The modified Euler scheme for a weak approximation of solutions of stochastic differential equations driven by a Wiener process

Semen Bodnarchuk

lgor Sikorsky Kyiv Polytechnic Institute

Potsdam, 1 April 2019

joint result with prof. Alexey Kulik

	The modified Euler method for SDE's driven by Wiener noise
Semen Bodnarchuk	1 / 36

Let X be a diffusion process in \mathbb{R}^d of the form

$$X_t = x + \int_0^t a(X_s)ds + \int_0^t \sigma(X_s)dW_s, \quad 0 \le t \le T,$$
(1)

where $W \in \mathbb{R}^m$ is a Wiener process, $a : \mathbb{R}^d \to \mathbb{R}^d$, $\sigma : \mathbb{R}^d \to \mathbb{R}^{d \times m}$.

$\mathbb{E}_x f(X_T) = ?$

If X_T is known then one can simulate N independent copies of it, e.g. $X_T^{(i)}, \mbox{ and approximate }$

$$\mathbb{E}_x f(X_T) \approx \frac{1}{N} \sum_{i=1}^N f(X_T^{(i)}).$$

Unfortunately, in most cases the law of X_T is not known. In this case one can use an approximation of it, e.g. \hat{X}_T . Then

$$\left| \mathbb{E}_{x} f(X_{T}) - \frac{1}{N} \sum_{i=1}^{N} f(\hat{X}_{T}^{(i)}) \right| \leq \left| \mathbb{E}_{x} f(X_{T}) - \mathbb{E}_{x} f(\hat{X}_{T}) \right| + \left| \mathbb{E}_{x} f(\hat{X}_{T}) - \frac{1}{N} \sum_{i=1}^{N} f(\hat{X}_{T}^{(i)}) \right|$$

Consider a time discretization of the interval [0;T] with step $h = \frac{T}{n}$:

$$t_k = kh, \quad k = 0, \dots, n.$$

Let $\mathcal{F}_t = \sigma\{X_s : s \leq t\}.$

Definition

We call cadlag process $Y^h = Y = \{Y_t, 0 \le t \le T\}$ a time discrete approximation if Y_{t_k} is \mathcal{F}_{t_k} -measurable and $Y_{t_{k+1}}$ can be expressed as a function of $Y_0, \ldots, Y_{t_k}, t_0, \ldots, t_k, t_{k+1}$ and a finite number of $\mathcal{F}_{t_{k+1}}$ -measurable variables.

Example. (Maruyama'55) The simplest time discrete approximation of solution to (1) is the Euler approximation (or the Euler-Maruyama approximation)

$$Y_{t_{k+1}} = Y_{t_k} + a(Y_{t_k})h + \sigma(Y_{t_k})(W_{t_{k+1}} - W_{t_k}), \quad k = 0, \dots, n-1$$
(2)

with $Y_0 = x$.

Definition

We say that a time discrete approximation Y^h converges weakly with order $\beta > 0$ to X at time T as $h \to 0$ if for all 'good enough' functions f there exist a positive constant C, which does not depend on h, such that

$$|Ef(X_T) - Ef(Y_T^h)| \le Ch^{\beta}.$$
(3)

Example. (Milshtein'78) The Euler approximation converges to X with the weak order $\beta = 1$.

How to improve the order of approximation?

 The classical approach: by using the Ito-Taylor expansion.
 E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer, Berlin, 1995.

2) Our approach.

It can be shown (Milshtein'78) that for proving (3) it's sufficient to prove $|Ef(X_h) - Ef(Y_h^h)| \le Ch^{\beta+1}.$

(4)

On the interval [0,h] the Euler scheme has the form

$$\tilde{X}_t = x + a(x)t + \sigma(x)W_t, \quad 0 \le t \le h.$$

Let us prove that Euler approximation has the weak order $\beta = 1$. We need to show that

$$\left|\mathbb{E}_{x}f(X_{h}) - \mathbb{E}_{x}f(\tilde{X}_{h})\right| \leq Ch^{2}.$$

Ito formula

If X is a process of form (1) and $g\in C^2(\mathbb{R})$ then

Semen

$$g(X_t) = g(x) + \int_0^t Ag(X_s)ds + \int_0^t Lg(X_s)dW_s,$$
 (5)

where

$$Ag(y) = a(y)g'(y) + \frac{1}{2}b(y)g''(y), \quad Lg(y) = \sigma(y)g'(y).$$

Here $b(y) = \sigma^2(y)$.

$$\Rightarrow \quad \mathbb{E}_x g(X_t) = g(x) + \int_0^t \mathbb{E}_x Ag(X_s) ds.$$
(6)

	The modified Euler method for SDE's driven by Wiener noise
Bodnarchuk	10 / 36

For \tilde{X} the Ito formula gives

$$\mathbb{E}_{x}g(\tilde{X}_{t}) = g(x) + \int_{0}^{t} \mathbb{E}_{x}\tilde{A}g(\tilde{X}_{s})ds,$$

where

$$\tilde{A}g(y) = a(x)g'(y) + \frac{1}{2}b(x)g''(y).$$

If
$$f \in C_b^4(\mathbb{R}), a, \sigma \in C_b^2(\mathbb{R})$$
, then

$$\mathbb{E}_x f(X_h) = f(x) + \int_0^h \mathbb{E}_x Af(X_s) ds = f(x) + \int_0^h \left(Af(x) + \int_0^s \mathbb{E}_x A(Af(X_r)) dr \right) ds = f(x) + Af(x)h + \int_0^h \int_0^s \mathbb{E}_x A(Af(X_r)) dr ds = f(x) + Af(x)h + O(h^2).$$

For \tilde{X} we have

$$\mathbb{E}_x f(\tilde{X}_h) = f(x) + a(x) \int_0^h \mathbb{E}_x f'(\tilde{X}_s) ds + \frac{1}{2} b(x) \int_0^h \mathbb{E}_x f''(\tilde{X}_s) ds =$$

$$= f(x) + a(x) \int_{0}^{h} \left(f'(x) + \int_{0}^{s} \mathbb{E}_{x} \tilde{A} f'(\tilde{X}_{r}) dr \right) ds + \frac{1}{2} b(x) \int_{0}^{h} \left(f''(x) + \int_{0}^{s} \mathbb{E}_{x} \tilde{A} f''(\tilde{X}_{r}) \right) ds =$$
$$= f(x) + A f(x) h + O(h^{2}).$$

	The modified Euler method for SDE's driven by Wiener noise
Semen Bodnarchuk	13/36

$$\mathbb{E}_{x}f(X_{h}) = f(x) + Af(x)h + \frac{1}{2}A(Af(x))h^{2} + O(h^{3})$$
(7)

and

$$\mathbb{E}_{x}f(\tilde{X}_{h}) \stackrel{?}{=} f(x) + Af(x)h + \frac{1}{2}A(Af(x))h^{2} + O(h^{3}),$$
(8)

where

$$\begin{split} A(Af(x)) &= \left(a(x)a'(x) + \frac{1}{2}a''(x)b(x)\right)f'(x) + \\ &+ \left(a^2(x) + \frac{1}{2}a(x)b'(x) + a'(x)b(x) + \frac{1}{4}b(x)b''(x)\right)f''(x) + \\ &+ \left(a(x)b(x) + \frac{1}{2}b(x)b'(x)\right)f'''(x) + \frac{1}{4}b^2(x)f^{(IV)}(x). \end{split}$$

The modified Euler method for SDE's driven by Wiener noise 14 / 36

$$\mathbb{E}_x f(X_h) = f(x) + Af(x)h + \frac{1}{2} \left(a^2(x) f''(x) + a(x)b(x) f'''(x) + \frac{1}{4}b^2(x)f^{(IV)}(x) \right) h^2 + O(h^3).$$

Instead of the Euler scheme we consider its modification of the form

$$\hat{X}_t = \tilde{X}_t + \Delta_t, \quad 0 \le t \le h,$$

where the corrector $\Delta=\Delta_t(ilde{X}_t)$ has to be chosen in a such way that

$$\left|\mathbb{E}_{x}f\left(X_{h}\right) - \mathbb{E}_{x}f(\hat{X}_{h})\right| \leq Ch^{3}$$

for all 'good enough' functions f.

For constructing the corrector Δ_t we introduce the notion of Hermite polynomials. Let us remind their definition. Transition probability density $p_t(x, y)$ of the process \tilde{X}_t has the form

$$p_t(x,y) = \frac{1}{\sqrt{2\pi t b(x)}} \exp\left\{-\frac{(y-x-a(x)t)^2}{2tb(x)}\right\}.$$

Definition

The Hermite polinomials are the family of functions

 $\big\{H^{(m)}_t(x,y): x,y\in\mathbb{R}, t>0, m\in\mathbb{N}\cup\{0\}\big\},$

each of them satisfies an equality

$$\frac{\partial^m}{\partial y^m} p_t(x,y) = (-1)^m H_t^{(m)}(x,y) p_t(x,y).$$

The modified Euler method for SDE's driven by Wiener noise Semen Bodnarchuk 17/36

$$\begin{split} H_t^{(0)}(x,y) &= 1, \\ H_t^{(1)}(x,y) &= \frac{(y-x-a(x)t)}{b(x)t}, \\ H_t^{(2)}(x,y) &= \frac{(y-x-a(x)t)^2}{b^2(x)t^2} - \frac{1}{b(x)t} \end{split}$$

and so on.

In what follows we need the next relations

$$\left(H_t^{(1)}(x,y)\right)^2 = H_t^{(2)}(x,y) + \frac{1}{tb(x)},\tag{9}$$

$$H_t^{(1)}(x,y)H_t^{(2)}(x,y) = H_t^{(3)}(x,y) + \frac{2}{tb(x)}H_t^{(1)}(x,y),$$
(10)

$$\left(H_t^{(2)}(x,y)\right)^2 = H_t^{(4)}(x,y) + \frac{4}{tb(x)}H_t^{(2)}(x,y) + \frac{2}{t^2b^2(x)}.$$
(11)

The modified Euler method for SDE's driven by Wiener noise Semen Bodnarchuk 19 / 36

Lemma

Let $\tilde{X}_t = x + a(x)t + \sigma(x)W_t, t \ge 0$. Then 1) for $f \in C_b^m(\mathbb{R})$ the following formula holds true

$$\mathbb{E}_x f(\tilde{X}_t) H_t^{(m)}(x, \tilde{X}_t) = \mathbb{E}_x f^{(m)}(\tilde{X}_t).$$
(12)

2) for $f, a, \sigma \in C_b(\mathbb{R})$ there exists constant C, which doesn't depend on t and x, such that

$$\left|\mathbb{E}_{x}f(\tilde{X}_{t})H_{t}^{(m)}(x,\tilde{X}_{t})\right| \leq Ct^{-\frac{m}{2}}.$$
(13)

We define

$$\Delta_t := t^2 \left(c_0(x) + c_1(x) H_t^{(1)}(x, \tilde{X}_t) + c_2(x) H_t^{(2)}(x, \tilde{X}_t) \right), \tag{14}$$

with

$$c_0(x) = \frac{1}{2}a(x)a'(x) + \frac{1}{4}a''(x)b(x),$$

$$c_1(x) = \frac{1}{4}a(x)b'(x) + \frac{1}{2}a'(x)b(x) + \frac{1}{8}b(x)b''(x) - \frac{1}{16}(b'(x))^2,$$

$$c_2(x) = \frac{1}{4}b(x)b'(x).$$

Theorem

If $f \in C_b^6(\mathbb{R})$, $a, \sigma \in C_b^4(\mathbb{R})$ then the following bound holds true

$$\left|\mathbb{E}_{x}f\left(X_{h}\right)-\mathbb{E}_{x}f(\hat{X}_{h})\right|\leq Ch^{3}.$$

$$\mathbb{E}_{x}f(X_{h}) = f(x) + Af(x)h + \frac{1}{2}A(Af(x))h^{2} + O(h^{3})$$
(15)

and

$$\mathbb{E}_{x}f(\hat{X}_{h}) \stackrel{?}{=} f(x) + Af(x)h + \frac{1}{2}A(Af(x))h^{2} + O(h^{3}).$$
(16)

Consider the scheme \hat{X} with corrector Δ defined as in (14) with arbitrary coefficients $c_0(x), c_1(x)$ to $c_2(x)$. By the Taylor formula

$$\mathbb{E}_x f(\hat{X}_h) = \mathbb{E}_x f(\tilde{X}_h + \Delta_h) = \mathbb{E}_x f(\tilde{X}_h) + \mathbb{E}_x f'(\tilde{X}_h) \Delta_h + \frac{1}{2} \mathbb{E}_x f''(\tilde{X}_h) \Delta_h^2 + \frac{1}{6} \mathbb{E}_x f'''(\tilde{X}_h + \theta_h \Delta_h) \Delta_h^3, \quad \theta_h \in (0, 1).$$

Consider each term separately.

1

$$\mathbb{E}_{x}f(\bar{X}_{h}) = f(x) + Af(x)h + \frac{1}{2}\left(a^{2}(x)f''(x) + a(x)b(x)f'''(x) + \frac{1}{4}b^{2}(x)f^{(IV)}(x)\right)h^{2} + O(h^{3}).$$

 $\mathbb{E}_x f'(\tilde{X}_h) \Delta_h$

$$\mathbb{E}_{x}f'(\tilde{X}_{h})\Delta_{h} =$$

= $h^{2}\mathbb{E}_{x}f'(\tilde{X}_{h})\left(c_{0}(x) + c_{1}(x)H_{h}^{(1)}(x,\tilde{X}_{h}) + c_{2}(x)H_{h}^{(2)}(x,\tilde{X}_{h})\right).$

By (12) we have

$$\mathbb{E}_x f'(\tilde{X}_h) H_h^{(1)}(x, \tilde{X}_h) = \mathbb{E}_x f''(\tilde{X}_h),$$
$$\mathbb{E}_x f'(\tilde{X}_h) H_h^{(2)}(x, \tilde{X}_h) = \mathbb{E}_x f'''(\tilde{X}_h).$$

Then by the Ito formula

$$\mathbb{E}_{x}f'(\tilde{X}_{h})\Delta_{h} =$$

= $h^{2}\left(c_{0}(x)f'(x) + c_{1}(x)f''(x) + c_{2}(x)f'''(x)\right) + O(h^{3}).$

 $\frac{1}{2}\mathbb{E}_x f''(\tilde{X}_h)\Delta_h^2$

$$\frac{1}{2}\mathbb{E}_{x}f''(\tilde{X}_{h})\Delta_{h}^{2} =$$

$$= \frac{h^{4}}{2}\mathbb{E}_{x}f''(\tilde{X}_{h})\left(c_{0}(x) + c_{1}(x)H_{h}^{(1)}(x,\tilde{X}_{h}) + c_{2}(x)H_{h}^{(2)}(x,\tilde{X}_{h})\right)^{2}.$$

The modified Euler method for SDE's driven by Wiener noise Semen Bodnarchuk 27 / 36

 $\frac{1}{2}\mathbb{E}_x f''(\tilde{X}_h)\Delta_h^2$

$$\mathbb{E}_x f''(\tilde{X}_h) = O(1),$$

$$\mathbb{E}_x f''(\tilde{X}_h) H_h^{(1)}(x, \tilde{X}_h) = \mathbb{E}_x f'''(\tilde{X}_h) = O(1),$$

$$\mathbb{E}_x f''(\tilde{X}_h) H_h^{(2)}(x, \tilde{X}_h) = \mathbb{E}_x f^{(IV)}(\tilde{X}_h) = O(1),$$

$$\mathbb{E}_x f''(\tilde{X}_h) \left(H_h^{(1)}(x, \tilde{X}_h) \right)^2 = \mathbb{E}_x f''(\tilde{X}_h) \left(H_h^{(2)}(x, \tilde{X}_h) + \frac{1}{b(x)h} \right) =$$
$$= \mathbb{E}_x f^{(IV)}(\tilde{X}_h) + \frac{1}{b(x)h} \mathbb{E}_x f''(\tilde{X}_h) = O\left(\frac{1}{h}\right),$$

The modified Euler method for SDE's driven by Wiener noise 28 / 36

Semen Bodnarchuk

 $\frac{1}{2}\mathbb{E}_x f''(\tilde{X}_h)\Delta_h^2$

$$\mathbb{E}_{x}f''(\tilde{X}_{h})H_{h}^{(1)}(x,\tilde{X}_{h})H_{h}^{(2)}(x,\tilde{X}_{h}) =$$

$$=\mathbb{E}_{x}f''(\tilde{X}_{h})\left(H_{h}^{(3)}(x,\tilde{X}_{h}) + \frac{2}{b(x)h}H_{h}^{(1)}(x,\tilde{X}_{h})\right) =$$

$$=\mathbb{E}_{x}f^{(V)}(\tilde{X}_{h}) + \frac{2}{b(x)h}\mathbb{E}_{x}f'''(\tilde{X}_{h}) = O\left(\frac{1}{h}\right),$$

$$\mathbb{E}_{x}f''(\tilde{X}_{h})\left(H_{h}^{(2)}(x,\tilde{X}_{h})\right)^{2} =$$

$$= \mathbb{E}_{x}f''(\tilde{X}_{h})\left(H_{h}^{(4)}(x,y) + \frac{4}{b(x)h}H_{h}^{(2)}(x,y) + \frac{2}{b^{2}(x)h^{2}}\right) =$$

$$= \mathbb{E}_{x}f^{(VI)}(\tilde{X}_{h}) + \frac{4}{b(x)h}\mathbb{E}_{x}f^{(IV)}(\tilde{X}_{h}) + \frac{2}{b^{2}(x)h^{2}}\mathbb{E}_{x}f''(\tilde{X}_{h}) =$$

$$= O\left(\frac{1}{h}\right) + \frac{2}{b^{2}(x)h^{2}}\mathbb{E}_{x}f''(\tilde{X}_{h}).$$

Semen Bodnarchuk

The modified Euler method for SDE's driven by Wiener noise 29 / 36

$$\frac{1}{6}\mathbb{E}_x f^{\prime\prime\prime}(\tilde{X}_h + \theta_h \Delta_h) \Delta_h^3 = O(h^3).$$

$$\mathbb{E}_{x}f(\hat{X}_{h}) = f(x) + Af(x)h + \frac{h^{2}}{2} \left[2c_{0}(x)f'(x) + \left(2c_{1}(x) + \frac{2c_{2}^{2}(x)}{b^{2}(x)} + a^{2}(x) \right) f''(x) + \left(2c_{2}(x) + a(x)b(x) \right) f'''(x) + \frac{1}{4}b^{2}(x)f^{(IV)}(x) \right] + O(h^{3}).$$

Recall that

$$\begin{split} A(Af(x)) &= \left(a(x)a'(x) + \frac{1}{2}a''(x)b(x)\right)f'(x) + \\ &+ \left(a^2(x) + \frac{1}{2}a(x)b'(x) + a'(x)b(x) + \frac{1}{4}b(x)b''(x)\right)f''(x) + \\ &+ \left(a(x)b(x) + \frac{1}{2}b(x)b'(x)\right)f'''(x) + \frac{1}{4}b^2(x)f^{(IV)}(x). \end{split}$$

The modified Euler method for SDE's driven by Wiener noise Semen Bodnarchuk 31 / 36

$$c_0(x) = \frac{1}{2}a(x)a'(x) + \frac{1}{4}a''(x)b(x),$$

$$c_1(x) = \frac{1}{4}a(x)b'(x) + \frac{1}{2}a'(x)b(x) + \frac{1}{8}b(x)b''(x) - \frac{1}{16}(b'(x))^2,$$

$$c_2(x) = \frac{1}{4}b(x)b'(x).$$

If $a, \sigma \in C^6$ then

$$X_h = x + \int_0^h a(X_s)ds + \int_0^h \sigma(X_s)dW_s =$$

= $x + \int_0^h \left(a(x) + \int_0^s Aa(X_r)dr + \int_0^s La(X_r)dW_r\right)ds +$
+ $\int_0^h \left(\sigma(x) + \int_0^s A\sigma(X_r)dr + \int_0^s L\sigma(X_r)dW_r\right)dW_s =$
= $x + a(x)\int_0^h ds + \sigma(x)\int_0^h dW_s + R_2 =$

Semen Bodnarchuk

$$= x + a(x)h + \sigma(x)W_h + Aa(x) \int_0^h \int_0^s dr ds + La(x) \int_0^h \int_0^s dW_r ds + A\sigma(x) \int_0^h \int_0^s dr dW_s + L\sigma(x) \int_0^h \int_0^s dW_r dW_s + R_3.$$

Let Z_1 and Z_2 are two independent N(0,1) random variables. Then

$$W_{h} = \sqrt{h}Z_{1}, \quad \int_{0}^{h} \int_{0}^{s} dW_{r}ds = \frac{1}{2}h^{\frac{3}{2}}\left(Z_{1} + \frac{1}{\sqrt{3}}Z_{2}\right).$$
$$\int_{0}^{h} \int_{0}^{s} dW_{r}dW_{s} = \frac{1}{2}\left(W_{h}^{2} - h\right).$$

$$\int_{0}^{h} \int_{0}^{s} dW_{r}^{i} dW_{s}^{k} = ?$$

Thank you for attention!

