Quasi-stationarity with moving boundaries Stochastic Processes and Statistical Machine Learning I

William Oçafrain

Institut de Mathématiques de Toulouse

February 15, 2018

I. Framework and definitions : when boundaries are NOT moving

2

イロト イヨト イヨト イヨト

 $(X_t)_{t\geq 0}$ Markov process evolving in $E\cup A$, where A is considered as a trap for $(X_t)_{t\geq 0}$:

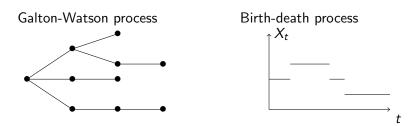
$$X_t \in A, \quad \forall t > \tau_A$$

where

$$\tau_A := \inf\{t \ge 0 : X_t \in A\}$$

イロト イヨト イヨト イヨト

Examples



$$X_0 = 1 X_1 = 3 X_2 = 4 X_3 = 2$$

More generally : any Markov processes stopped when reaching a given subset of the state space

► < ∃ ►</p>

Asymptotic behavior

- If $\tau_A < \infty \mathbb{P}_x$ -almost surely for any $x \in E$, $(X_t)_{t \ge 0}$ will live in A as t goes to infinity
- When τ_A is exceptionally big, a meta-stable state can appear before the Markov process is absorbed
- To characterize this meta-stable state, the idea is to study the asymptotic behavior of

$$\mathbb{P}_{x}(X_{t} \in \cdot | \tau_{\mathcal{A}} > t)$$
(1)

Asymptotic behavior

- If $\tau_A < \infty \mathbb{P}_x$ -almost surely for any $x \in E$, $(X_t)_{t \ge 0}$ will live in A as t goes to infinity
- When τ_A is exceptionally big, a meta-stable state can appear before the Markov process is absorbed
- To characterize this meta-stable state, the idea is to study the asymptotic behavior of

$$\mathbb{P}_{x}(X_{t} \in \cdot | \tau_{\mathcal{A}} > t)$$
(1)

イロン イ部ン イヨン イヨ

Questions

- Is there weak convergence of (1)? For which $x \in E$?
- What is the limit?

Quasi-limit distribution

Main assumptions :

•
$$\mathbb{P}_x(\tau_A < \infty) = 1, \quad \forall x \in E$$

• $\mathbb{P}_{x}(\tau_{A} > t) > 0, \quad \forall x \in E, \forall t \geq 0$

Definition : Quasi-limit distribution (QLD)

 α is a $\mathit{quasi-limit}$ distribution (QLD) if, for some initial distribution μ_{r}

$$\alpha = \lim_{t \to \infty} \mathbb{P}_{\mu}(X_t \in \cdot | \tau_A > t)$$

イロト イポト イヨト イヨ

Digression - Stationary distribution: If, for some initial law μ , $\mathbb{P}_{\mu}(X_t \in \cdot)$ converges weakly, then π defined by

$$\pi:=\lim_{t\to\infty}\mathbb{P}_{\mu}(X_t\in\cdot)$$

is a stationary distribution of $(X_t)_{t\geq 0}$, i.e. a prob. measure satisfying

$$\mathbb{P}_{\pi}(X_t \in \cdot) = \pi, \quad \forall t \geq 0$$

Digression - **Stationary distribution:** If, for some initial law μ , $\mathbb{P}_{\mu}(X_t \in \cdot)$ converges weakly, then π defined by

$$\pi := \lim_{t\to\infty} \mathbb{P}_{\mu}(X_t \in \cdot)$$

is a stationary distribution of $(X_t)_{t\geq 0}$, i.e. a prob. measure satisfying

$$\mathbb{P}_{\pi}(X_t \in \cdot) = \pi, \quad \forall t \geq 0$$

Definition : Quasi-stationary distribution (QSD)

 α is a quasi-stationary distribution (QSD) if

$$\mathbb{P}_{\alpha}(X_t \in \cdot | \tau_A > t) = \alpha, \quad \forall t \ge 0$$

イロト イ押ト イヨト イヨ

Equivalence between QSD and QLD

 $\mathsf{QLD} \Longleftrightarrow \mathsf{QSD}$

- \Leftarrow : Obvious since, for $\mu = \alpha$, $\mathbb{P}_{\mu}(X_t \in \cdot | \tau_A > t) = \alpha$
- $\bullet \implies : \text{ Denote by }$

$$\mu_t = \mathbb{P}_{\mu}(X_t \in \cdot | \tau_A > t)$$

According to Markov property,

$$\mu_{t+s} = \mathbb{P}_{\mu_s}(X_t \in \cdot | \tau_A > t)$$

Argument of fixed point theorem : $\alpha = \lim_{s \to \infty} \mu_s$ satisfies

$$lpha = \mathbb{P}_{lpha}(X_t \in \cdot | au_A > t), \quad \forall t \geq 0$$

(日) (同) (三) (三)

Q-process

We say that $(Y_t)_{t>0}$ is a *Q*-process if, for any initial law μ ,

$$\mathbb{P}_{\mu}(Y_{[0,s]} \in \cdot) = \lim_{t \to \infty} \mathbb{P}_{\mu}(X_{[0,s]} \in \cdot | \tau_{\mathcal{A}} > t), \quad \forall s \ge 0$$

- The *Q*-process can be considered as the law of the process *X* conditioned never to be absorbed by *A*.
- The Q-process is a Markov process.
- For some processes, *Q*-process exists without having existence of QSD (ex : Brownian motion stopped at 0)

Mean ergodic theorem for Markov processes: If π is a stationary measure, then under some assumptions on X for any measurable function f,

$$rac{1}{t}\int_0^t f(X_s)ds \underset{t o \infty}{ o} \int fd\pi$$
, almost surely

Definition : Quasi-ergodic distribution (QED)

 β is a *quasi-ergodic distribution (QED)* if for some prob. meas. μ ,

$$eta = \lim_{t o \infty} rac{1}{t} \int_0^t \mathbb{P}_\mu(X_s \in \cdot | au_A > t) ds$$

Remark: The QED is different from the QSD

- **(())) (())) ())**

• Sub-Markovian semi-group of $(X_t)_{t\geq 0}$:

$$P_t f(x) = \mathbb{E}_x(f(X_t) \mathbb{1}_{\tau_A > t})$$

- α QSD $\Leftrightarrow \int_{E} P_t f(x) \alpha(dx) = e^{-\lambda t} \int_{E} f(x) \alpha(dx) \quad (\lambda > 0)$
- Comparison with stationary distribution :

$$\pi$$
 stationary distribution $\Leftrightarrow \int \mathbb{E}_x(f(X_t))\pi(dx) = \int f(x)\pi(dx)$

- 4 @ > 4 @ > 4 @ >

II. Quasi-stationarity with moving boundaries

æ

<ロト </p>

Motivation of PhD thesis

- Sometimes $(X_t)_{t\geq 0}$ can be absorbed by a moving trap
- Example : Cattiaux-Christophe-Gadat, 2016

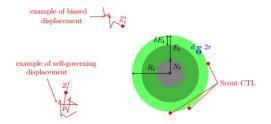


Figure: Figure 1 from "A stochastic model for cytotoxic T. lymphocyte interaction with tumor nodules"

<ロト </p>

Questions

 $(X_t)_{t\geq 0}$ evolving in $E_t \cup A_t$ and absorbed in $(A_t)_{t\geq 0}$. $au_A = \inf\{t\geq 0: X_t\in A_t\}$ $au_{A\circ\theta_s} = \inf\{t\geq 0: X_t\in A_{t+s}\}$

Questions

Can we still define the notion of

- QSD ?
- QLD ?
- Q-process ?
- QED ?

For which behavior of $(A_t)_{t\geq 0}$?

<ロト </p>

$$(\mathsf{Irr}): \ \forall t \geq 0, \forall x, y \in E_t, \forall \epsilon > 0, \exists u \geq 0, \mathbb{P}_x(X_{u \wedge \tau_{A_t}} \in B(y, \epsilon)) > 0$$

where $\tau_{A_t} = \inf\{u \ge 0 : X_u \in A_t\}$ and $B(y, \epsilon) =$ ball of center y and radius ϵ

Proposition (O., 2017)

Under the assumption of irreducibility (Irr), for any $s \ge 0$, there is no prob. measure α s.t.

$$\alpha = \mathbb{P}_{\alpha}(X_t \in \cdot | \tau_{A \circ \theta_s} > t)$$

Proof in discrete-time setting: For any μ and $n \ge 0$, denote by

$$\mu_n := \mathbb{P}_{\mu}(X_n \in \cdot | \tau_A > n)$$

Then, according to Markov property, for any $n \ge 1$,

$$\mu_n = \mathbb{P}_{\mu_{n-1}}(X_1 \in \cdot | \tau_{A_n} > 1)$$

where $\tau_{A_n} = \inf\{m \ge 0 : X_m \in A_n\}$. Thus, if $\mu_0 = \alpha$ satisfies Prop 1, then $\mu_n = \alpha$ for all *n* and

$$\alpha = \mathbb{P}_{\alpha}(X_1 \in \cdot | \tau_{A_n} > 1), \quad \forall n \ge 1$$

which will imply that Supp $\alpha = E_n$ for any n: Impossible !

QSD and QLD aren't equivalent anymore

- Even if we cannot define QSD when the absorbing set moves, QLD can still exist in certain case.
- Example : Assume that $A_n = A_{n_0}$ for any $n \ge n_0$. Then, By Markov property,

$$\mathbb{P}_{\mu}(X_{n+n_0} \in \cdot | \tau_A > n+n_0) = \mathbb{P}_{\phi_{n_0}(\mu)}(X_n \in \cdot | \tau_{A_{n_0}} > n)$$

where

$$\phi_{n_0}: \mu \to \mathbb{P}_{\mu}(X_{n_0} \in \cdot | \tau_A > n_0)$$

Hence $\mathbb{P}_{\mu}(X_n \in \cdot | \tau_A > n)$ converges if

$$\mu \in \{\nu \text{ prob. meas.} : \mathbb{P}_{\phi_{n_0}(\nu)}(X_n \in \cdot | \tau_{A_{n_0}} > n)\}$$

• *Q*-process and quasi-ergodic distribution can also still make sense with moving boundaries

<ロ> (日) (日) (日) (日) (日)

III. Q-process and quasi-ergodic distribution : Champagnat-Villemonais condition

□ > < E > < E</p>

• Sub-Markovian time-inhomogeneous semi-group of $(X_t)_{t\geq 0}$:

$$P_{s,t}f(x) = \mathbb{E}_{x}(f(X_{t-s})\mathbb{1}_{\tau_{A \circ \theta_{s}} > t-s})$$

• It is very difficult to use spectral techniques to characterize QLD? QED and *Q*-process

Consider A as a non-moving boundaries

Champagnat-Villemonais condition (CV)

CV1 there exists $\nu \in \mathcal{M}_1(E)$, $t_0, c_1 > 0$ s.t.

$$\mathbb{P}_{x}(X_{t_{0}} \in \cdot | \tau_{A} > t_{0}) \geq c_{1}\nu, \quad \forall x \in E$$

CV2 there exists $c_2 > 0$ s.t.

 $\mathbb{P}_{
u}(au_A > t) \geq c_2 \mathbb{P}_x(au_A > t), \quad \forall x \in E, \forall t \geq 0$

□□ ▶ ▲ □ ▶ ▲ □

Exponential quasi-ergodicity (non-moving case)

Theorem (Champagnat-Villemonais, 2016)

(CV1) and (CV2) \Leftrightarrow there exist C, $\gamma > 0$ s.t. for any initial law μ and any $t \ge 0$,

$$||\mathbb{P}_{\mu}(X_t \in \cdot | au_A > t) - lpha ||_{TV} \leq Ce^{-\gamma t}$$

where

$$||\mu||_{TV} = \sup_{||f||_{\infty} \le 1} \left| \int_{E} f(x)\mu(dx) \right|$$

(CV1) and (CV2) imply also

- Existence of *Q*-process
- Existence and uniqueness of QED

Assumption (A)

There exists $(\nu_s)_{s\geq 0}$ prob. measures and t_0 , c_1 and $c_2 > 0$ s.t. A1 For any $s \geq 0$ and $x \in E_s$

$$\mathbb{P}_{x}(X_{t_{0}} \in \cdot | \tau_{A \circ \theta_{s}} > t_{0}) \geq c_{1}\nu_{s+t_{0}}$$

A2 For any $s, t \ge 0$ and $x \in E_s$,

$$\mathbb{P}_{
u_s}(au_{\mathcal{A} \circ heta_s} > t) \geq c_2 \mathbb{P}_{ imes}(au_{\mathcal{A} \circ heta_s} > t)$$

★掃▶ ★注▶ ★注

Theorem (Champagnat-Villemonais, 2016)

Under Assumption (A), there exists a time-inhomogeneous Markov process $(Y_t)_{t\geq 0}$ s.t. for any $0 \leq s \leq t, \forall x \in E_s$,

$$\mathbb{P}_{s,x}(Y_{[s,s+t]} \in \cdot) = \lim_{T \to \infty} \mathbb{P}_x(X_{[0,t]} \in \cdot | \tau_{A \circ \theta_s} > t + T),$$

Theorem (Champagnat-Villemonais, 2016)

Under Assumption (A), there exists a time-inhomogeneous Markov process $(Y_t)_{t\geq 0}$ s.t. for any $0 \leq s \leq t, \forall x \in E_s$,

$$\mathbb{P}_{s,x}(Y_{[s,s+t]} \in \cdot) = \lim_{T \to \infty} \mathbb{P}_x(X_{[0,t]} \in \cdot | \tau_{A \circ \theta_s} > t + T),$$

Theorem (O., 2018)

For any $s, t \ge 0$ and $x \in E_s$, there exist $d' \in (0, 1)$ and $C_{s,t,x} > 0$ such that for any $T \ge 0$,

$$egin{aligned} ||\mathbb{P}_{x}(X_{[0,t]} \in \cdot | au_{A \circ heta_{s}} > t + au) - \mathbb{P}_{s,x}(Y_{[s,s+t]} \in \cdot)||_{TV} \ &\leq C_{s,t,x}(1-d')^{\left\lfloor rac{T}{t_{max}}
ight
floor} \end{aligned}$$

Corollary (0.,2018)

Furthermore, if

$$2 \forall \mu, \quad \frac{1}{t} \int_0^t \mathbb{P}_{\mu}(Y_s \in \cdot) ds \xrightarrow[t \to \infty]{} \beta$$

Then for any initial law μ

$$rac{1}{t}\int_0^t \mathbb{P}_\mu(X_s\in \cdot| au_A>t) ds extstyle s t
ightarrow eta$$

Proof of Corollary

Proof.

$$\begin{split} \left\| \left\| \frac{1}{t} \int_{0}^{t} \mathbb{P}_{\mu}(X_{s} \in \cdot | \tau_{A} > t) - \beta \right\| \right\|_{TV} \\ &\leq \frac{1}{t} \int_{0}^{t} \left\| \mathbb{P}_{\mu}(X_{s} \in \cdot | \tau_{A} > t) - \mathbb{P}_{\mu}(Y_{s} \in \cdot) \right\|_{TV} ds \\ &+ \left\| \left| \frac{1}{t} \int_{0}^{t} \mathbb{P}_{\mu}(Y_{s} \in \cdot) ds - \beta \right\| \right\|_{TV} \\ &\leq \frac{C}{t} + \left\| \left| \frac{1}{t} \int_{0}^{t} \mathbb{P}_{\mu}(Y_{s} \in \cdot) ds - \beta \right\| \right\|_{TV} \xrightarrow{t \to \infty} 0 \end{split}$$

æ

ヘロト 人間 と 人間 と 人間 と

Two types of behavior

• A is γ -periodic

Theorem (0.,2018)

If Assumption (A) holds and $t_0 \in \gamma \mathbb{N}$, then there exists β such that for any initial law μ

$$rac{1}{t}\int_0^t \mathbb{P}_\mu(X_{s}\in \cdot| au_{A}>t) ds extstyle s t o eta$$

A is a non-increasing nested sequence (i.e. A_t ⊂ A_s, ∀s ≤ t) converging towards A_∞.

Theorem (0.,2018)

If Assumption (A) holds and (CV) holds for A_{∞} , then there exists β such that for any initial law μ

$$rac{1}{t}\int_0^t \mathbb{P}_\mu(X_s\in\cdot| au_A>t) ds extstyle s t o \infty eta$$

A few words about QLD

• A γ -periodic

Proposition (O.,2017)

If (Irr) holds, then for any initial law μ , the sequence

$$\mathbb{P}_{\mu}(X_t \in \cdot | \tau_A > t)$$

does not converge.

A is a non-increasing nested sequence (i.e. A_t ⊂ A_s, ∀s ≤ t) converging towards A_∞.

Theorem (0.,2018)

If Assumption (A) holds and (CV) holds for A_{∞} , then there exists α such that for any initial law μ

$$\mathbb{P}_{\mu}(X_t \in \cdot | \tau_A > t) \underset{t \to \infty}{\longrightarrow} \alpha$$

I'm done ! Thank you for your attention !

æ

<ロ> (日) (日) (日) (日) (日)