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Warm-up for splitting
Direct problem

N balls

• compute L(Nq,N
∗
q)

• compute L(N∗q |Nq) = .. Υ(Nq, · )
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Now L(N) unknown
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Which N satisfy the splitting equation

Ef (Nq,N
∗
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[
E
[
f (Nq,N

∗
q)
∣∣Nq
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=

∫∫
f (k , l)Υ(k ,dl)Pq(dl)



Warm-up for splitting
Indirect problem

Now L(N) unknown

Nq balls L(N∗q |Nq) = Υ(Nq, · )

Υ(Nq, · )

Which N satisfy the (dependent) convolution equation

Eg(N) = E
[
E
[
g(Nq + N∗q)

∣∣Nq

]]
=

∫∫
g(k + l)Υ(k ,dl)Pq(dk)



Warm-up for splitting
Examples

Nq is observed, conditional law of N∗q given Nq = k is . . .

Example 1 Υ(k , · ) = Poi(1− q);
then N ∼ Poi(1) and this is the only choice!

Example 2 Υ(k , · ) = Bin
(
n − k , p(1−q)

1−pq

)
;

then N ∼ Bin(n, p)

Example 3 Υ(k , · ) = NegBin
(
n + k , p(1− q)

)
;

then N ∼ NegBin(n, p)
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Integration by parts
Distributions

Integration by parts formula

N satisfies IBPF for some function π : N0 → R+, if for bounded f ,
E[Nf (N)] = E[π(N)f (N + 1)].

Problem
Given π, what is the distribution of N?

Examples

1 π(k) = 1 for all k ∈ N0, then N ∼ Poi(1)

2 π(k) = z(n − k) for k = 0, 1, . . . , n, then N ∼ Bin
(
n, z

1+z

)
;

3 π(k) = z(n + k) for k ∈ N0, then N ∼ NegBin(n, z).
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Distributions

Integration by parts formula

N satisfies IBPF for some function π : N0 → R+, if for bounded f ,
E[Nf (N)] = E[π(N)f (N + 1)].

How to determine the law of N?

1 choose f = 1{k}, then kP(N = k) = π(k)P(N = k − 1),
k = 1, 2, . . .

2 P(N = k) =
π(k) · · ·π(1)

k!
P(N = 0)

3 P(N = k) = exp(−π)
π[k]

k!
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Splitting and integration by parts
Connection

q-Splitting kernel

If N satisfies IBPF(π), then Υ(k , · ) satisfies
IBPF((1− q)π(k + · )).

Nq

Nq satisfies an IBPF. If N satisfies IBPF(π), then that function is
the “average” q

∑
j π(k + j)Υ(k , j).

Equivalent statements

1 N satisfies IBPF(π)

2 N satisfies the splitting equation

3 N satisfies the (dependent) convolution equation
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A point process is a random point measure
(r.v. N is now {NΛ}Λ).
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Point processes

A point process is a random point measure
(r.v. N is now {NΛ}Λ).

Poisson process

• NΛ ∼ Poi
(
m(Λ)

)
• given NΛ, points are distributed iid

• Λ ∩ Λ′ = ∅, then NΛ and NΛ′

independent

Λ



Spatial picture
Point processes

Point processes

A point process is a random point measure
(r.v. N is now {NΛ}Λ).

Gibbs process

• defined locally by

G
(
·
∣∣F̂Λ

)
(µ) ..=

e−V ( · |µΛc )

ZΛ,µ
PΛ

• existence? uniqueness?
Λ



Spatial picture
Point processes

Point processes

A point process is a random point measure
(r.v. N is now {NΛ}Λ).

Gibbs process Nguyen, Zessin 79

DLR equations equivalent to IBPF∫∫
h(x , µ)µ(dx)G (dµ)

=

∫∫
h(x , µ+δx) e−V (x ,µ) m(dx)G (dµ)



Spatial picture
Point processes

Point processes

A point process is a random point measure
(r.v. N is now {NΛ}Λ).

Papangelou process

replace e−V ( · ,µ) dm by π(µ, · )∫∫
h(x , µ)µ(dx)P(dµ)

=

∫∫
h(x , µ+ δx)π(µ,dx)P(dµ)



Spatial picture
Point processes

Point processes

A point process is a random point measure
(r.v. N is now {NΛ}Λ).

Papangelou process, examples

• π(µ, · ) = m

• π(µ, · ) = z(m − µ)

• π(µ, · ) = z(m + µ)

Each NΛ satisfies an IBPF.



Spatial picture
Point processes

q-splittings and thinnings

• choose colour for each “ball”
independently, e.g. blue with
probability q

• joint law of red and blue point
configurations is q-splitting Sq

• marginals are thinnings

• conditional law of red point
configuration given blue point
configuration is splitting kernel



Spatial picture
Point processes

Examples

1 Poisson process Pm:
Pq
m = Pqm, Sq = Pqm ⊗ P(1−q)m

2 Difference process Dz,m:
Dq
z,m = D qz

1+(1−q)z
,m,

Υ(ν, · ) = D(1−q)z,m−ν

3 Sum process Sz,m:
Sq
z,m = S qz

1−(1−q)z
,m,

Υ(ν, · ) = S(1−q)z,m+ν



Spatial picture
Properties of Splittings and Thinnings

Splitting kernel
(

(1) Karr; (2) Nehring, R, Zessin

)
1 If P is finite, then Υ(ν, · ) ∼ (1− q)NP !

ν .

2 If P satisfies IBPF for π, then Υ(ν, · ) satisfies IBPF for
(1− q)π(ν + · , · ).

Thinnings (Nehring, R, Zessin)

If P satisfies IBPF for π, then also Pq does for

q

∫
π(µ+ ν, · )Υ(µ, dν).
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Spatial picture
Equivalence

Characterization (Nehring, R, Zessin)

The following statements are equivalent

1 P solves IBPF for π;

2 P satisfies the splitting equation

SP(h) =

∫∫
h(µ, ν)Υ(µ,dν)Pq(dµ)

3 P satisfies the (dependent) convolution equation

P(φ) =

∫∫
φ(µ+ ν)Υ(µ, dν)Pq(dµ)



Spatial picture
Consequences

Uniqueness of solutions of splitting and convolution equation

Uniqueness of solutions of IBPF implies uniqueness for splitting
and convolution equation.

α-condensability (Ambartzumian)

P is α-condensable if there exists Q such that Q1/α = P.

• if P solves IBPF for σ, condensability “reduces” to solving
σ(ν, · ) = q

∫
π(ν + µ, · )Υ(ν, dµ)
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Spatial picture
Consequences

Spatial birth processes

Let P solve IBPF for π, (Nq)q (point measure valued) process such
that transition kernel

pq,q′(µ, · ) = Υq,q′(µ, · )

solves an IBPF for (q′ − q)
∫
π(µ+ κ, · )Υq′(µ, dκ).

• law of Nq is Pq

• q 7→ Nq increasing

Cox processes and condensability

P is a Cox process iff q 7→ Nq extends to R+.

• (otherwise only on [0,T ] for some T ≥ 1)

• exit space of pure birth process given by mixtures of Poisson
pure birth
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Further examples
Negative binomial process

Negative binomial process (Gregoire 84)

P ∼ BN (r , ν) if P has Laplace transform

L(f ) =

[
1 +

∫
1− e−f dν

]−r
.

• shares only one-dimensional marginals with sum process

IBPF
If ν is finite, then P ∼ BN (r , ν) satisfies IBPF with kernel

π(µ, dx) =
r + |µ|
1 + |ν|

ν(dx).



Further examples
Negative binomial process

Negative binomial process (Gregoire 84)

P ∼ BN (r , ν) if P has Laplace transform

L(f ) =

[
1 +

∫
1− e−f dν

]−r
.

Splitting

If ν is finite, then then the q-splitting ernel of P ∼ BN (r , ν) is

Υ(µ, · ) = BN
(
r + |µ|, 1− q

1 + q|ν|
ν

)
.



Further examples
log-Gauss Cox process

log-Gauss Cox process (Coles, Jones 91; Møller, Syversveen, Waagepetersen 98)

P ∼ lGC(µ, c) if P is a Cox process driven by eY , where Y is
Gaussian with mean µ and covariance c .

Reduced Palm measures of log-Gauss Cox processes (Cœurjolly, Møller,

Waagepetersen 15)

If P ∼ lGC(µ, c), then its reduced Palm measure P !
ν for a simple

and finite point measure ν is log-Gauss Cox with parameters

µ+

∫
cx , · ν(dx), c .



Further examples
log-Gauss Cox process

Thinning

If P ∼ lGC(µ, c), then its q-thinning is log-Gauss Cox
P ∼ lGC(µ+ ln q, c).

Splitting

If P ∼ lGC(µ, c) a finite process, then its q-splitting kernel is

Υ(ν, · ) =
(1− q)N

Zν
P !
ν ,

i.e. is log-Gauss Cox process with parameters

µ+

∫
cx , · ν(dx) + ln(1− q), c .



Further examples
Gauss Poisson process

Gauss-Poisson process (Newman 70; Milne, Westcott 72; Macchi 72)

P ∼ GP(λ,H) if P has Laplace fransform

L(f ) = exp

(
−
∫

1− e−f (x) λ(dx)

+
1

2

∫∫ [
1− e−f (x)

][
1− e−f (y)

]
H(dx ,dy)

)
.

Thinning (Milne, Westcott 72)

If P ∼ GP(λ,H), then its q-thinning is Gauss-Poisson
Pq ∼ GP(qλ, q2H).



Extensions

• replace independent thinning by dependent thinning
• pairs of thinning and condensing kernels
• integration by parts

• relation between birth-and-death process and thinned
birth-and-death process



• described point processes in three different ways: DLR
equations, integration by parts, splittings/dependent
convolutions

• derived properties of Papangelou processes and their splittings
and thinnings
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