Completing partially observed point patterns

Mathias Rafler, TU Berlin

based on joint work with Hans Zessin and Benjamin Nehring

Potsdam, February 15, 2018

Warm-up for splitting

Direct problem

Warm-up for splitting

Direct problem

N_{q} balls

N_{q}^{*} balls

- compute $\mathcal{L}\left(N_{q}, N_{q}^{*}\right)$
- compute $\mathcal{L}\left(N_{q}^{*} \mid N_{q}\right)=: \Upsilon\left(N_{q}, \cdot\right)$

Warm-up for splitting

Direct problem

N_{q} balls

N_{q}^{*} balls

- compute $\mathcal{L}\left(N_{q}, N_{q}^{*}\right)$
- compute $\mathcal{L}\left(N_{q}^{*} \mid N_{q}\right)=: \Upsilon\left(N_{q}, \cdot\right)$

Warm-up for splitting

Indirect problem

Now $\mathcal{L}(N)$ unknown
N_{q} balls

Warm-up for splitting

Indirect problem

Now $\mathcal{L}(N)$ unknown
N_{q} balls

$$
\mathcal{L}\left(N_{q}^{*} \mid N_{q}\right)=\Upsilon\left(N_{q}, \cdot\right)
$$

Warm-up for splitting

Indirect problem

Now $\mathcal{L}(N)$ unknown
N_{q} balls

Which N satisfy the splitting equation
$\mathbf{E} f\left(N_{q}, N_{q}^{*}\right)=\mathbf{E}\left[\mathbf{E}\left[f\left(N_{q}, N_{q}^{*}\right) \mid N_{q}\right]\right]=\iint f(k, l) \Upsilon(k, \mathrm{~d} /) \mathbb{P}_{q}(\mathrm{~d} /)$

Warm-up for splitting

Indirect problem

Now $\mathcal{L}(N)$ unknown
N_{q} balls

$$
\mathcal{L}\left(N_{q}^{*} \mid N_{q}\right)=\Upsilon\left(N_{q}, \cdot\right)
$$

Which N satisfy the (dependent) convolution equation
$\mathbf{E} g(N)=\mathbf{E}\left[\mathbf{E}\left[g\left(N_{q}+N_{q}^{*}\right) \mid N_{q}\right]\right]=\iint g(k+l) \Upsilon(k, \mathrm{~d} /) \mathbb{P}_{q}(\mathrm{~d} k)$

Warm-up for splitting

Examples
N_{q} is observed, conditional law of N_{q}^{*} given $N_{q}=k$ is \ldots
Example $1 \Upsilon(k, \cdot)=\operatorname{Poi}(1-q)$;
then $N \sim \operatorname{Poi}(1)$ and this is the only choice!
Example $2 \Upsilon(k, \cdot)=\operatorname{Bin}\left(n-k, \frac{p(1-q)}{1-p q}\right)$;

Example $3 \Upsilon(k, \cdot)=\operatorname{Neg} \operatorname{Bin}(n+k, p(1-q))$;

Warm-up for splitting

Examples
N_{q} is observed, conditional law of N_{q}^{*} given $N_{q}=k$ is \ldots
Example $1 \Upsilon(k, \cdot)=\operatorname{Poi}(1-q)$; then $N \sim \operatorname{Poi}(1)$ and this is the only choice!
Example $2 \Upsilon(k, \cdot)=\operatorname{Bin}\left(n-k, \frac{p(1-q)}{1-p q}\right)$;

Example $3 \Upsilon(k, \cdot)=\operatorname{Neg} \operatorname{Bin}(n+k, p(1-q))$;

Warm-up for splitting

Examples
N_{q} is observed, conditional law of N_{q}^{*} given $N_{q}=k$ is \ldots
Example $1 \Upsilon(k, \cdot)=\operatorname{Poi}(1-q)$;
then $N \sim \operatorname{Poi}(1)$ and this is the only choice!
Example $2 \Upsilon(k, \cdot)=\operatorname{Bin}\left(n-k, \frac{p(1-q)}{1-p q}\right)$;

Example $3 \Upsilon(k, \cdot)=\operatorname{NegBin}(n+k, p(1-q))$;

Warm-up for splitting

Examples
N_{q} is observed, conditional law of N_{q}^{*} given $N_{q}=k$ is \ldots
Example $1 \Upsilon(k, \cdot)=\operatorname{Poi}(1-q)$;
then $N \sim \operatorname{Poi}(1)$ and this is the only choice!
Example $2 \Upsilon(k, \cdot)=\operatorname{Bin}\left(n-k, \frac{p(1-q)}{1-p q}\right)$;
then $N \sim \operatorname{Bin}(n, p)$
Example $3 \Upsilon(k, \cdot)=\operatorname{Neg} \operatorname{Bin}(n+k, p(1-q))$;

Warm-up for splitting

Examples
N_{q} is observed, conditional law of N_{q}^{*} given $N_{q}=k$ is \ldots
Example $1 \Upsilon(k, \cdot)=\operatorname{Poi}(1-q)$; then $N \sim \operatorname{Poi}(1)$ and this is the only choice!
Example $2 \Upsilon(k, \cdot)=\operatorname{Bin}\left(n-k, \frac{p(1-q)}{1-p q}\right)$;
then $N \sim \operatorname{Bin}(n, p)$
Example $3 \Upsilon(k, \cdot)=\operatorname{Neg} \operatorname{Bin}(n+k, p(1-q))$; then $N \sim \operatorname{Neg} \operatorname{Bin}(n, p)$

Integration by parts

Distributions

Integration by parts formula
N satisfies IBPF for some function $\pi: \mathbb{N}_{0} \rightarrow \mathbb{R}_{+}$, if for bounded f, $\mathbf{E}[N f(N)]=\mathbf{E}[\pi(N) f(N+1)]$.

Problem

Given π, what is the distribution of N ?
Examples
(11) $\pi(k)=1$ for all $k \in \mathbb{N}_{0}$, then $N \sim \operatorname{Poi}(1)$
(2) $\pi(k)=z(n-k)$ for $k=0,1 \ldots$, then $N \sim \operatorname{Bin}\left(n, \frac{z}{1+z}\right)$,
(3) $\pi(k)=z(n+k)$ for $k \in \mathbb{N}_{0}$, then $N \sim \operatorname{Neg} \operatorname{Bin}(n, z)$.

Integration by parts

Distributions

Integration by parts formula
N satisfies IBPF for some function $\pi: \mathbb{N}_{0} \rightarrow \mathbb{R}_{+}$, if for bounded f, $\mathbf{E}[N f(N)]=\mathbf{E}[\pi(N) f(N+1)]$.

Problem

Given π, what is the distribution of N ?

Examples

(1) $\pi(k)=1$ for all $k \in \mathbb{N}_{0}$, then $N \sim \operatorname{Poi}(1)$
(2) $\pi(k)=z(n-k)$ for $k=0,1, \ldots, n$, then $N \sim \operatorname{Bin}\left(n, \frac{z}{1+z}\right)$;
(3) $\pi(k)=z(n+k)$ for $k \in \mathbb{N}_{0}$, then $N \sim \operatorname{Neg} \operatorname{Bin}(n, z)$.

Integration by parts

Distributions

Integration by parts formula
N satisfies IBPF for some function $\pi: \mathbb{N}_{0} \rightarrow \mathbb{R}_{+}$, if for bounded f, $\mathbf{E}[N f(N)]=\mathbf{E}[\pi(N) f(N+1)]$.

How to determine the law of N ?
(1) choose $f=1_{\{k\}}$, then $k \mathbb{P}(N=k)=\pi(k) \mathbb{P}(N=k-1)$, $k=1,2, \ldots$
(2) $\mathbb{P}(N=k)=\frac{\pi(k) \cdots \pi(1)}{k!} \mathbb{P}(N=0)$
(3) $\mathbb{P}(N=k)=\exp (-\pi) \frac{\pi[k]}{k!}$

Integration by parts

Distributions

Integration by parts formula
N satisfies IBPF for some function $\pi: \mathbb{N}_{0} \rightarrow \mathbb{R}_{+}$, if for bounded f, $\mathbf{E}[N f(N)]=\mathbf{E}[\pi(N) f(N+1)]$.

How to determine the law of N ?
(1) choose $f=1_{\{k\}}$, then $k \mathbb{P}(N=k)=\pi(k) \mathbb{P}(N=k-1)$, $k=1,2, \ldots$
(2) $\mathbb{P}(N=k)=\frac{\pi(k) \cdots \pi(1)}{k!} \mathbb{P}(N=0)$
(3) $\mathbb{P}(N=k)=\exp (-\pi) \frac{\pi[k]}{k!}$

Splitting and integration by parts

Connection
q-Splitting kernel
If N satisfies $\operatorname{IBPF}(\pi)$, then $\Upsilon(k, \cdot)$ satisfies
$\operatorname{IBPF}((1-q) \pi(k+\cdot))$.
N_{q}
N_{q} satisfies an IBPF. If N satisfies $\operatorname{IBPF}(\pi)$, then that function is the "average" $q \sum_{j} \pi(k+j) \Upsilon(k, j)$.

Equivalent statements
(1) N satisfies $\operatorname{IBPF}(\pi)$
(2) N satisfies the splitting equation
(3) N satisfies the (dependent) convolution equation

Splitting and integration by parts

q-Splitting kernel
If N satisfies $\operatorname{IBPF}(\pi)$, then $\Upsilon(k, \cdot)$ satisfies
$\operatorname{IBPF}((1-q) \pi(k+\cdot))$.
N_{q}
N_{q} satisfies an IBPF. If N satisfies $\operatorname{IBPF}(\pi)$, then that function is the "average" $q \sum_{j} \pi(k+j) \Upsilon(k, j)$.

Equivalent statements
(1) N satisfies $\operatorname{IBPF}(\pi)$
(2) N satisfies the splitting equation
(3) N satisfies the (dependent) convolution equation

Spatial picture

Point processes

Point processes
A point process is a random point measure (r.v. N is now $\left\{N_{\Lambda}\right\}_{\Lambda}$).

Spatial picture

Point processes

Point processes
A point process is a random point measure (r.v. N is now $\left\{N_{\Lambda}\right\}_{\Lambda}$).

Poisson process

- $N_{\Lambda} \sim \operatorname{Poi}(m(\Lambda))$
- given N_{Λ}, points are distributed iid
- $\Lambda \cap \Lambda^{\prime}=\emptyset$, then N_{Λ} and $N_{\Lambda^{\prime}}$ independent

Spatial picture

Point processes

Point processes
A point process is a random point measure (r.v. N is now $\left\{N_{\Lambda}\right\}_{\Lambda}$).

Gibbs process

- defined locally by

$$
G\left(\cdot \mid \hat{\mathcal{F}}_{\Lambda}\right)(\mu):=\frac{\mathrm{e}^{-V\left(\cdot \mid \mu_{\Lambda} c\right)}}{Z_{\Lambda, \mu}} \mathrm{P}_{\Lambda}
$$

- existence? uniqueness?

Spatial picture

Point processes

Point processes
A point process is a random point measure (r.v. N is now $\left\{N_{\Lambda}\right\}_{\Lambda}$).

Gibbs process nguyen, Zessin 79
DLR equations equivalent to IBPF

$$
\begin{aligned}
& \iint h(x, \mu) \mu(\mathrm{d} x) G(\mathrm{~d} \mu) \\
& =\iint h\left(x, \mu+\delta_{x}\right) \mathrm{e}^{-V(x, \mu)} m(\mathrm{~d} x) G(\mathrm{~d} \mu)
\end{aligned}
$$

Spatial picture

Point processes

Point processes
A point process is a random point measure (r.v. N is now $\left\{N_{\Lambda}\right\}_{\Lambda}$).

Papangelou process replace $\mathrm{e}^{-V(\cdot, \mu)} \mathrm{d} m$ by $\pi(\mu, \cdot)$

$$
\begin{aligned}
& \iint h(x, \mu) \mu(\mathrm{d} x) P(\mathrm{~d} \mu) \\
& \quad=\iint h\left(x, \mu+\delta_{x}\right) \pi(\mu, \mathrm{d} x) P(\mathrm{~d} \mu)
\end{aligned}
$$

Spatial picture

Point processes

Point processes
A point process is a random point measure (r.v. N is now $\left\{N_{\Lambda}\right\}_{\Lambda}$).

Papangelou process, examples

- $\pi(\mu, \cdot)=m$
- $\pi(\mu, \cdot)=z(m-\mu)$
- $\pi(\mu, \cdot)=z(m+\mu)$

Each N_{Λ} satisfies an IBPF.

Spatial picture

Point processes
q-splittings and thinnings

- choose colour for each "ball" independently, e.g. blue with probability q
- joint law of red and blue point configurations is q-splitting \mathcal{S}^{q}
- marginals are thinnings
- conditional law of red point configuration given blue point configuration is splitting kernel

Spatial picture

Point processes

Examples

(1) Poisson process P_{m} :

$$
\mathrm{P}_{m}^{q}=\mathrm{P}_{q m}, \mathcal{S}^{q}=\mathrm{P}_{q m} \otimes \mathrm{P}_{(1-q) m}
$$

(2) Difference process $\mathrm{D}_{z, m}$:

$$
\begin{aligned}
& \mathrm{D}_{z, m}^{q}=\mathrm{D}_{\frac{q z}{1+(1-q) z}}, m \\
& \Upsilon(\nu, \cdot)=\mathrm{D}_{(1-q) z, m-\nu}
\end{aligned}
$$

(3) Sum process $S_{z, m}$:
$S_{z, m}^{q}=S_{\frac{q z}{1-(1-q) z}, m}$,
$\Upsilon(\nu, \cdot)=\mathrm{S}_{(1-q) z, m+\nu}$

Spatial picture

Properties of Splittings and Thinnings

Splitting kernel (${ }^{(1) \text { Karr; (2) Nehring, R, Zessin }) ~}$
(1) If P is finite, then $\Upsilon(\nu, \cdot) \sim(1-q)^{N} P_{\nu}^{!}$.
(2) If P satisfies IBPF for π, then $\Upsilon(\nu, \cdot)$ satisfies IBPF for $(1-q) \pi(\nu+\cdot, \cdot)$.

Spatial picture

Properties of Splittings and Thinnings

Splitting kernel (${ }^{(1) \text { Karr; (2) Nehring, R, Z Zessin }) ~}$
(1) If P is finite, then $\Upsilon(\nu, \cdot) \sim(1-q)^{N} P_{\nu}^{!}$.
(2) If P satisfies IBPF for π, then $\Upsilon(\nu, \cdot)$ satisfies IBPF for $(1-q) \pi(\nu+\cdot, \cdot)$.

Thinnings (Nenting, R, R, Zessin)
If P satisfies IBPF for π, then also P^{q} does for
$q \int \pi(\mu+\nu, \cdot) \Upsilon(\mu, \mathrm{d} \nu)$.

Spatial picture

Equivalence

Characterization (Nehring, R, Zessin)
The following statements are equivalent
(1) P solves IBPF for π;
(2) P satisfies the splitting equation

$$
\mathcal{S}_{P}(h)=\iint h(\mu, \nu) \Upsilon(\mu, \mathrm{d} \nu) P^{q}(\mathrm{~d} \mu)
$$

(3) P satisfies the (dependent) convolution equation

$$
P(\phi)=\iint \phi(\mu+\nu) \Upsilon(\mu, \mathrm{d} \nu) P^{q}(\mathrm{~d} \mu)
$$

Spatial picture
 Consequences

Uniqueness of solutions of splitting and convolution equation Uniqueness of solutions of IBPF implies uniqueness for splitting and convolution equation.
α-condensability (Ambartamian)
P is α-condensable if there exists Q such that $Q^{1 / \alpha}=P$.

- if P solves IBPF for σ, condensability "reduces" to solving $\sigma(\nu, \cdot)=q \int \pi(\nu+\mu, \cdot) \Upsilon(\nu, \mathrm{d} \mu)$

Spatial picture
 Consequences

Uniqueness of solutions of splitting and convolution equation Uniqueness of solutions of IBPF implies uniqueness for splitting and convolution equation.
α-condensability (Ambartzumian)
P is α-condensable if there exists Q such that $Q^{1 / \alpha}=P$.

- if P solves IBPF for σ, condensability "reduces" to solving $\sigma(\nu, \cdot)=q \int \pi(\nu+\mu, \cdot) \Upsilon(\nu, \mathrm{d} \mu)$

Spatial picture
 Consequences

Spatial birth processes
Let P solve IBPF for $\pi,\left(N_{q}\right)_{q}$ (point measure valued) process such that transition kernel

$$
p_{q, q^{\prime}}(\mu, \cdot)=\Upsilon_{q, q^{\prime}}(\mu, \cdot)
$$

solves an IBPF for $\left(q^{\prime}-q\right) \int \pi(\mu+\kappa, \cdot) \Upsilon^{q^{\prime}}(\mu, \mathrm{d} \kappa)$.

- law of N_{q} is P^{q}
- $q \mapsto N_{q}$ increasing

Cox processes and condensability
P is a Cox process iff $q \mapsto N^{q}$ extends to \mathbb{R}_{+}.

- (otherwise only on $[0, T]$ for some $T \geq 1$)
- exit space of pure birth process given by mixtures of Poisson pure birth

Spatial picture

Consequences

Spatial birth processes
Let P solve IBPF for $\pi,\left(N_{q}\right)_{q}$ (point measure valued) process such that transition kernel

$$
p_{q, q^{\prime}}(\mu, \cdot)=\Upsilon_{q, q^{\prime}}(\mu, \cdot)
$$

solves an IBPF for $\left(q^{\prime}-q\right) \int \pi(\mu+\kappa, \cdot) \Upsilon^{q^{\prime}}(\mu, \mathrm{d} \kappa)$.

- law of N_{q} is P^{q}
- $q \mapsto N_{q}$ increasing

Cox processes and condensability
P is a Cox process iff $q \mapsto N^{q}$ extends to \mathbb{R}_{+}.

- (otherwise only on $[0, T]$ for some $T \geq 1$)
- exit space of pure birth process given by mixtures of Poisson pure birth

Further examples

Negative binomial process
Negative binomial process (Gregoire 84)
$P \sim \mathcal{B N}(r, \nu)$ if P has Laplace transform

$$
\mathcal{L}(f)=\left[1+\int 1-\mathrm{e}^{-f} \mathrm{~d} \nu\right]^{-r}
$$

- shares only one-dimensional marginals with sum process

IBPF
If ν is finite, then $P \sim \mathcal{B N}(r, \nu)$ satisfies IBPF with kernel

$$
\pi(\mu, \mathrm{d} x)=\frac{r+|\mu|}{1+|\nu|} \nu(\mathrm{d} x)
$$

Further examples

Negative binomial process

Negative binomial process (Gregoire 84)
$P \sim \mathcal{B N}(r, \nu)$ if P has Laplace transform

$$
\mathcal{L}(f)=\left[1+\int 1-\mathrm{e}^{-f} \mathrm{~d} \nu\right]^{-r}
$$

Splitting
If ν is finite, then then the q-splitting ernel of $P \sim \mathcal{B N}(r, \nu)$ is

$$
\Upsilon(\mu, \cdot)=\mathcal{B N}\left(r+|\mu|, \frac{1-q}{1+q|\nu|} \nu\right) .
$$

Further examples
 log-Gauss Cox process

log-Gauss Cox process (Coles, Jones 91; Møøler, Syversveen, Waagepetersen 98)
$P \sim \operatorname{IGC}(\mu, c)$ if P is a Cox process driven by e^{Y}, where Y is
Gaussian with mean μ and covariance c.
Reduced Palm measures of log-Gauss Cox processes (Courjolly, Mqller,
Waagepetersen 15)
If $P \sim \operatorname{IGC}(\mu, c)$, then its reduced Palm measure $P_{\nu}^{!}$for a simple and finite point measure ν is log-Gauss Cox with parameters

$$
\mu+\int c_{x, \cdot} \nu(\mathrm{~d} x), \quad c
$$

Further examples
 log-Gauss Cox process

Thinning
If $P \sim \operatorname{IGC}(\mu, c)$, then its q-thinning is log-Gauss Cox
$P \sim \operatorname{IGC}(\mu+\ln q, c)$.

Splitting

If $P \sim \operatorname{IGC}(\mu, c)$ a finite process, then its q-splitting kernel is

$$
\Upsilon(\nu, \cdot)=\frac{(1-q)^{N}}{Z_{\nu}} P_{\nu}^{!}
$$

i.e. is log-Gauss Cox process with parameters

$$
\mu+\int c_{x, \cdot} \cdot \nu(\mathrm{~d} x)+\ln (1-q), \quad c
$$

Further examples

Gauss Poisson process

Gauss-Poisson process (Newman 70; Mine, Westott 72; Macchi 72)
$P \sim \operatorname{GP}(\lambda, H)$ if P has Laplace fransform

$$
\begin{aligned}
\mathcal{L}(f)=\exp \left(-\int\right. & 1-\mathrm{e}^{-f(x)} \lambda(\mathrm{d} x) \\
& \left.+\frac{1}{2} \iint\left[1-\mathrm{e}^{-f(x)}\right]\left[1-\mathrm{e}^{-f(y)}\right] H(\mathrm{~d} x, \mathrm{~d} y)\right) .
\end{aligned}
$$

Thinning (Milne, Westcott 72)
If $P \sim \operatorname{GP}(\lambda, H)$, then its q-thinning is Gauss-Poisson $P^{q} \sim \operatorname{GP}\left(q \lambda, q^{2} H\right)$.

Extensions

- replace independent thinning by dependent thinning
- pairs of thinning and condensing kernels
- integration by parts
- relation between birth-and-death process and thinned birth-and-death process
- described point processes in three different ways: DLR equations, integration by parts, splittings/dependent convolutions

- derived properties of Papangelou processes and their splittings and thinnings
- described point processes in three different ways: DLR equations, integration by parts, splittings/dependent convolutions

- derived properties of Papangelou processes and their splittings and thinnings

