The dynamics of Schrödinger bridges

Giovanni Conforti

Stochastic processes and statistical machine learning

February, 15, 2018

- The Schrödinger problem and relations with Monge-Kantorovich problem
- Newton's law for entropic interpolation
- The entropy along the entropic interpolations

The talk is based on

• G. Conforti. A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost. *Probability Theory and Related Fields(to appear)*

Part I: The of Schrödinger problem and relations with the Monge-Kantorovich problem

Schrödinger's thought experiment

An old story from Schrödinger back in 1931...

"Imaginez que vous observez un système de particules en diffusion, qui soient en équilibre thermodynamique. Admettons qu'à un instant donné 0 vous les ayez trouvées en répartition à peu près uniforme et quà 1 vous ayez trouvé un écart spontané et considérable par rapport à cette uniformité. On vous demande de quelle manière cet écart sest produit. Quelle en est la manière la plus probable ?"

A more recent story from C.Villani's textbook.

Take a **perfect gas** in which particles do not interact, and ask him to move from a certain **prescribed density field** at time t = 0, to another prescribed density field at time t = 1. Since **the gas is red lazy**, he will find a way to do so that it needs a minimal amount of work (least action path).

Schrödinger's thought experiment

An old story from Schrödinger back in 1931...

"Imaginez que vous observez un système de particules en diffusion, qui soient en équilibre thermodynamique. Admettons qu'à un instant donné 0 vous les ayez trouvées en répartition à peu près uniforme et quà 1 vous ayez trouvé un écart spontané et considérable par rapport à cette uniformité. On vous demande de quelle manière cet écart sest produit. Quelle en est la manière la plus probable ?"

A more recent story from C.Villani's textbook..

Take a **perfect gas** in which particles do not interact, and ask him to move from a certain **prescribed density field** at time t = 0, to another prescribed density field at time t = 1. Since the gas is red lazy, he will find a way to do so that it needs a minimal amount of work (least action path).

Schrödinger's thought experiment

An old story from Schrödinger back in 1931...

"Imaginez que vous observez un système de particules en diffusion, qui soient en équilibre thermodynamique. Admettons qu'à un instant donné 0 vous les ayez trouvées en répartition à peu près uniforme et quà 1 vous ayez trouvé un écart spontané et considérable par rapport à cette uniformité. On vous demande de quelle manière cet écart sest produit. Quelle en est la manière la plus probable ?"

A more recent story from C.Villani's textbook..

Take a **perfect gas** in which particles do not interact, and ask him to move from a certain **prescribed density field** at time t = 0, to another prescribed density field at time t = 1. Since **the gas is lazy**, he will find a way to do so that it needs a minimal amount of work (least action path).

To model Schrödinger's experiment we need

- \bullet An ambient space \hookrightarrow A Riemannian manifold M
- The equilibrium dynamics for the particles \hookrightarrow stationary Brownian motion P
- The non-interacting particles $\hookrightarrow X^1_\cdot,\ldots,X^N_\cdot$ independent stationary Brownian motions
- The particle-configuration \hookrightarrow empirical measure μ^N

$$\mu^N(A) = \frac{1}{N} \mathrm{Card}(\{i: X^i_\cdot \in A\})$$

To model Schrödinger's experiment we need

- An ambient space \hookrightarrow A Riemannian manifold M
- \bullet The equilibrium dynamics for the particles \hookrightarrow stationary Brownian motion P
- The non-interacting particles $\hookrightarrow X^1_{\cdot}, \ldots, X^N_{\cdot}$ independent stationary Brownian motions
- The particle-configuration \hookrightarrow empirical measure μ^N

$$\mu^N(A) = \frac{1}{N} \mathrm{Card}(\{i: X^i_\cdot \in A\})$$

To model Schrödinger's experiment we need

- \bullet An ambient space \hookrightarrow A Riemannian manifold M
- \bullet The equilibrium dynamics for the particles \hookrightarrow stationary Brownian motion P
- The non-interacting particles $\hookrightarrow X^1_{\cdot}, \ldots, X^N_{\cdot}$ independent stationary Brownian motions
- \bullet The particle-configuration \hookrightarrow empirical measure μ^N

$$\mu^N(A) = \frac{1}{N} \mathrm{Card}(\{i: X^i_\cdot \in A\})$$

To model Schrödinger's experiment we need

- \bullet An ambient space \hookrightarrow A Riemannian manifold M
- \bullet The equilibrium dynamics for the particles \hookrightarrow stationary Brownian motion P
- The non-interacting particles $\hookrightarrow X^1_{\cdot}, \ldots, X^N_{\cdot}$ independent stationary Brownian motions
- \bullet The particle-configuration \hookrightarrow empirical measure μ^N

$$\mu^N(A) = \frac{1}{N} \mathrm{Card}(\{i: X^i_\cdot \in A\})$$

To model Schrödinger's experiment we need

- \bullet An ambient space \hookrightarrow A Riemannian manifold M
- \bullet The equilibrium dynamics for the particles \hookrightarrow stationary Brownian motion P
- The non-interacting particles $\hookrightarrow X^1_{\cdot}, \ldots, X^N_{\cdot}$ independent stationary Brownian motions
- \bullet The particle-configuration \hookrightarrow empirical measure μ^N

$$\mu^N(A) = \frac{1}{N} \mathrm{Card}(\{i: X^i_\cdot \in A\})$$

Schrödinger bridge problem: dynamic formulation

We denote the law μ^N by \mathscr{P}^N

Sanov'Theorem

$$\frac{1}{\mathsf{N}} \log \mathscr{P}^{\mathsf{N}} \left(\boldsymbol{\mu}^{\mathsf{N}} = \boldsymbol{Q} \right) \asymp - \mathscr{H}^{*}(\boldsymbol{Q} | \boldsymbol{\mathsf{P}})$$

Thus, the "most likely evolution" is found solving

Schrödinger Problem (SP)

$$\begin{split} &\inf_{Q} \mathscr{H}_{path}(Q|P) \\ &Q \in \mathcal{P}(C([0,1],M)), \quad (X_0)_{\#}Q = \nu_0, (X_1)_{\#}Q = \nu_1 \end{split}$$

- \mathscr{H}_{path} is the relative entropy for laws on the path space C([0, 1], M)
- The **Schrödinger bridge** (SB) is the optimal solution of (SP)

Schrödinger bridge problem: dynamic formulation

We denote the law μ^N by \mathscr{P}^N

Sanov'Theorem

$$\frac{1}{\mathsf{N}}\log \mathscr{P}^{\mathsf{N}}\left(\boldsymbol{\mu}^{\mathsf{N}}=\boldsymbol{Q}\right) \asymp -\mathscr{H}^{*}(\boldsymbol{Q}|\boldsymbol{\mathsf{P}})$$

Thus, the "most likely evolution" is found solving

Schrödinger Problem (SP)

$$\label{eq:Q_path} \begin{split} &\inf_{Q} \mathscr{H}_{path}(Q|P) \\ &Q \in \mathcal{P}(C([0,1],M)), \quad (X_0)_{\#}Q = \nu_0, (X_1)_{\#}Q = \nu_1 \end{split}$$

- $\bullet \ {\mathscr H}_{\rm path}$ is the relative entropy for laws on the path space C([0,1],M)
- The **Schrödinger bridge** (SB) is the optimal solution of (SP)

Some notation and two classical results

\bullet Marginal flow of SB entropic interpolation $\hookrightarrow (\mu_t)$

• The optimal value of SP is the entropic $cost \hookrightarrow T_H(\nu_0, \nu_1)$

Theorem (fg-decomposition)

Under some mild regularity assumptions on M,ν_0,ν_1 there exist non-negative functions f_t,g_t such

 $\forall t \in [0,1], \quad \mu_t = f_t g_t$

 $f_{\tt t}, g_{\tt t}$ solve the equation

$$\partial_t f_t = \frac{1}{2} \Delta f_t, \quad \partial_t g_t = -\frac{1}{2} \Delta g_t$$

Theorem (Vague statement)

In the small noise regime (SP) Γ -converges to the Monge-Kantorovich problem.

Some notation and two classical results

- \bullet Marginal flow of SB entropic interpolation $\hookrightarrow (\mu_t)$
- The optimal value of SP is the entropic $cost \hookrightarrow T_H(\nu_0, \nu_1)$

Theorem (fg-decomposition)

Under some mild regularity assumptions on M,ν_0,ν_1 there exist non-negative functions f_t,g_t such

 $\forall t \in [0,1], \quad \mu_t = f_t g_t$

 f_{t},g_{t} solve the equation

$$\partial_t f_t = \frac{1}{2} \Delta f_t, \quad \partial_t g_t = -\frac{1}{2} \Delta g_t$$

Theorem (Vague statement)

In the small noise regime (SP) Γ -converges to the Monge-Kantorovich problem.

The use of **Sinkhorn's algorithm** to compute (approximate) solutions of OT has led to a dramatic reduction in the computational cost, $O(d^2)$ vs. $O(d^3 \log d)$.

• Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport.

In Advances in neural information processing systems, pages 2292–2300, 2013

- The regularized problem solved using Sinkhorn is a discrete Schrödinger problem!
- The reason why we can use Sinkhorn's algorithm is the fg decomposition Theorem

The use of **Sinkhorn's algorithm** to compute (approximate) solutions of OT has led to a dramatic reduction in the computational cost, $O(d^2)$ vs. $O(d^3 \log d)$.

• Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport.

In Advances in neural information processing systems, pages 2292–2300, 2013

- The regularized problem solved using Sinkhorn is a discrete Schrödinger problem!
- $\bullet\,$ The reason why we can use Sinkhorn's algorithm is the fg decomposition Theorem

Some references(incomplete list)

- E. Schrödinger. La théorie relativiste de l'électron et l' interprétation de la mécanique quantique. Ann. Inst Henri Poincaré, (2):269 – 310, 1932
- C. Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete and Continuous Dynamical Systems, 34(4):1533-1574, 2014
- H. Föllmer. Random fields and diffusion processes. In École d'Été de Probabilités de Saint-Flour XV–XVII, 1985–87, pages 101–203. Springer, 1988
- C. Léonard. From the Schrödinger problem to the Monge–Kantorovich problem. Journal of Functional Analysis, 262(4):1879–1920, 2012
- T. Mikami. Monges problem with a quadratic cost by the zero-noise limit of h-path processes. Probability Theory and Related Fields, 129(2):245–260, 2004 Giovanni Conforti The dynamics of Schrödinger bridges

"What is the shape of the particle cloud at $t = \frac{1}{2}$?"

- Entropy minimization \rightsquigarrow particles try to arrange according to the equilibrium configuration \mathfrak{m} .
- Prescribed initial and final configurations \rightsquigarrow particles are forced into a configuration far from equilibrium at t = 0, 1.

```
"Does \mu_{1/2} look like m?"
```

$\$

"How big is $\mathscr{H}_{marg}(\mu_{1/2}|\mathbf{m})$?"

The key to answer the question is to view the entropic interpolation (μ_t) as a curve in a Riemannian manifold.

"What is the shape of the particle cloud at $t = \frac{1}{2}$?"

- Entropy minimization \rightsquigarrow particles try to arrange according to the equilibrium configuration \mathfrak{m} .
- Prescribed initial and final configurations \rightsquigarrow particles are forced into a configuration far from equilibrium at t = 0, 1.

"Does $\mu_{1/2}$ look like m?"

\$

" How big is $\mathscr{H}_{\mathrm{marg}}(\mu_{1/2}|\mathbf{m}) \coloneqq \mathbf{S}(\mu_{1/2})$?"

The key to answer the question is to view the entropic interpolation (μ_t) as a curve in a Riemannian manifold.

Part II: Newton's law for the entropic interpolation

The "Otto metric"

Formally, it is the Riemannian metric on $\mathcal{P}_2(M)$ whose associated geodesic distance is the Wasserstein distance W_2 .

• The tangent space at $\mu\in \mathcal{P}_2(M)$ is identified with the gradient vector fields

$$\mathbf{T}_{\boldsymbol{\mu}} = \overline{\{\nabla \phi, \phi \in \mathcal{C}^{\infty}_{c}\}}^{L^{2}(\boldsymbol{\mu})}$$

• We define the Riemannian metric on it

"Riemannian metric" on \mathbf{T}_{μ}

$$\langle \nabla \phi, \nabla \psi \rangle_{T_{\mu}} := \int_{\mathcal{M}} \langle \nabla \phi, \nabla \psi \rangle \mathrm{d} \mu.$$

 \bullet The velocity of an absolutely continuous curve (μ_t) is given by

Continuity equation

$$\vartheta_t \mu_t + \nabla \cdot (\nu_t \mu_t) = 0, \quad \nu_t \in \mathbf{T}_{\mu_t}$$

The "Otto metric"

Formally, it is the Riemannian metric on $\mathcal{P}_2(M)$ whose associated geodesic distance is the Wasserstein distance W_2 .

• The tangent space at $\mu\in \mathcal{P}_2(M)$ is identified with the gradient vector fields

$$\mathbf{T}_{\boldsymbol{\mu}} = \overline{\{\nabla \phi, \phi \in \mathcal{C}^{\infty}_{c}\}}^{L^{2}(\boldsymbol{\mu})}$$

• We define the Riemannian metric on it

"Riemannian metric" on \mathbf{T}_{μ}

$$\langle \nabla \phi, \nabla \psi \rangle_{T_{\mu}} := \int_{\mathcal{M}} \langle \nabla \phi, \nabla \psi \rangle \mathrm{d} \mu.$$

 \bullet The velocity of an absolutely continuous curve (μ_t) is given by

Continuity equation

$$\vartheta_t \mu_t + \nabla \cdot (\nu_t \mu_t) = 0, \quad \nu_t \in \mathbf{T}_{\mu_t}$$

Construction of the covariant derivative

The **Benamou-Brenier formula** tells indeed that the geodesic distance for this Riemannian metric is the Wasserstein distance.

Displacement interpolations are geodesics

$$W_2^2(\nu_0,\nu_1) = \inf_{\substack{(\mu,\nu)\\\mu_0=\nu_0,\mu_1=\nu_1}} \int_0^1 |\nu_t|_{\mathbf{T}_{\mu_t}}^2 \mathrm{d}t,$$

In a Riemannian manifold, the acceleration of a curve is the **covariant derivative** of its velocity

Acceleration of a curve

$$\nabla_{\mathbf{v}_{t}}^{W_{2}}\mathbf{v}_{t} = \partial_{t}\mathbf{v}_{t} + \frac{1}{2}\nabla\left(|\mathbf{v}_{t}|^{2}\right)$$

Construction of the covariant derivative

The **Benamou-Brenier formula** tells indeed that the geodesic distance for this Riemannian metric is the Wasserstein distance.

Displacement interpolations are geodesics

$$W_2^2(\nu_0,\nu_1) = \inf_{\substack{(\mu,\nu)\\\mu_0=\nu_0,\mu_1=\nu_1}} \int_0^1 |\nu_t|_{\mathbf{T}_{\mu_t}}^2 \mathrm{d}t,$$

In a Riemannian manifold, the acceleration of a curve is the **covariant derivative** of its velocity

Acceleration of a curve

$$\nabla_{\nu_{t}}^{W_{2}}\nu_{t} = \vartheta_{t}\nu_{t} + \frac{1}{2}\nabla\left(|\nu_{t}|^{2}\right)$$

"Particles move from configuration ν_0 to configuration ν_1 minimizing relative entropy"

• The natural way of doing it would be to follow the gradient flow

$$\nu_t = -\frac{1}{2} \nabla^{W_2} S(\mu_t), \quad \mu_0 = \nu_0.$$

- If particles go along the gradient flow $\mu_1 \neq \nu_1$
- IDEA: Modify the gradient flow equation as little as **possible** in order to be able to impose the terminal condition

"Particles move from configuration ν_0 to configuration ν_1 minimizing relative entropy"

• The natural way of doing it would be to follow the gradient flow

$$\label{eq:vt} \boldsymbol{\nu}_t = -\frac{1}{2} \nabla^{W_2} \boldsymbol{S}(\boldsymbol{\mu}_t), \quad \boldsymbol{\mu}_0 = \boldsymbol{\nu}_0.$$

- If particles go along the gradient flow $\mu_1 \neq \nu_1$
- IDEA: Modify the gradient flow equation as little as **possible** in order to be able to impose the terminal condition

"Particles move from configuration ν_0 to configuration ν_1 minimizing relative entropy"

• The natural way of doing it would be to follow the gradient flow

$$\boldsymbol{\nu}_t = -\frac{1}{2} \nabla^{W_2} \boldsymbol{S}(\boldsymbol{\mu}_t), \quad \boldsymbol{\mu}_0 = \boldsymbol{\nu}_0.$$

- If particles go along the gradient flow $\mu_1 \neq \nu_1$
- IDEA: Modify the gradient flow equation as little as **possible** in order to be able to impose the terminal condition

"Particles move from configuration ν_0 to configuration ν_1 minimizing relative entropy"

• The natural way of doing it would be to follow the gradient flow

$$\label{eq:vt} \boldsymbol{\nu}_t = -\frac{1}{2} \nabla^{W_2} \boldsymbol{S}(\boldsymbol{\mu}_t), \quad \boldsymbol{\mu}_0 = \boldsymbol{\nu}_0.$$

- \bullet If particles go along the gradient flow $\mu_1 \neq \nu_1$
- IDEA: Modify the gradient flow equation as little as **possible** in order to be able to impose the terminal condition

Gradient flow in \mathbb{R}^d

$$\dot{x}_t = -\nabla S(x_t)$$

Second order equation for the gradient flow

$$= -\nabla^2 S(\mathbf{x}_t) \cdot \dot{\mathbf{x}}_t$$
$$= \nabla^2 S(\mathbf{x}_t) \cdot \nabla S(\mathbf{x}_t)$$
$$= \frac{1}{2} \nabla (|\nabla S(\mathbf{x}_t)|^2)$$

Back to the OT setting (S = Relative entropy)

The **Fisher information** \mathcal{I} is the norm squared of the gradient of the entropy

$$\mathbb{J}(\boldsymbol{\mu}) = \left| \nabla^{W_2} \mathsf{S}(\cdot) \right|_{\mathbf{T}_{\boldsymbol{\mu}}}^2$$

Gradient flow in \mathbb{R}^d

$$\dot{x}_t = -\nabla S(x_t)$$

Second order equation for the gradient flow

ÿ.

$$\begin{aligned} \mathbf{t} &= -\nabla^2 \mathbf{S}(\mathbf{x}_t) \cdot \dot{\mathbf{x}}_t \\ &= \nabla^2 \mathbf{S}(\mathbf{x}_t) \cdot \nabla \mathbf{S}(\mathbf{x}_t) \\ &= \frac{1}{2} \nabla (|\nabla \mathbf{S}(\mathbf{x}_t)|^2) \end{aligned}$$

Back to the OT setting (S = Relative entropy)

The **Fisher information** \mathcal{I} is the norm squared of the gradient of the entropy

$$\mathfrak{I}(\boldsymbol{\mu}) = \left| \nabla^{W_2} \mathsf{S}(\cdot) \right|_{\mathbf{T}_{\boldsymbol{\mu}}}^2$$

Gradient flow in \mathbb{R}^d

$$\dot{x}_t = -\nabla S(x_t)$$

Second order equation for the gradient flow

$$\begin{split} \ddot{\mathbf{x}}_{\mathbf{t}} &= -\nabla^2 \mathbf{S}(\mathbf{x}_{\mathbf{t}}) \cdot \dot{\mathbf{x}}_{\mathbf{t}} \\ &= \nabla^2 \mathbf{S}(\mathbf{x}_{\mathbf{t}}) \cdot \nabla \mathbf{S}(\mathbf{x}_{\mathbf{t}}) \\ &= \frac{1}{2} \nabla \big(|\nabla \mathbf{S}(\mathbf{x}_{\mathbf{t}})|^2 \big) \end{split}$$

Back to the OT setting (S = Relative entropy)

The **Fisher information** \mathcal{I} is the norm squared of the gradient of the entropy

$$\mathfrak{I}(\boldsymbol{\mu}) = \left| \nabla^{W_2} \mathsf{S}(\cdot) \right|_{\mathbf{T}_{\boldsymbol{\mu}}}^2$$

Gradient flow in \mathbb{R}^d

$$\dot{x}_t = -\nabla S(x_t)$$

Second order equation for the gradient flow

ÿ.

$$\begin{split} \mathbf{t} &= -\nabla^2 S(\mathbf{x}_t) \cdot \dot{\mathbf{x}}_t \\ &= \nabla^2 S(\mathbf{x}_t) \cdot \nabla S(\mathbf{x}_t) \\ &= \frac{1}{2} \nabla \big(|\nabla S(\mathbf{x}_t)|^2 \big) \end{split}$$

Back to the OT setting (S = Relative entropy)

The **Fisher information** \mathfrak{I} is the norm squared of the gradient of the entropy

$$\mathfrak{I}(\boldsymbol{\mu}) = \left| \nabla^{W_2} S(\cdot) \right|_{\mathbf{T}_{\boldsymbol{\mu}}}^2$$

Theorem (C.'17)

Let (μ_t) be the entropic interpolation between ν_0 and ν_1 and (ν_t) its velocity field. Under suitable regularity assumptions (μ_t) solves the equation

$$\nabla_{\nu_{t}}^{W_{2}}\nu_{t} = \frac{1}{8}\nabla^{W_{2}}\mathfrak{I}(\mu_{t})$$

• The equation answers in a precise way "What kind of 2nd order equation the bridge of a diffusion satisfies?"

and thus gives grounding to the intuition that the Brownian bridge is the stochastic version of a geodesic.

• To prove a rigorous statement, we took advantage of Gigli's rigorous version of the Otto calculus

Theorem (C.'17)

Let (μ_t) be the entropic interpolation between ν_0 and ν_1 and (ν_t) its velocity field. Under suitable regularity assumptions (μ_t) solves the equation

$$\nabla_{\nu_{t}}^{W_{2}}\nu_{t} = \frac{1}{8}\nabla^{W_{2}}\mathfrak{I}(\mu_{t})$$

• The equation answers in a precise way "What kind of 2nd order equation the bridge of a diffusion satisfies?"

and thus gives grounding to the intuition that the Brownian bridge is the stochastic version of a geodesic.

• To prove a rigorous statement, we took advantage of Gigli's rigorous version of the Otto calculus

It relies on the representation $\mu_t = f_t g_t$.

Lemma (Representation of the velocity field)

The velocity field of (μ_t) is $\frac{1}{2}\nabla(\log g_t - \log f_t)$.

 $\log f_t(\mathrm{resp}\,\log g_t)$ solve the forward(backward) HJB equation

HJB

$$\begin{split} \vartheta_t \log f_t &= \frac{1}{2} \Delta \log f_t + \frac{1}{2} |\nabla \log f_t|^2, \\ \vartheta_t \log g_t &= -\frac{1}{2} \Delta \log g_t - \frac{1}{2} |\nabla \log g_t|^2 \end{split}$$

Gradient of the Fisher information

We have

$$abla^{W_2} \mathfrak{I}(\mu) = -2
abla \Delta \log \mu -
abla |
abla \log \mu|^2$$

Recall that $\nabla_{\nu_t}^{W_2} \nu_t = \partial_t \nu_t + \frac{1}{2} \nabla (|\nu_t|^2)$. We have, using HJB $\partial_t v_t = -\frac{1}{2} \nabla \partial_t \log f_t + \frac{1}{2} \nabla \partial_t \log g_t$

Recall that $\nabla_{\nu_t}^{W_2} \nu_t = \partial_t \nu_t + \frac{1}{2} \nabla \left(|\nu_t|^2 \right)$. We have, using HJB

$$\begin{split} \vartheta_{t} \nu_{t} &= -\frac{1}{2} \nabla \vartheta_{t} \log f_{t} + \frac{1}{2} \nabla \vartheta_{t} \log g_{t} \\ \overset{H}{=} -\frac{1}{4} \nabla (\Delta \log f_{t} + \Delta \log g_{t}) - \frac{1}{4} [|\nabla \log f_{t}|^{2} + |\nabla \log g_{t}|^{2}] \\ \overset{\mu_{t} = f_{t} g_{t}}{=} -\frac{1}{4} \nabla \Delta \log \mu_{t} - \frac{1}{4} \nabla [|\nabla \log f_{t}|^{2} + |\nabla \log g_{t}|^{2}] \\ \overset{\text{polarization}}{=} -\frac{1}{4} \nabla \Delta \log \mu_{t} - \frac{1}{8} \nabla |\nabla \log f_{t} + \nabla \log g_{t}|^{2} \\ -\frac{1}{8} \nabla |\nabla \log g_{t} - \nabla \log f_{t}|^{2} \\ &= -\frac{1}{8} [2 \nabla \Delta \log \mu_{t} - \nabla |\nabla \log \mu_{t}|^{2}] - \frac{1}{2} \nabla |\nu_{t}|^{2} \\ &= -\frac{1}{8} \nabla W_{2} \mathcal{I}(\mu_{t}) - \frac{1}{2} |\nu_{t}|^{2} \end{split}$$

Recall that $\nabla_{\nu_t}^{W_2} \nu_t = \partial_t \nu_t + \frac{1}{2} \nabla \left(|\nu_t|^2 \right)$. We have, using HJB

$$\begin{split} \partial_{t} \nu_{t} &= -\frac{1}{2} \nabla \partial_{t} \log f_{t} + \frac{1}{2} \nabla \partial_{t} \log g_{t} \\ \overset{HJB}{=} &-\frac{1}{4} \nabla (\Delta \log f_{t} + \Delta \log g_{t}) - \frac{1}{4} [|\nabla \log f_{t}|^{2} + |\nabla \log g_{t}|^{2}] \\ \overset{\mu_{t} = f_{t} g_{t}}{=} &-\frac{1}{4} \nabla \Delta \log \mu_{t} - \frac{1}{4} \nabla [|\nabla \log f_{t}|^{2} + |\nabla \log g_{t}|^{2}] \\ \overset{\text{polarization}}{=} &-\frac{1}{4} \nabla \Delta \log \mu_{t} - \frac{1}{8} \nabla |\nabla \log f_{t} + \nabla \log g_{t}|^{2} \\ &-\frac{1}{8} \nabla |\nabla \log g_{t} - \nabla \log f_{t}|^{2} \\ &= &-\frac{1}{8} [2 \nabla \Delta \log \mu_{t} - \nabla |\nabla \log \mu_{t}|^{2}] - \frac{1}{2} \nabla |\nu_{t}|^{2} \\ &= &-\frac{1}{8} \nabla W_{2} \mathcal{I}(\mu_{t}) - \frac{1}{2} |\nu_{t}|^{2} \end{split}$$

Recall that
$$\nabla_{\nu_t}^{W_2} \nu_t = \partial_t \nu_t + \frac{1}{2} \nabla \left(|\nu_t|^2 \right)$$
. We have, using HJB

$$\begin{split} \vartheta_{t} \nu_{t} &= -\frac{1}{2} \nabla \vartheta_{t} \log f_{t} + \frac{1}{2} \nabla \vartheta_{t} \log g_{t} \\ \overset{HJB}{=} &-\frac{1}{4} \nabla (\Delta \log f_{t} + \Delta \log g_{t}) - \frac{1}{4} [|\nabla \log f_{t}|^{2} + |\nabla \log g_{t}|^{2}] \\ \overset{\mu_{t} = f_{t} g_{t}}{=} &-\frac{1}{4} \nabla \Delta \log \mu_{t} - \frac{1}{4} \nabla [|\nabla \log f_{t}|^{2} + |\nabla \log g_{t}|^{2}] \\ \overset{\text{polarization}}{=} &-\frac{1}{4} \nabla \Delta \log \mu_{t} - \frac{1}{8} \nabla |\nabla \log f_{t} + \nabla \log g_{t}|^{2} \\ &-\frac{1}{8} \nabla |\nabla \log g_{t} - \nabla \log f_{t}|^{2} \\ &= &-\frac{1}{8} [2 \nabla \Delta \log \mu_{t} - \nabla |\nabla \log \mu_{t}|^{2}] - \frac{1}{2} \nabla |\nu_{t}|^{2} \\ &= &\frac{1}{8} \nabla^{W_{2}} \mathfrak{I}(\mu_{t}) - \frac{1}{2} |\nu_{t}|^{2} \end{split}$$

Recall that
$$\nabla_{\nu_t}^{W_2} \nu_t = \partial_t \nu_t + \frac{1}{2} \nabla \left(|\nu_t|^2 \right)$$
. We have, using HJB

$$\begin{split} \vartheta_{t} \nu_{t} &= -\frac{1}{2} \nabla \vartheta_{t} \log f_{t} + \frac{1}{2} \nabla \vartheta_{t} \log g_{t} \\ \overset{HJB}{=} &-\frac{1}{4} \nabla (\Delta \log f_{t} + \Delta \log g_{t}) - \frac{1}{4} [|\nabla \log f_{t}|^{2} + |\nabla \log g_{t}|^{2}] \\ \overset{\mu_{t} = f_{t} g_{t}}{=} &-\frac{1}{4} \nabla \Delta \log \mu_{t} - \frac{1}{4} \nabla [|\nabla \log f_{t}|^{2} + |\nabla \log g_{t}|^{2}] \\ \overset{\text{polarization}}{=} &-\frac{1}{4} \nabla \Delta \log \mu_{t} - \frac{1}{8} \nabla |\nabla \log f_{t} + \nabla \log g_{t}|^{2} \\ &-\frac{1}{8} \nabla |\nabla \log g_{t} - \nabla \log f_{t}|^{2} \\ &= &-\frac{1}{8} [2 \nabla \Delta \log \mu_{t} - \nabla |\nabla \log \mu_{t}|^{2}] - \frac{1}{2} \nabla |\nu_{t}|^{2} \\ &= &\frac{1}{8} \nabla^{W_{2}} \mathfrak{I}(\mu_{t}) - \frac{1}{2} |\nu_{t}|^{2} \end{split}$$

Recall that
$$\nabla_{\nu_t}^{W_2} \nu_t = \partial_t \nu_t + \frac{1}{2} \nabla \left(|\nu_t|^2 \right)$$
. We have, using HJB

$$\begin{split} \vartheta_{t} \nu_{t} &= -\frac{1}{2} \nabla \vartheta_{t} \log f_{t} + \frac{1}{2} \nabla \vartheta_{t} \log g_{t} \\ \overset{HJB}{=} &-\frac{1}{4} \nabla (\Delta \log f_{t} + \Delta \log g_{t}) - \frac{1}{4} [|\nabla \log f_{t}|^{2} + |\nabla \log g_{t}|^{2}] \\ \overset{\mu_{t} = f_{t} g_{t}}{=} &-\frac{1}{4} \nabla \Delta \log \mu_{t} - \frac{1}{4} \nabla [|\nabla \log f_{t}|^{2} + |\nabla \log g_{t}|^{2}] \\ \overset{\text{polarization}}{=} &-\frac{1}{4} \nabla \Delta \log \mu_{t} - \frac{1}{8} \nabla |\nabla \log f_{t} + \nabla \log g_{t}|^{2} \\ &-\frac{1}{8} \nabla |\nabla \log g_{t} - \nabla \log f_{t}|^{2} \\ &= &-\frac{1}{8} [2 \nabla \Delta \log \mu_{t} - \nabla |\nabla \log \mu_{t}|^{2}] - \frac{1}{2} \nabla |\nu_{t}|^{2} \\ &= &\frac{1}{8} \nabla^{W_{2}} \mathfrak{I}(\mu_{t}) - \frac{1}{2} |\nu_{t}|^{2} \end{split}$$

Reference list (incomplete)

- Felix Otto. The geometry of dissipative evolution equations: the porous medium equation. Communications in Partial Differential Equations, 26(1-2):101-174, 2001
- N. Gigli. Second Order Analysis on (P2(M), W2). Memoirs of the American Mathematical Society
- Max-K von Renesse. An Optimal Transport view of Schrödinger's equation. Canadian mathematical bulletin, 55(4):858–869, 2012
- E. Nelson. *Dynamical theories of Brownian motion*, volume 2. Princeton university press Princeton, 1967

Part III: The entropy along entropic interpolations

First and second derivative of the entropy

We want to study how does the particle configuration evolves "How much does $\mu_{1/2}$ look like m?"

The relative entropy can be decomposed into

$$\begin{split} S(\mu_t) = \int_{\mathcal{M}} \log f_t \mathrm{d} \mu_t + \int_{\mathcal{M}} \log g_t \mathrm{d} \mu_t &:= \overrightarrow{h}(t) + \overleftarrow{h}(t) \\ \overrightarrow{h}(t) \text{ is the forward entropy, } \overleftarrow{h}(t) \text{ the backward entropy.} \end{split}$$

First derivative -forward entropy

We have

$$\vartheta_t \overrightarrow{h}(t) = -\frac{1}{2} \big| \nu_t - \frac{1}{2} \nabla^{W_2} S \big|_{T_{\mu}}^2$$

Second derivative-forward entropy

$$\vartheta_{tt} \overrightarrow{h}(t) = \frac{1}{2} \Big\langle \nabla^{W_2}_{\xi_t} \nabla^{W_2} S, \xi_t \Big\rangle_{T_{\mu}}$$

with $\xi_t := \frac{1}{2} \nabla^{W_2} \mathbf{S} - v_t$

First and second derivative of the entropy

We want to study how does the particle configuration evolves

"How much does $\mu_{1/2}$ look like $m\red{m}$?"

The relative entropy can be decomposed into

$$\begin{split} S(\mu_t) = \int_{\mathcal{M}} \log f_t \mathrm{d}\mu_t + \int_{\mathcal{M}} \log g_t \mathrm{d}\mu_t &:= \overrightarrow{h}(t) + \overleftarrow{h}(t) \\ \overrightarrow{h}(t) \text{ is the forward entropy}, \overleftarrow{h}(t) \text{ the backward entropy} \end{split}$$

First derivative -forward entropy

We have

$$\vartheta_t \overrightarrow{h}(t) = -\frac{1}{2} \big| \nu_t - \frac{1}{2} \nabla^{W_2} S \big|_{\mathbf{T}_{\mu}}^2$$

Second derivative-forward entropy

$$\vartheta_{tt} \overrightarrow{h}(t) = \frac{1}{2} \Big\langle \nabla^{W_2}_{\xi_t} \nabla^{W_2} S, \xi_t \Big\rangle_{T_{\mu}}$$

with $\xi_t := \frac{1}{2} \nabla^{W_2} S - v_t$

Curvature enters the game

- Assume now that the **Ricci curvature** is bounded below, i.e. $\operatorname{Ric}_{x}(w, w) \ge \lambda |w|^{2}$ uniformly in $x, w \in T_{x}M$.
- A fundamental result of OT is that S is a λ -convex functional.

Differential inequality-forward entropy

$$\begin{aligned} \vartheta_{tt} \overrightarrow{h}(t) &= \frac{1}{2} \left\langle \nabla_{\xi_{t}}^{W_{2}} \nabla^{W_{2}} S, \xi_{t} \right\rangle_{\mathbf{T}_{\mu_{t}}} \\ &\geqslant \frac{\lambda}{2} |\xi_{t}|_{\mathbf{T}_{\mu_{t}}}^{2} \\ &= \frac{\lambda}{2} \Big| \frac{1}{2} \nabla^{W_{2}} S - \nu_{t} \Big|_{\mathbf{T}_{\mu_{t}}}^{2} \\ &= -\lambda \vartheta_{t} \overrightarrow{h}(t) \end{aligned}$$

Theorem (C. '17)

Let M be a compact manifold with Ricci curvature bounded below

$$\forall x \in M, w \in T_x M, \quad \operatorname{Ric}_x(w, w) \geqslant \lambda |w|^2$$

Then, for all v_0, v_1 and $t \in [0, 1]$ the entropic interpolation (μ_t) satisfies:

$$\begin{split} S(\mu_t) \leqslant \frac{1 - \exp(-\lambda(1-t))}{1 - \exp(-\lambda)} S(\nu_0) + \frac{1 - \exp(-\lambda t)}{1 - \exp(-\lambda)} S(\nu_1) \\ - \frac{\cosh(\frac{\lambda}{2}) - \cosh(-\lambda(t-\frac{1}{2}))}{\sinh(\frac{\lambda}{2})} \mathcal{T}_H(\nu_0,\nu_1). \end{split}$$

- If M has a Ricci curvature bound, then the particle configuration at $t = \frac{1}{2}$ is very close to the equilibrium measure **m**, and we have a way to quantify this.
- In the small noise regime, the entropy estimate becomes the well known convexity of the entropy along entropic interpolations.
- $\bullet\,$ There is a version of the Theorem when P is the Langevin dynamics

About the entropic transportation cost

- The entropic cost $\mathcal{T}_{H}(\mu, \mathbf{m})$ measures how difficult it is to steer Brownian particles which start "out of equilibrium" into the equilibrium configuration \mathbf{m} in one unit of time.
- We expect that the more μ looks like \mathbf{m} , the smaller is \mathcal{T}_H "How to bound \mathcal{T}_H ? And with what?"

Theorem (C.'17)

Assume $\operatorname{Ric} \geq \lambda$. Then for all μ we have

$$\mathfrak{T}_{\mathsf{H}}(\mu, \mathfrak{m}) \leqslant \frac{1}{1 - \exp(-\lambda)} \mathcal{S}(\mu)$$

We call this an **entropy-entropy** inequality.

About the entropic transportation cost

- The entropic cost $\mathcal{T}_{H}(\mu, \mathbf{m})$ measures how difficult it is to steer Brownian particles which start "out of equilibrium" into the equilibrium configuration \mathbf{m} in one unit of time.
- We expect that the more μ looks like \mathbf{m} , the smaller is \mathcal{T}_H "How to bound \mathcal{T}_H ? And with what?"

Theorem (C.'17)

Assume $\operatorname{Ric} \ge \lambda$. Then for all μ we have

$$\mathfrak{T}_{\mathsf{H}}(\mu, \boldsymbol{\mathfrak{m}}) \leqslant \frac{1}{1 - \exp(-\lambda)} \mathfrak{S}(\mu)$$

We call this an **entropy-entropy** inequality.

About the entropic transportation cost

- The entropic cost $\mathcal{T}_{H}(\mu, \mathbf{m})$ measures how difficult it is to steer Brownian particles which start "out of equilibrium" into the equilibrium configuration \mathbf{m} in one unit of time.
- We expect that the more μ looks like \mathbf{m} , the smaller is \mathcal{T}_H "How to bound \mathcal{T}_H ? And with what?"

Theorem (C.'17)

Assume $\operatorname{Ric} \ge \lambda$. Then for all μ we have

$$\mathfrak{T}_{\mathsf{H}}(\mu, \boldsymbol{\mathfrak{m}}) \leqslant \frac{1}{1 - \exp(-\lambda)} \mathfrak{S}(\mu)$$

We call this an **entropy-entropy** inequality.

About the entropy-entropy inequality

- The bound is useful since $\mathcal{T}_{H}(\mu, m)$ is hard to compute and $S(\mu)$ is easy to compute (it is just an integral).
- In the **small noise regime** the entropy-entropy inequality becomes

Talagrand's transportation entropy inequality

 $W_2^2(\mu, \mathbf{m}) \leqslant 2\lambda \mathbb{S}(\mu)$

- The inequality implies concentration of measure properties for **m** (work in progress)
- It allows to bound a **joint** entropy, $T_H(\mu, m)$ with a **marginal** entropy $(S(\mu))!$

About the entropy-entropy inequality

- The bound is useful since $\mathcal{T}_{H}(\mu, m)$ is hard to compute and $S(\mu)$ is easy to compute (it is just an integral).
- In the **small noise regime** the entropy-entropy inequality becomes

Talagrand's transportation entropy inequality

 $W_2^2(\mu, \mathbf{m}) \leqslant 2\lambda \mathcal{S}(\mu)$

- The inequality implies concentration of measure properties for m (work in progress)
- It allows to bound a **joint** entropy, $T_H(\mu, m)$ with a **marginal** entropy $(S(\mu))!$

Dual form of the entropy-entropy inequality

- Under the curvature condition, it is known that the heat semigroup $(P_t)_{t \ge 0}$ is hypercontractive.
- For all $p, q \ge 1$ s.t. $\frac{q-1}{p-1} = \exp(2\lambda t)$ we have

$$\forall f \ s.t. \int f \mathrm{d} \boldsymbol{m} = 0, \quad \| \boldsymbol{P}_t f \|_{L^q(\boldsymbol{m})} \leqslant \| f \|_{L^p(\boldsymbol{m})}$$

• It is known that **hypercontractivity** is equivalent to the **Logarithmic Sobolev inequality**.

Theorem (C.'18)

The following are equivalent

- i) The entropy entropy inequality with constant $1/(1 \exp(-\lambda))$.
- ii) For all $p \in (0, 1)$, q < 1 s.t. $\frac{q-1}{p-1} = \exp(2\lambda t)$, and for all f s.t. $\int f d\mathbf{m} = 0$, $\|P_t f\|_{L^q(\mathbf{m})} \leq \|f\|_{L^p(\mathbf{m})}$

References list(incomplete)

- Felix Otto and Cédric Villani. Generalization of an inequality by talagrand and links with the logarithmic sobolev inequality. *Journal of Functional Analysis*, 173(2):361–400, 2000
- G. Conforti and M. Von Renesse. Couplings, gradient estimates and logarithmic Sobolev inequality for Langevin bridges.

to appear in Probability Theory and Related Fields

- Christian Léonard. On the convexity of the entropy along entropic interpolations. *arXiv preprint arXiv:1310.1274*, 2013
- N. Gozlan, C. Roberto, P.M. Samson, and P. Tetali.

Kantorovich duality for general transport costs and applications, to appear in j. funct. anal., preprint (2014)

- Is the entropy bound equivalent to curvature even if we do not look at the small noise regime?
- How close is the **entropic** interpolation to the **displacement** interpolation?
- How to construct a **Schrödinger bridge** for a system of **weakly interacting** particles system? Is there a **Netwon's law**?

- Is the entropy bound equivalent to curvature even if we do not look at the small noise regime?
- How close is the **entropic** interpolation to the **displacement** interpolation?
- How to construct a **Schrödinger bridge** for a system of **weakly interacting** particles system? Is there a **Netwon's law**?

Thank you very much!