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I. Framework and definitions : when boundaries are NOT moving

2/28



Framework : Absorbed Markov processes

(Xt)t≥0 Markov process evolving in E ∪ A, where A is considered
as a trap for (Xt)t≥0 :

Xt ∈ A, ∀t > τA

where
τA := inf{t ≥ 0 : Xt ∈ A}
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Examples

•

•

•

•

•

•
•

•

•

•

X0 = 1X1 = 3X2 = 4X3 = 2

Galton-Watson process Birth-death process

t

Xt

.
More generally : any Markov processes stopped when reaching a
given subset of the state space
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Asymptotic behavior

If τA <∞ Px -almost surely for any x ∈ E , (Xt)t≥0 will live in
A as t goes to infinity

When τA is exceptionally big, a meta-stable state can appear
before the Markov process is absorbed

To characterize this meta-stable state, the idea is to study the
asymptotic behavior of

Px(Xt ∈ ·|τA > t) (1)

Questions

Is there weak convergence of (1)? For which x ∈ E?

What is the limit?
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Quasi-limit distribution

Main assumptions :

Px(τA <∞) = 1, ∀x ∈ E

Px(τA > t) > 0, ∀x ∈ E , ∀t ≥ 0

Definition : Quasi-limit distribution (QLD)

α is a quasi-limit distribution (QLD) if, for some initial distribution
µ,

α = lim
t→∞

Pµ(Xt ∈ ·|τA > t)
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Quasi-stationary distribution

Digression - Stationary distribution: If, for some initial law µ,
Pµ(Xt ∈ ·) converges weakly, then π defined by

π := lim
t→∞

Pµ(Xt ∈ ·)

is a stationary distribution of (Xt)t≥0, i.e. a prob. measure
satisfying

Pπ(Xt ∈ ·) = π, ∀t ≥ 0

Definition : Quasi-stationary distribution (QSD)

α is a quasi-stationary distribution (QSD) if

Pα(Xt ∈ ·|τA > t) = α, ∀t ≥ 0
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Some remarks

Equivalence between QSD and QLD

QLD⇐⇒ QSD

⇐= : Obvious since, for µ = α, Pµ(Xt ∈ ·|τA > t) = α

=⇒ : Denote by

µt = Pµ(Xt ∈ ·|τA > t)

According to Markov property,

µt+s = Pµs (Xt ∈ ·|τA > t)

Argument of fixed point theorem : α = lims→∞ µs satisfies

α = Pα(Xt ∈ ·|τA > t), ∀t ≥ 0
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Definition : Q-process

Q-process

We say that (Yt)t≥0 is a Q-process if, for any initial law µ,

Pµ(Y[0,s] ∈ ·) = lim
t→∞

Pµ(X[0,s] ∈ ·|τA > t), ∀s ≥ 0

The Q-process can be considered as the law of the process X
conditioned never to be absorbed by A.

The Q-process is a Markov process.

For some processes, Q-process exists without having existence
of QSD (ex : Brownian motion stopped at 0)
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Quasi-ergodic distribution

Mean ergodic theorem for Markov processes: If π is a
stationary measure, then under some assumptions on X for any
measurable function f ,

1

t

∫ t

0
f (Xs)ds −→

t→∞

∫
fdπ, almost surely

Definition : Quasi-ergodic distribution (QED)

β is a quasi-ergodic distribution (QED) if for some prob. meas. µ,

β = lim
t→∞

1

t

∫ t

0
Pµ(Xs ∈ ·|τA > t)ds

Remark: The QED is different from the QSD
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Spectral property of QSD

Sub-Markovian semi-group of (Xt)t≥0:

Pt f (x) = Ex(f (Xt)1τA>t)

α QSD ⇔
∫
E Pt f (x)α(dx) = e−λt

∫
E f (x)α(dx) (λ > 0)

Comparison with stationary distribution :

π stationary distribution⇔
∫

Ex(f (Xt))π(dx) =

∫
f (x)π(dx)
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II. Quasi-stationarity with moving boundaries
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Motivation of PhD thesis

Sometimes (Xt)t≥0 can be absorbed by a moving trap

Example : Cattiaux-Christophe-Gadat, 2016

Figure: Figure 1 from ”A stochastic model for cytotoxic T.
lymphocyte interaction with tumor nodules”
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Questions

(Xt)t≥0 evolving in Et ∪ At and absorbed in (At)t≥0.

τA = inf{t ≥ 0 : Xt ∈ At}

τA◦θs = inf{t ≥ 0 : Xt ∈ At+s}

Questions

Can we still define the notion of

QSD ?

QLD ?

Q-process ?

QED ?

For which behavior of (At)t≥0?

14/28



QSD with moving boundaries

(Irr) : ∀t ≥ 0, ∀x , y ∈ Et , ∀ε > 0, ∃u ≥ 0,Px(Xu∧τAt ∈ B(y , ε)) > 0

where τAt = inf{u ≥ 0 : Xu ∈ At} and B(y , ε) = ball of center y
and radius ε

Proposition (O., 2017)

Under the assumption of irreducibility (Irr), for any s ≥ 0, there is
no prob. measure α s.t.

α = Pα(Xt ∈ ·|τA◦θs > t)
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Proof of the proposition

Proof in discrete-time setting: For any µ and n ≥ 0, denote by

µn := Pµ(Xn ∈ ·|τA > n)

Then, according to Markov property, for any n ≥ 1,

µn = Pµn−1(X1 ∈ ·|τAn > 1)

where τAn = inf{m ≥ 0 : Xm ∈ An}. Thus, if µ0 = α satisfies Prop
1, then µn = α for all n and

α = Pα(X1 ∈ ·|τAn > 1), ∀n ≥ 1

which will imply that Supp α = En for any n : Impossible !

16/28



QSD and QLD aren’t equivalent anymore

Even if we cannot define QSD when the absorbing set moves,
QLD can still exist in certain case.

Example : Assume that An = An0 for any n ≥ n0. Then, By
Markov property,

Pµ(Xn+n0 ∈ ·|τA > n + n0) = Pφn0 (µ)(Xn ∈ ·|τAn0
> n)

where
φn0 : µ→ Pµ(Xn0 ∈ ·|τA > n0)

Hence Pµ(Xn ∈ ·|τA > n) converges if

µ ∈ {ν prob. meas. : Pφn0 (ν)(Xn ∈ ·|τAn0
> n)}

Q-process and quasi-ergodic distribution can also still make
sense with moving boundaries
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III. Q-process and quasi-ergodic distribution :
Champagnat-Villemonais condition
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Time-inhomogeneous semi-group

Sub-Markovian time-inhomogeneous semi-group of (Xt)t≥0:

Ps,t f (x) = Ex(f (Xt−s)1τA◦θs>t−s)

It is very difficult to use spectral techniques to characterize
QLD? QED and Q-process
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Champagnat-Villemonais condition

Consider A as a non-moving boundaries

Champagnat-Villemonais condition (CV)

CV1 there exists ν ∈M1(E ), t0, c1 > 0 s.t.

Px(Xt0 ∈ ·|τA > t0) ≥ c1ν, ∀x ∈ E

CV2 there exists c2 > 0 s.t.

Pν(τA > t) ≥ c2Px(τA > t), ∀x ∈ E , ∀t ≥ 0
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Exponential quasi-ergodicity (non-moving case)

Theorem (Champagnat-Villemonais, 2016)

(CV1) and (CV2) ⇔ there exist C , γ > 0 s.t. for any initial law µ
and any t ≥ 0,

||Pµ(Xt ∈ ·|τA > t)− α||TV ≤ Ce−γt

where

||µ||TV = sup
||f ||∞≤1

∣∣∣∣∫
E
f (x)µ(dx)

∣∣∣∣
(CV1) and (CV2) imply also

Existence of Q-process

Existence and uniqueness of QED
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Champagnat-Villemonais condition for moving boundaries

Assumption (A)

There exists (νs)s≥0 prob. measures and t0, c1 and c2 > 0 s.t.

A1 For any s ≥ 0 and x ∈ Es

Px(Xt0 ∈ ·|τA◦θs > t0) ≥ c1νs+t0

A2 For any s, t ≥ 0 and x ∈ Es ,

Pνs (τA◦θs > t) ≥ c2Px(τA◦θs > t)
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Existence of Q-process and exponential decay

Theorem (Champagnat-Villemonais, 2016)

Under Assumption (A), there exists a time-inhomogeneous Markov
process (Yt)t≥0 s.t. for any 0 ≤ s ≤ t,∀x ∈ Es ,

Ps,x(Y[s,s+t] ∈ ·) = lim
T→∞

Px(X[0,t] ∈ ·|τA◦θs > t + T ),

Theorem (O., 2018)

For any s, t ≥ 0 and x ∈ Es , there exist d ′ ∈ (0, 1) and Cs,t,x > 0
such that for any T ≥ 0,

||Px(X[0,t] ∈ ·|τA◦θs > t + T )− Ps,x(Y[s,s+t] ∈ ·)||TV

≤ Cs,t,x(1− d ′)

⌊
T

tmax

⌋
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Quasi-ergodic distribution

Corollary (O.,2018)

Furthermore, if

1 ∀x , s, supt≥0 Cs,t,x <∞
2 ∀µ, 1

t

∫ t
0 Pµ(Ys ∈ ·)ds −→

t→∞
β

Then for any initial law µ

1

t

∫ t

0
Pµ(Xs ∈ ·|τA > t)ds −→

t→∞
β
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Proof of Corollary

Proof. ∣∣∣∣∣∣∣∣1t
∫ t

0
Pµ(Xs ∈ ·|τA > t)− β

∣∣∣∣∣∣∣∣
TV

≤ 1

t

∫ t

0
||Pµ(Xs ∈ ·|τA > t)− Pµ(Ys ∈ ·)||TV ds

+

∣∣∣∣∣∣∣∣1t
∫ t

0
Pµ(Ys ∈ ·)ds − β

∣∣∣∣∣∣∣∣
TV

≤ C

t
+

∣∣∣∣∣∣∣∣1t
∫ t

0
Pµ(Ys ∈ ·)ds − β

∣∣∣∣∣∣∣∣
TV

−→
t→∞

0
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Two types of behavior

A is γ-periodic

Theorem (O.,2018)

If Assumption (A) holds and t0 ∈ γN, then there exists β such that
for any initial law µ

1

t

∫ t

0
Pµ(Xs ∈ ·|τA > t)ds −→

t→∞
β

A is a non-increasing nested sequence (i.e. At ⊂ As , ∀s ≤ t)
converging towards A∞.

Theorem (O.,2018)

If Assumption (A) holds and (CV) holds for A∞, then there exists
β such that for any initial law µ

1

t

∫ t

0
Pµ(Xs ∈ ·|τA > t)ds −→

t→∞
β
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A few words about QLD

A γ-periodic

Proposition (O.,2017)

If (Irr) holds, then for any initial law µ, the sequence

Pµ(Xt ∈ ·|τA > t)

does not converge.

A is a non-increasing nested sequence (i.e. At ⊂ As , ∀s ≤ t)
converging towards A∞.

Theorem (O.,2018)

If Assumption (A) holds and (CV) holds for A∞, then there exists
α such that for any initial law µ

Pµ(Xt ∈ ·|τA > t) −→
t→∞

α
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I’m done ! Thank you for your attention !
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