Completing partially observed point patterns

Mathias Rafler, TU Berlin

based on joint work with Hans Zessin and Benjamin Nehring

Potsdam, February 15, 2018

Warm-up for splitting Direct problem

(ロ)、(型)、(E)、(E)、 E) の(の)

N balls

- compute $\mathcal{L}(N_q, N_q^*)$
- compute $\mathcal{L}(N_q^*|N_q) =: \Upsilon(N_q, \cdot)$

Warm-up for splitting Direct problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- compute $\mathcal{L}(N_q, N_q^*)$
- compute $\mathcal{L}(N_q^*|N_q) =: \Upsilon(N_q, \cdot)$

Warm-up for splitting Direct problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- compute $\mathcal{L}(N_q, N_q^*)$
- compute $\mathcal{L}(N_q^*|N_q) =: \Upsilon(N_q,\,\cdot\,)$

Warm-up for splitting

Indirect problem

(ロ)、(型)、(E)、(E)、 E) の(の)

Warm-up for splitting

Indirect problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Warm-up for splitting Indirect problem

Which N satisfy the splitting equation $\mathbf{E}f(N_q, N_q^*) = \mathbf{E}\Big[\mathbf{E}\big[f(N_q, N_q^*) | N_q\big]\Big] = \iint f(k, l)\Upsilon(k, dl)\mathbb{P}_q(dl)$

Warm-up for splitting Indirect problem

Which N satisfy the (dependent) convolution equation $\mathbf{E}g(N) = \mathbf{E}\left[\mathbf{E}\left[g(N_q + N_q^*) | N_q\right]\right] = \iint g(k+l) \Upsilon(k, \mathrm{d}l) \mathbb{P}_q(\mathrm{d}k)$

$$\begin{split} N_q \text{ is observed, conditional law of } N_q^* \text{ given } N_q &= k \text{ is } \dots \\ \text{Example 1 } \Upsilon(k, \cdot) &= \text{Poi}(1-q); \\ & \text{then } N \sim \text{Poi}(1) \text{ and this is the only choice!} \\ \text{Example 2 } \Upsilon(k, \cdot) &= \text{Bin}\left(n-k, \frac{p(1-q)}{1-pq}\right); \\ & \text{then } N \sim \text{Bin}(n, p) \\ \text{Example 3 } \Upsilon(k, \cdot) &= \text{NegBin}\left(n+k, p(1-q)\right); \\ & \text{then } N \sim \text{NegBin}(n, p) \end{split}$$

$$\begin{split} N_q \text{ is observed, conditional law of } N_q^* \text{ given } N_q &= k \text{ is } \dots \\ \text{Example 1 } \Upsilon(k, \cdot) &= \text{Poi}(1-q); \\ \text{ then } N \sim \text{Poi}(1) \text{ and this is the only choice!} \\ \text{Example 2 } \Upsilon(k, \cdot) &= \text{Bin}\left(n-k, \frac{p(1-q)}{1-pq}\right); \\ \text{ then } N \sim \text{Bin}(n, p) \\ \text{Example 3 } \Upsilon(k, \cdot) &= \text{NegBin}(n+k, p(1-q)); \\ \text{ then } N \sim \text{NegBin}(n, p) \end{split}$$

$$\begin{split} &N_q \text{ is observed, conditional law of } N_q^* \text{ given } N_q = k \text{ is } \dots \\ &\text{Example 1 } \Upsilon(k, \cdot) = \operatorname{Poi}(1-q); \\ & \text{then } N \sim \operatorname{Poi}(1) \text{ and this is the only choice!} \\ &\text{Example 2 } \Upsilon(k, \cdot) = \operatorname{Bin}\left(n-k, \frac{p(1-q)}{1-pq}\right); \\ & \text{then } N \sim \operatorname{Bin}(n, p) \\ &\text{Example 3 } \Upsilon(k, \cdot) = \operatorname{NegBin}(n+k, p(1-q)); \\ & \text{then } N \sim \operatorname{NegBin}(n, p) \end{split}$$

$$\begin{split} &N_q \text{ is observed, conditional law of } N_q^* \text{ given } N_q = k \text{ is } \dots \\ &\text{Example 1 } \Upsilon(k, \cdot) = \operatorname{Poi}(1-q); \\ &\text{ then } N \sim \operatorname{Poi}(1) \text{ and this is the only choice!} \\ &\text{Example 2 } \Upsilon(k, \cdot) = \operatorname{Bin}\left(n-k, \frac{p(1-q)}{1-pq}\right); \\ &\text{ then } N \sim \operatorname{Bin}(n, p) \\ &\text{Example 3 } \Upsilon(k, \cdot) = \operatorname{NegBin}(n+k, p(1-q)); \\ &\text{ then } N \sim \operatorname{NegBin}(n, p) \end{split}$$

$$\begin{split} &N_q \text{ is observed, conditional law of } N_q^* \text{ given } N_q = k \text{ is } \dots \\ &\text{Example 1 } \Upsilon(k, \cdot) = \operatorname{Poi}(1-q); \\ &\text{ then } N \sim \operatorname{Poi}(1) \text{ and this is the only choice!} \\ &\text{Example 2 } \Upsilon(k, \cdot) = \operatorname{Bin}\left(n-k, \frac{p(1-q)}{1-pq}\right); \\ &\text{ then } N \sim \operatorname{Bin}(n, p) \\ &\text{Example 3 } \Upsilon(k, \cdot) = \operatorname{NegBin}(n+k, p(1-q)); \\ &\text{ then } N \sim \operatorname{NegBin}(n, p) \end{split}$$

Integration by parts formula

N satisfies IBPF for some function $\pi : \mathbb{N}_0 \to \mathbb{R}_+$, if for bounded *f*, $\mathbf{E}[Nf(N)] = \mathbf{E}[\pi(N)f(N+1)].$

Problem

Given π , what is the distribution of *N*?

Examples

1)
$$\pi(k) = 1$$
 for all $k \in \mathbb{N}_0$, then $N \sim \text{Poi}(1)$
2) $\pi(k) = z(n-k)$ for $k = 0, 1, ..., n$, then $N \sim \text{Bin}\left(n, \frac{z}{1+z}\right)$
3) $\pi(k) = z(n+k)$ for $k \in \mathbb{N}_0$, then $N \sim \text{NegBin}(n, z)$.

Integration by parts formula

N satisfies IBPF for some function $\pi : \mathbb{N}_0 \to \mathbb{R}_+$, if for bounded *f*, $\mathbf{E}[Nf(N)] = \mathbf{E}[\pi(N)f(N+1)].$

Problem

Given π , what is the distribution of *N*?

Examples

1
$$\pi(k) = 1$$
 for all $k \in \mathbb{N}_0$, then $N \sim \text{Poi}(1)$
2 $\pi(k) = z(n-k)$ for $k = 0, 1, ..., n$, then $N \sim \text{Bin}\left(n, \frac{z}{1+z}\right)$;
3 $\pi(k) = z(n+k)$ for $k \in \mathbb{N}_0$, then $N \sim \text{NegBin}(n, z)$.

Integration by parts formula

N satisfies IBPF for some function $\pi : \mathbb{N}_0 \to \mathbb{R}_+$, if for bounded *f*, $\mathbf{E}[Nf(N)] = \mathbf{E}[\pi(N)f(N+1)].$

How to determine the law of N?

Integration by parts formula

N satisfies IBPF for some function $\pi : \mathbb{N}_0 \to \mathbb{R}_+$, if for bounded *f*, $\mathbf{E}[Nf(N)] = \mathbf{E}[\pi(N)f(N+1)].$

How to determine the law of N?

Splitting and integration by parts Connection

q-Splitting kernel

If N satisfies $IBPF(\pi)$, then $\Upsilon(k, \cdot)$ satisfies $IBPF((1-q)\pi(k+\cdot))$.

N_q

 N_q satisfies an IBPF. If N satisfies IBPF (π) , then that function is the "average" $q \sum_{i} \pi(k+j) \Upsilon(k,j)$.

Equivalent statements

- 1 N satisfies $IBPF(\pi)$
- 2 N satisfies the splitting equation
- **3** *N* satisfies the (dependent) convolution equation

Splitting and integration by parts Connection

q-Splitting kernel

If N satisfies $IBPF(\pi)$, then $\Upsilon(k, \cdot)$ satisfies $IBPF((1-q)\pi(k+\cdot))$.

N_q

 N_q satisfies an IBPF. If N satisfies IBPF (π) , then that function is the "average" $q \sum_j \pi(k+j) \Upsilon(k,j)$.

Equivalent statements

- **1** *N* satisfies $IBPF(\pi)$
- 2 N satisfies the splitting equation
- $\mathbf{3}$ N satisfies the (dependent) convolution equation

Point processes

A point process is a random point measure (r.v. N is now $\{N_{\Lambda}\}_{\Lambda}$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Point processes

A point process is a random point measure (r.v. N is now $\{N_{\Lambda}\}_{\Lambda}$).

Poisson process

- *N*_Λ ~ Poi(*m*(Λ))
- given N_{Λ} , points are distributed iid
- $\Lambda \cap \Lambda' = \emptyset$, then N_{Λ} and $N_{\Lambda'}$ independent

Point processes

A point process is a random point measure (r.v. N is now $\{N_{\Lambda}\}_{\Lambda}$).

Gibbs process

• defined locally by

$$G(\cdot | \hat{\mathcal{F}}_{\Lambda})(\mu) := \frac{e^{-V(\cdot | \mu_{\Lambda^c})}}{Z_{\Lambda,\mu}} \mathsf{P}_{\Lambda}$$

• existence? uniqueness?

Point processes

A point process is a random point measure (r.v. N is now $\{N_{\Lambda}\}_{\Lambda}$).

Gibbs process Nguyen, Zessin 79

DLR equations equivalent to IBPF

$$\iint h(x,\mu)\mu(\mathrm{d}x)G(\mathrm{d}\mu)$$
$$=\iint h(x,\mu+\delta_x)e^{-V(x,\mu)}m(\mathrm{d}x)G(\mathrm{d}\mu)$$

Point processes

A point process is a random point measure (r.v. N is now $\{N_{\Lambda}\}_{\Lambda}$).

Papangelou process replace $e^{-V(\cdot,\mu)} dm$ by $\pi(\mu, \cdot)$

$$\iint h(x,\mu)\mu(\mathrm{d}x)P(\mathrm{d}\mu)$$
$$=\iint h(x,\mu+\delta_x)\pi(\mu,\mathrm{d}x)P(\mathrm{d}\mu)$$

Point processes

A point process is a random point measure (r.v. N is now $\{N_{\Lambda}\}_{\Lambda}$).

Papangelou process, examples

•
$$\pi(\mu, \cdot) = m$$

•
$$\pi(\mu, \cdot) = z(m-\mu)$$

• $\pi(\mu, \cdot) = z(m+\mu)$

Each N_{Λ} satisfies an IBPF.

q-splittings and thinnings

- choose colour for each "ball" independently, e.g. blue with probability q
- joint law of red and blue point configurations is q-splitting S^q
- marginals are thinnings
- conditional law of red point configuration given blue point configuration is splitting kernel

Examples

1 Poisson process P_m : $P_m^q = P_{qm}, S^q = P_{qm} \otimes P_{(1-q)m}$ 2 Difference process $D_{z,m}$: $D_{z,m}^q = D_{\frac{qz}{1+(1-q)z},m},$ $\Upsilon(\nu, \cdot) = D_{(1-q)z,m-\nu}$ 3 Sum process $S_{z,m}$: $S_{z,m}^q = S_{\frac{qz}{1-(1-q)z},m},$ $\Upsilon(\nu, \cdot) = S_{(1-q)z,m+\nu}$

Spatial picture

Properties of Splittings and Thinnings

Splitting kernel ((1) Karr; (2) Nehring, R, Zessin)

If P is finite, then Υ(ν, ·) ~ (1 − q)^NP[!]_ν.
 If P satisfies IBPF for π, then Υ(ν, ·) satisfies IBPF for (1 − q)π(ν + ·, ·).

```
Thinnings (Nehring, R, Zessin)
If P satisfies IBPF for \pi, then also P^q does for
q \int \pi(\mu + \nu, \cdot) \Upsilon(\mu, d\nu).
```

Spatial picture

Properties of Splittings and Thinnings

Splitting kernel ((1) Karr; (2) Nehring, R, Zessin)

If P is finite, then Υ(ν, ·) ~ (1 − q)^NP[!]_ν.
 If P satisfies IBPF for π, then Υ(ν, ·) satisfies IBPF for (1 − q)π(ν + ·, ·).

Thinnings (Nehring, R, Zessin) If *P* satisfies IBPF for π , then also P^q does for $q \int \pi(\mu + \nu, \cdot) \Upsilon(\mu, d\nu).$

Spatial picture Equivalence

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Characterization (Nehring, R, Zessin)

The following statements are equivalent

- **1** *P* solves IBPF for π ;
- 2 P satisfies the splitting equation

$$\mathcal{S}_{P}(h) = \iint h(\mu, \nu) \Upsilon(\mu, \mathrm{d}\nu) P^{q}(\mathrm{d}\mu)$$

 \bigcirc *P* satisfies the (dependent) convolution equation

$${\cal P}(\phi) = \int \int \phi(\mu+
u) \Upsilon(\mu,{
m d}
u) {\cal P}^q({
m d}\mu)$$

Uniqueness of solutions of splitting and convolution equation Uniqueness of solutions of IBPF implies uniqueness for splitting and convolution equation.

α -condensability (Ambartzumian)

P is α -condensable if there exists *Q* such that $Q^{1/\alpha} = P$.

• if *P* solves IBPF for σ , condensability "reduces" to solving $\sigma(\nu, \cdot) = q \int \pi(\nu + \mu, \cdot) \Upsilon(\nu, d\mu)$

Uniqueness of solutions of splitting and convolution equation Uniqueness of solutions of IBPF implies uniqueness for splitting and convolution equation.

α -condensability (Ambartzumian)

P is α -condensable if there exists *Q* such that $Q^{1/\alpha} = P$.

• if *P* solves IBPF for σ , condensability "reduces" to solving $\sigma(\nu, \cdot) = q \int \pi(\nu + \mu, \cdot) \Upsilon(\nu, d\mu)$

Spatial birth processes

Let P solve IBPF for π , $(N_q)_q$ (point measure valued) process such that transition kernel

$$p_{q,q'}(\mu, \cdot) = \Upsilon_{q,q'}(\mu, \cdot)$$

solves an IBPF for $(q'-q)\int \pi(\mu+\kappa, \cdot)\Upsilon^{q'}(\mu, d\kappa)$.

- law of N_q is P^q
- $q \mapsto N_q$ increasing

Cox processes and condensability

P is a Cox process iff $q \mapsto N^q$ extends to \mathbb{R}_+ .

- (otherwise only on [0, T] for some $T \ge 1$)
- exit space of pure birth process given by mixtures of Poisson pure birth

Spatial birth processes

Let P solve IBPF for π , $(N_q)_q$ (point measure valued) process such that transition kernel

$$p_{q,q'}(\mu, \cdot) = \Upsilon_{q,q'}(\mu, \cdot)$$

solves an IBPF for $(q'-q)\int \pi(\mu+\kappa, \cdot)\Upsilon^{q'}(\mu, d\kappa)$.

- law of N_q is P^q
- $q \mapsto N_q$ increasing

Cox processes and condensability

P is a Cox process iff $q \mapsto N^q$ extends to \mathbb{R}_+ .

- (otherwise only on [0, T] for some $T \ge 1$)
- exit space of pure birth process given by mixtures of Poisson pure birth

Negative binomial process

Negative binomial process (Gregoire 84) $P \sim \mathcal{BN}(r, \nu)$ if P has Laplace transform

$$\mathcal{L}(f) = \left[1 + \int 1 - e^{-f} d\nu\right]^{-r}$$

shares only one-dimensional marginals with sum process

IBPF

If u is finite, then $P \sim \mathcal{BN}(r, \nu)$ satisfies IBPF with kernel

$$\pi(\mu, \mathrm{d} x) = \frac{r + |\mu|}{1 + |\nu|} \nu(\mathrm{d} x).$$

Negative binomial process

Negative binomial process (Gregoire 84) $P \sim \mathcal{BN}(r, \nu)$ if P has Laplace transform

$$\mathcal{L}(f) = \left[1 + \int 1 - e^{-f} d\nu\right]^{-r}$$

Splitting

If ν is finite, then then the *q*-splitting ernel of $P \sim \mathcal{BN}(r, \nu)$ is

$$\Upsilon(\mu,\,\cdot\,) = \mathcal{BN}\left(r+|\mu|,rac{1-q}{1+q|
u|}
u
ight).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

log-Gauss Cox process

log-Gauss Cox process (Coles, Jones 91; Møller, Syversveen, Waagepetersen 98) $P \sim IGC(\mu, c)$ if P is a Cox process driven by e^{Y} , where Y is Gaussian with mean μ and covariance c.

Reduced Palm measures of log-Gauss Cox processes (Cœurjolly, Møller, Waagepetersen 15)

If $P \sim IGC(\mu, c)$, then its reduced Palm measure $P_{\nu}^{!}$ for a simple and finite point measure ν is log-Gauss Cox with parameters

$$\mu + \int c_{x, \cdot} \nu(\mathrm{d}x), \quad c.$$

log-Gauss Cox process

Thinning

If $P \sim IGC(\mu, c)$, then its *q*-thinning is log-Gauss Cox $P \sim IGC(\mu + \ln q, c)$.

Splitting

If $P \sim \mathsf{IGC}(\mu, c)$ a finite process, then its *q*-splitting kernel is

$$\Upsilon(
u,\,\cdot\,)=rac{(1-q)^N}{Z_
u}P^!_
u,$$

i.e. is log-Gauss Cox process with parameters

$$\mu + \int c_{x,\cdot} \nu(\mathrm{d}x) + \ln(1-q), \quad c.$$

Gauss Poisson process

Gauss-Poisson process (Newman 70; Milne, Westcott 72; Macchi 72) $P \sim \text{GP}(\lambda, H)$ if P has Laplace fransform

$$\begin{aligned} \mathcal{L}(f) &= \exp\left(-\int 1 - \mathrm{e}^{-f(x)}\,\lambda(\mathrm{d}x) \right. \\ &+ \frac{1}{2} \iint \left[1 - \mathrm{e}^{-f(x)}\right] \left[1 - \mathrm{e}^{-f(y)}\right] H(\mathrm{d}x,\mathrm{d}y) \end{aligned} \right). \end{aligned}$$

Thinning (Milne, Westcott 72)

If $P \sim GP(\lambda, H)$, then its *q*-thinning is Gauss-Poisson $P^q \sim GP(q\lambda, q^2H)$.

Extensions

- replace independent thinning by dependent thinning
 - pairs of thinning and condensing kernels
 - integration by parts
- relation between birth-and-death process and thinned birth-and-death process

 described point processes in three different ways: DLR equations, integration by parts, splittings/dependent convolutions

• derived properties of Papangelou processes and their splittings and thinnings

◆□> ◆□> ◆豆> ◆豆> □目

 described point processes in three different ways: DLR equations, integration by parts, splittings/dependent convolutions

• derived properties of Papangelou processes and their splittings and thinnings