d-\alpha}, \quad z \in \mathbb{R}^d,$$

$$\nu(x, y) = \nu(y - x),$$
and $\nu(x, A) = \int_A \nu(x, y) dy$. Define (the fractional Laplacian)

$$\Delta^{\alpha/2} u(x) = -(-\Delta)^{\alpha/2} u(x) = \lim_{\epsilon \to 0^+} \int_{|x-y| > \epsilon} (u(y) - u(x)) \nu(x, y) dy.$$

Let $\emptyset \neq D \subset \mathbb{R}^d$ be open. We ponder the existence, representation and uniqueness of solutions $u : \mathbb{R}^d \mapsto \mathbb{R}$ of the semilinear problem

$$-\Delta^{\alpha/2}u(x)=F(x,u(x)) \quad \text{ on } D,$$

with Dirichlet-type conditions for u on $D^c = \mathbb{R}^d \setminus D$ and at ∂D .

[Aba15] Large solutions for $\Delta^{\alpha/2}$.

[BKK08] Representation of nonnegative α -harmonic functions.

[BH86] Complete maximum principle.

[BC17] Large solutions in Lipschitz domains. (?!)

[MV14] Classical semilinear problems.

Geometry

In examples we consider, e.g., balls, half-spaces, cones, Lipschitz sets, $C^{1,1}$ sets, or arbitrary open sets D. Let

$$B_r(x) := \left\{ y \in \mathbb{R}^d : |x - y| < r
ight\}$$
 (ball),
 $\delta_D(x) := \operatorname{dist}(x, \operatorname{D^c})$ (distance).

Let $\partial_* D$ be the set of limit points of D:

 $\partial_* D = \partial D$ if *D* is bounded, or $\partial_* D = \partial D \cup \{\infty\}$ if *D* is unbounded.

Let $D^* = D \cup \partial_* D$. Thus, $D^* = \overline{D}$ or $D^* = \overline{D} \cup \{\infty\}$.

The isotropic α -stable Lévy process

We have (the Lévy-Khintchine exponent)

$$|\xi|^{lpha} = \int_{\mathbb{R}^d} (1 - \cos(\xi x)) \nu(x) \, dx, \qquad \xi \in \mathbb{R}^d.$$

Let $p_t(x) = (2\pi)^{-d} \int_{\mathbb{R}^d} \exp(-i\xi x) \exp(-t|\xi|^{\alpha}) d\xi$, $t > 0, x \in \mathbb{R}^d$. Let (X_t, \mathbb{P}^x) be the standard rotation invariant α -stable Lévy process in \mathbb{R}^d with the characteristic function

$$\mathbb{E}^{x}[\exp(i\xi(X_{t}-x))]=\exp(-t|\xi|^{lpha}), \quad x,\xi\in\mathbb{R}^{d},t\geq0.$$

 (X_t) is strong Markov w/trans. prob. $\mathbb{P}^x(X_t \in A) = \int_{A-x} p_t(y) dy$, $\Delta^{\alpha/2}$ is the generator of (the semigroup of) the process.

The α -harmonic functions

For open $U \subset \mathbb{R}^d$, we define the first exit time of U:

$$\tau_U = \inf \left\{ t \ge 0 : X_t \in U^c \right\}.$$

Function $h : \mathbb{R}^d \to \mathbb{R}$ is called α -harmonic in D $(h \in \mathcal{H}^{\alpha}(D))$ if

$$h(x) = \mathbb{E}^{x} h(X_{\tau_U}), \quad x \in U \subset \subset D.$$

We call *h* regular α -harmonic in *D* ($h \in \mathcal{H}^{\alpha}_{reg}(D)$) if

$$h(x) = \mathbb{E}^{x} h(X_{\tau_D}), \quad x \in D.$$

If $h \in \mathcal{H}^{\alpha}(D)$ and h = 0 on D^{c} , then h is called singular α -harmonic on D.

Harmonic majorization

We say that u is harmonically majorized on D if there exists $h \ge 0$ on \mathbb{R}^d which is α -harmonic on D, and $|u| \le h$ on \mathbb{R}^d .

For functions $\psi \ge 0$ and ϕ on D we write " $\phi = o(\psi)$ on D" if for every $\varepsilon > 0$ there is compact $F \subset D$ such that $|\phi| \le \varepsilon \psi$ on $D \setminus F$.

We say that u is harmonically small on D if there is $h \ge 0$ on \mathbb{R}^d which is α -harmonic on D, $|u| \le h$ on \mathbb{R}^d , and u = o(h) on D.

Weak fractional Laplacian

For
$$u \in \mathcal{L}^1 := L^1(\mathbb{R}^d, (1+|x|)^{-d-lpha} \mathrm{d}x)$$
, we define ([BB99])

$$\langle \widetilde{\Delta}^{\alpha/2} u, \phi \rangle = \langle u, \Delta^{\alpha/2} \phi \rangle = \int_{\mathbb{R}^d} u(x) \Delta^{\alpha/2} \phi(x) \, dx, \quad \phi \in C^\infty_c(\mathbb{R}^d).$$

If $u \in \mathcal{H}^{\alpha}(D)$, then $u \in \mathcal{L}^1$, $u \in C^{\infty}(D)$, $\Delta^{\alpha/2}u = 0$ on D and $\widetilde{\Delta}^{\alpha/2}u = 0$ on D. Conversely, if $u \in \mathcal{L}^1$ and $\widetilde{\Delta}^{\alpha/2}u = 0$ on D, then $u \in \mathcal{H}^{\alpha}(D)$, after a modification on a set of Lebesgue measure zero.

Thus, weakly α -harmonic and α -harmonic functions coincide *a.e.*

Integral kernels

Let $G_D(x, y)$, $x, y \in \mathbb{R}^d$, be the **Green function**. For instance if $\alpha < d$, then $G_{\mathbb{R}^d}(x, y) = c |y - x|^{\alpha - d}$ (the Riesz kernel). We have $\int G_D(x, v) \Delta^{\alpha/2} \varphi(v) dv = -\varphi(x)$ if $x \in \mathbb{R}^d$, $\varphi \in C_c^{\infty}(D)$. Also,

$$\int_{\mathbb{R}^d} G_D(x,y) f(y) \mathrm{d} y = \mathbb{E}^x \int_0^{\tau_D} f(X_t) dt, \quad x \in D, z \in D^c.$$

The **Poisson kernel** of D is given by Ikeda-Watanabe formula

$$P_D(x,z) := \int_D G_D(x,y) \nu(y,z) \mathrm{d}y, \quad x \in D, z \in D^c$$

Let $\omega_D^x(A) = \mathbb{P}^x(X_{\tau_D} \in A)$ -harmonic measure of D for $\Delta^{\alpha/2}$. If $x \in D$ and $\operatorname{dist}(A, D) > 0$, then $\omega_D^x(A) = \int_A P_D(x, y) dy$. We have $\omega_D^x(\partial D) = 0$ if, e.g., D is Lipschitz.

Martin kernel

Fix (any) $x_0 \in D$. We say that $y \in D^c$ is accessible from D if

$$P_D(x_0,y) = \int_{\mathbb{R}^d} G_D(x_0,z) \nu(z,y) dz = \infty$$
.

The point at infinity is called accessible from D if

$$\int_{\mathbb{R}^d} G_D(x_0,z) dz = \infty.$$

We define the Martin boundary as the set of accessible points:

$$\partial_M D = \{ y \in \partial_* D : y \text{ is accessible from } D \}.$$

We define the Martin kernel,

$$M_D(x,y) = \lim_{D \ni z \to y} \frac{G_D(x,z)}{G_D(x_0,z)}, \quad x \in \mathbb{R}^d, y \in \partial_* D.$$

The limit always exits. It is α -harmonic iff $y \in \partial_M D$ ([BKK08]).

Green, Poisson and Martin integrals

We define

$$\begin{split} G_D[f](x) &= \int_D G_D(x,y) f(y) dy, \quad x \in \mathbb{R}^d, \\ P_D[\lambda](x) &= \int_{D^c} P_D(x,y) \lambda(dy) \text{ on } D \text{ and } P_D[\lambda] = \lambda \text{ on } D^c, \\ M_D[\mu](x) &= \int_{\partial_M D} M_D(x,y) \, \mu(dy), \quad x \in \mathbb{R}^d. \end{split}$$

Theorem (Martin representation [BKK08])

Let $h \ge 0$. Then $h \in \mathcal{H}^{\alpha}(D)$ if and only if $h = P_D[\lambda] + M_D[\mu]$ with nonnegative measures λ and μ .

Hint for the semilinear problem:

Consider $u = G_D[f] + P_D[\lambda] + M_D[\mu] = G_D[f] + h$.

The idea of the proof of the Martin representation

Let $u \ge 0$ be singular α -harmonic on D. Let $x \in D_n \uparrow D$ be nice;

$$u(x) = \int_{D\setminus D_n} P_{D_n}(x, y) u(y) dy$$

=
$$\int_{D_n} \frac{G_{D_n}(x, v)}{G_{D_n}(x_0, v)} \left(G_{D_n}(x_0, v) \int_{D\setminus D_n} \nu(v, y) u(y) dy \right) dv.$$

:=
$$\int_{D_n} M_{D_n}(x, v) \mu_n(dv) dv.$$

Here $\mu_n(\mathbb{R}^d) = \int_D G_{D_n}(x_0, v) \int_{D \setminus D_n} \nu(v, y) u(y) dy dv = u(x_0) < \infty$. The measures weakly converge on $\partial_* D$.

$$M_{D_n}(x,v) = \mathcal{G}_{D_n}(x,v)/\mathcal{G}_{D_n}(x_0,v) o M_D(x,z)$$
 on ∂_*D by BHP.

The boundary condition

For $U \subset \subset D$ we define

$$\eta_U[u](A) = \int_A G_U(x_0, z) \int_{D \setminus U} \nu(z, y) u(y) \, dy \, dz, \quad A \subset \mathbb{R}^d.$$

We let

$$W_D[u] = \lim_{U \uparrow D} \eta_U[u].$$

If u has an α -harmonic majorant w, then

 $\eta_U[|u|] \le w(x_0).$

Moreover, harmonic smallness yields $W_D[u] = 0$.

Lemma

$$W_D\left[G_D[f] + P_D[\lambda] + M_D[\mu]\right] = \mu.$$

The boundary condition, II

Proof.

Assume that $f \ge 0$ and take nice $U \uparrow D$. For $x \in D$,

$$\begin{split} &\int_{\mathbb{R}^d} G_U(x,z) \int_{D \setminus U} \nu(z,y) G_D[f](y) \, dy dz \\ &= \int_{D \setminus U} P_U(x,y) G_D[f](y) \, dy \\ &= \mathbb{E}^x \left[G_D[f](X_{\tau_U}) \right] \\ &= \mathbb{E}^x \left[\mathbb{E}^{X_{\tau_U}} \left[\int_0^{\tau_D} f(X_t) \, dt \right] \right] \\ &= \mathbb{E}^x \left[\int_{\tau_U}^{\tau_D} f(X_t) \, dt \right] \leq G_D f(x). \end{split}$$

The boundary condition, III

Our semilinear problem is finally formulated as follows:

$$\begin{cases}
-\widetilde{\Delta}^{\alpha/2}u(x) = F(x, u(x)) & \text{ on } D, \\
u = \lambda & \text{ on } D^c, \\
W_D[u] = \mu & \text{ on } \partial D \text{ (on } \partial_M D).
\end{cases}$$
(1)

Here we assume: $P_D[|\lambda|](x) + M_D[|\mu|](x) < \infty$ for some (all) $x \in D$; *u* is harmonically majorized; $F_u(x) := F(x, u(x))$ is locally integrable on *D*; $\widetilde{\Delta}^{\alpha/2}u$ and $F_u(x)dx$ are equal as distributions on *D*. Note: *u* is a measure on *D*^c.

We say that $r: [0, \infty) \to [0, \infty)$ is sublinear increasing if it is nondecreasing and $\lim_{v\to\infty} r(v)/v = 0$.

Uniform integrability and Vitali's theorem

Definition

 $q: D \to [-\infty, \infty]$ is in the Kato class $\mathcal{J}^{\alpha}(D)$, if the functions $\mathcal{G}_D(x, y)|q(y)|$ are uniformly integrable with respect to dy on D.

$$q\in \mathcal{J}^{lpha}(D) ext{ if } |D|<\infty, \lim_{arepsilon
ightarrow 0} \sup_{x\in \mathbb{R}^d} \int\limits_{|x-y|$$

Example

If D is a bounded open set with the outer cone property and $-\infty < \beta < \alpha$, then $\delta_D(x)^{-\beta} \in \mathcal{J}^{\alpha}(D)$.

Lemma

Let D be regular. Then $q \in \mathcal{J}^{\alpha}(D)$ if and only if $G_D|q| \in C_0(D)$, and in this case $G_Dq \in C_0(D)$.

Existence

Denote $h = P_D[\lambda] + M_D[\mu]$ and $H = P_D[|\lambda|] + M_D[|\mu|]$.

Theorem (A)

Let D be regular. Let $P_D[|\lambda|] + M_D[|\mu|] < \infty$ on D. Let $F : D \times \mathbb{R} \to \mathbb{R}$ and $|F(x,t)| \le q(x)r(|t|)$ for all $x \in D$, $t \in \mathbb{R}$, where $r : [0,\infty) \to [0,\infty)$ is nondecreasing. Let r be sublinear, or m > 0 be small. If $q, qr(2H) \in \mathcal{J}^{\alpha}(D)$, then there is a solution u harmonically majorized by H + const for

	$\int -\Delta^{\alpha/2} u(x) = mF(x, u(x))$	on D,
ł	$u = \lambda$	on D ^c ,
	$W_D[u] = \mu$	on ∂D .

Theorem (B)

Under the assumptions of Theorem (A), suppose that u is a solution to (1) harmonically majorized by H + const. Then after a modification on a set of Lebesgue measure zero, u is continuous on D and $u = G_D[F_u] + P_D[\lambda] + M_D[\mu]$ on D.

Theorem (C)

In addition to the assumptions of Theorem (B) suppose that $v \mapsto F(x, v)$ is nonincreasing for each $x \in D$. If the solution of (1) is continuous on D, then it is unique.

Corollary

Let D be regular. Let $0 \le q \in \mathcal{J}^{\alpha}(D)$ and $|F(x,v)| \le q(x)$. If $P_D[|\lambda|] + M_D[|\mu|] < \infty$ on D, then there is harmonically majorized continuous solution to (1), unique if $v \mapsto F(x, v)$ is nonincreasing.

Linear Dirichlet problem

The semilinear problem builds on the linear case, as in [MV14].

Lemma

Let $f \in L^1_{loc}(D)$. Suppose $P_D[|\lambda|] + M_D[|\mu|] < \infty$ on D. There is at most one (unique a.e.) harmonically majorized solution u of

$$\begin{cases} -\widetilde{\Delta}^{\alpha/2}u = f & \text{ on } D, \\ u = \lambda & \text{ on } D^c, \\ W_D[u] = \mu & \text{ on } \partial D. \end{cases}$$

Proof of the existence (Theorem A)

Recall $h = P_D[\lambda] + M_D[\mu]$ and $H = P_D[|\lambda|] + M_D[|\mu|]$. We define the operator T on $C_0(D)$:

$$Tv(x) = m \int_D G_D(x,y)F(y,v(y)+h(y))dy, \quad x \in \mathbb{R}^d.$$

T satisfies the assumptions of the Schauder Fixed Point Theorem. Thus there is $v_0 \in K$ such that $Tv_0 = v_0$. Then,

$$u := v_0 + h = G_D[mF_u] + P_D[\lambda] + M_D[\mu]$$

is a solution to (1) continuous on D. Indeed, by [BB00],

$$-\widetilde{\Delta}^{\alpha/2}u:=-\widetilde{\Delta}^{\alpha/2}(v_0+h)=-\widetilde{\Delta}^{\alpha/2}v_0=-\widetilde{\Delta}^{\alpha/2}G_D[mF_u]=mF_u.$$

Proof of representation (Theorem B)

Let $\tilde{u} = G_D[F_u] + P_D[\lambda] + M_D[\mu]$. We have $|F_u| \le cq + qr(2H) \in \mathcal{J}^{\alpha}(D)$.

Hence \tilde{u} is continuous and harmonically majorized by H + const.Uniqueness of the linear problem implies that $u = \tilde{u} \ a.e.$ on \mathbb{R}^d .

Proof of uniqueness (Theorem C)

Suppose that u_1, u_2 satisfy (1). By Theorem B and assumed continuity, $u_i = G_D[F_{u_i}] + P_D[\lambda] + M_D[\mu]$ on D for i = 1, 2. Thus $u_1 - u_2 = G_D[F_{u_1} - F_{u_2}]$. Fix $x \in D$ and assume that $F(x, u_1(x)) - F(x, u_2(x)) > 0$. By the monotonicity of F, $u_2(x) > u_1(x)$. Then $G_D[F_{u_1} - F_{u_2}](x) = u_1(x) - u_2(x) < 0$ for this x. By the complete maximum principle [BH86], $u_1 - u_2 = G_D[F_{u_1} - F_{u_2}] \leq 0$ everywhere \mathbb{R}^d . By symmetry, $u_2 - u_1 \leq 0$, too, and so $u_1 = u_2$.

Examples: the ball

Let $D = B_r = \{x \in \mathbb{R}^d : |x| < r\}$ and $x_0 = 0$. Here is the M. Riesz' formula for the Poisson kernel of B_r :

$$P_{B_r}(x,y) = C_{d,\alpha} \left(\frac{r^2 - |x|^2}{|y|^2 - r^2} \right)^{\alpha/2} |x - y|^{-d}, \quad x \in B_r, \ y \in B_r^c,$$

with $C_{d,\alpha} = \Gamma(d/2)\pi^{-1-d/2}\sin(\pi\alpha/2)$. The Green function is

$$G_{B_r}(x,y) = \mathcal{B}_{d,\alpha}|x-y|^{lpha-d}\int_0^\omega rac{s^{lpha/2}}{(s+1)^{d/2}}rac{ds}{s}, \quad x,y\in B_r;$$

$$\omega = \frac{(r^2 - |x|^2)(r^2 - |y|^2)}{|x - y|^2} \text{ and } \mathcal{B}_{d,\alpha} = \Gamma(d/2)/(2^{\alpha}\pi^{d/2}[\Gamma(\alpha/2)]^2).$$

Examples: the ball, II

Let r = 1 and $B = B_1$. The Martin kernel of the ball B is

$$M_B(x,y) = \frac{(1-|x|^2)^{\alpha/2}}{|y-x|^d}, \quad x \in B, \ y \in \partial B,$$

and $(1 - |x|^2)^{\alpha/2-1}_+ = c \int_{\partial B} M_B(x, y) \sigma(dy)$ is α -harmonic on B.

Lemma

Suppose that $f \in L^1_{loc}(B)$ and λ is a measure on B^c such that $P_D[|\lambda|] < \infty$ on B. Up to a modification on a set of Lebesgue measure zero there is at most one solution of

$$\begin{cases} -\widetilde{\Delta}^{\alpha/2}u = f & \text{ on } B, \\ u = \lambda & \text{ on } B^c, \end{cases}$$

harmonically small on B with respect to $w(x) = (1 - |x|^2)^{\alpha/2-1}$.

Examples: the ball, III

The function $h(x) := (1 - |x|^2)_+^{\alpha/2-1} = c \int_{\partial B} M_B(x, y) \sigma(dy)$ is (singular) α -harmonic on B. For (as large as possible) p > 0 and (sufficiently small) m > 0 we look for solutions to

$$\begin{cases} -\widetilde{\Delta}^{\alpha/2}u(x) = m \ u(x)^p & \text{ on } D, \\ u = 0 & \text{ on } D^c, \\ W_D[u] = c\sigma & \text{ on } \partial D. \end{cases}$$

In the setting of Theorem (A) we have H = h, $q \equiv 1$ and $r(t) = t^p$. Let $0 . Since <math>G_B \delta_B^{-\alpha} \leq const.$, $h^p \in \mathcal{J}^{\alpha}(B)$. Indeed, $(1 - \alpha/2)p < \alpha$. This allows for (superlinear) p > 1 if $\alpha > 2/3$. The critical exponent $p^* = 2\alpha/(2 - \alpha)$ is smaller (=worse) than in [Aba15], where $p^* = (1 + \alpha/2)(1 - \alpha/2)$.

Example: the half-space and other cones

Suppose that $D = \{x = (x_1, x_2, \cdots, x_d) \in \mathbb{R}^d : x_d > 0\} =: \mathbb{H}_+$. The Poisson kernel for the half-space is

$$P_{\mathbb{H}_+}(x,y) = c_{\alpha,d} \frac{x_d^{\alpha/2}}{|y_d|^{\alpha/2}} |x-y|^{-d}, \quad x \in \mathbb{H}_+, \ y \in \operatorname{int}(\mathbb{H}_+^c),$$

where $c_{\alpha,d} = \sin(\pi \alpha/2)\Gamma(d/2)\pi^{-1-d/2}$. The Green function is

$$\mathcal{G}_{\mathbb{H}_+}(x,y) = \mathcal{B}_{d,\alpha}|x-y|^{\alpha-d} \int_0^{\frac{4x_d y_d}{|x-y|^2}} \frac{t^{\alpha/2}}{(t+1)^{d/2}} \frac{dt}{t}.$$

The Martin kernel for $y \in \partial \mathbb{H}_+$ is

$$M_{\mathbb{H}_+}(x,y) = rac{x_d^{lpha/2}}{|x-y|^d} (1+|y|^2)^{d/2}, \quad x_d > 0,$$

and, for the point at infinity,

$$M_{\mathbb{H}_+}(x,\infty)=x_d^{\alpha/2}, \quad x_d>0.$$

Lemma

Suppose that $f \in L^1_{loc}(\mathbb{H}_+)$ and λ is a measure on \mathbb{H}^c_+ such that $P_D[|\lambda|] < \infty$ on \mathbb{H}_+ . Up to a modification on a set of Lebesgue measure zero there is at most one solution to the problem

$$\begin{cases} -\widetilde{\Delta}^{\alpha/2}u = f & \text{ on } \mathbb{H}_+, \\ u = \lambda & \text{ on } \mathbb{H}_+^c \end{cases}$$

harmonically small on \mathbb{H}_+ with respect to $w(x) = x_d^{\alpha/2-1} + x_d^{\alpha/2}$.

The Martin kernel with the pole at infinity for arbitrary open cones is discussed in [BB04].

Further results of this type depend on detailed asymptotics of Martin and Green kernels for specific domains.

Existing results on Lipschitz sets are not satisfactory.

N. Abatangelo.

Large *s*-harmonic functions and boundary blow-up solutions for the fractional Laplacian.

Discrete Contin. Dyn. Syst., 35(12):5555-5607, 2015.

K. Bogdan and T. Byczkowski.

Potential theory for the $\alpha\mbox{-stable}$ Schrödinger operator on bounded Lipschitz domains.

Studia Math., 133(1):53–92, 1999.

K. Bogdan and T. Byczkowski.

Potential theory of Schrödinger operator based on fractional Laplacian.

Probab. Math. Statist., 20(2, Acta Univ. Wratislav. No. 2256):293–335, 2000.

R. Bañuelos and K. Bogdan. Symmetric stable processes in cones. *Potential Anal.*, 21(3):263–288, 2004.

M. Ben Chrouda.

Existence and nonexistence of positive solutions to the fractional equation $\Delta^{\frac{\alpha}{2}} u = -u^{\gamma}$ in bounded domains. Ann. Acad. Sci. Fenn. Math., 42(2):997–1007, 2017.

J. Bliedtner and W. Hansen.

Potential theory.

Universitext. Springer-Verlag, Berlin, 1986. An analytic and probabilistic approach to balayage.

- K. Bogdan, T. Kulczycki, and M. Kwaśnicki. Estimates and structure of α-harmonic functions. Probab. Theory Related Fields, 140(3-4):345–381, 2008.
 - Moshe Marcus and Laurent Véron.

Nonlinear second order elliptic equations involving measures, volume 21 of *De Gruyter Series in Nonlinear Analysis and Applications*.

De Gruyter, Berlin, 2014.