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NOTION OF ROBUSTNESS

Let G be our computer code, such that Fµ(h) = Pµ(G(X) ≤ h).

0

1

Fµ(h)

h

Inputs values are generated from an associated joint distribution,
choosen thanks to an expert opinion.
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NOTION OF ROBUSTNESS

Let G be our computer code, such that Fµ(h) = Pµ(G(X) ≤ h).

0

1

Fµ(h)

h

p

x1

We are interested in a risk measurement, here a quantile of order p.
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NOTION OF ROBUSTNESS

Let G be our computer code, such that Fµ(h) = Pµ(G(X) ≤ h).

0

1

Fµ(h)

h

p

x2 x1

But if we change the associated joint distribution, the resulting
quantile may differ.
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NOTION OF ROBUSTNESS

Let G be our computer code, such that Fµ(h) = Pµ(G(X) ≤ h).

0

1

Fµ(h)

h

p

x2 x1 xmax

inf Fµ(h)

In order to be robust, we’d like to obtain the maximum quantile
over a given class of measure.
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DUALITY THEOREM

LetA be a class of measure. We are looking for the maximum
quantile over this class.

DUALITY THEOREM

sup
µ∈A

[
inf {h > 0; Fµ(h) ≥ p}

]
︸ ︷︷ ︸

max quantile over all cdf

= inf
{

h > 0 | inf
µ∈A

Fµ(h) ≥ p
}

︸ ︷︷ ︸
quantile of the lowest cdf
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RESULTING PROBLEM

We will therefore be looking for the lowest CDF

inf
µ∈A

Fµ(h)

Problem : this is an optimization over an infinite non parametric
space...
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EXTEME POINTS OF MOMENT SETS

→ Let X = {1, 2, 3} be a finite sample space, so thatM1(X ) is
isomorphic to the simplex of R3,

→ Admit that the objective function reaches its optimums on the
extreme points.

δ3

δ2

δ1

A = M1(X )

∈ ext(A)

 Extreme points are Dirac mass.
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EXTEME POINTS OF MOMENT SETS

→ Let X = {1, 2, 3} be a finite sample space, so thatM1(X ) is
isomorphic to the simplex of R3,

→ Admit that the objective function reaches its optimums on the
extreme points.

δ3

δ2

δ1

A = {µ ∈ M1(X ) | E[ϕ] ≤ c}

∈ ext(A)

 After adding one constraint, the extreme points are convex
combination of at most two Dirac masses.
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EXTEME POINTS OF MOMENT SETS

→ Let X = {1, 2, 3} be a finite sample space, so thatM1(X ) is
isomorphic to the simplex of R3,

→ Admit that the objective function reaches its optimums on the
extreme points.

δ3

δ2

δ1

A = {µ ∈ M1(X ) | E[ϕ1] ≤ c1,E[ϕ2] ≤ c2}

∈ ext(A)

 After adding two constraints, the extreme points are convex
combination of at most three Dirac masses.
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WINKLER'S CLASSIFICATION OF EXTREME POINTS

Heuristic

If you have N pieces of information relevant to the random va-
riable X then it is enough to pretend that X takes at most N + 1
values in X .

Winkler theorem

The extreme measures of moment class

{µ ∈ M1(X ) | Eµ[ϕ1] ≤ 0, . . . ,Eµ[ϕn] ≤ 0}

are the discrete measures that are supported on at most n + 1
points.

1. Winkler (1988)
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SPACE REDUCTION

LetA be our multivariate optimization space

A =

{
µ = ⊗µi ∈

p⊗
i=1

M1([li , ui ]) | Eµi [x j ] 5 c(i)j , j = 1, . . . ,Ni

}
,

 Input i has Ni constraints.

A∆ =

{
µ ∈ A | µi =

Ni+1∑
k=1

ω
(i)
k δ

(i)
xk

}
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OUQ REDUCTION THEOREM

OUQ reduction theorem

inf
µ∈A

Fµ(h)= inf
µ∈A

Pµ(G(X) ≤ h) = inf
µ∈A

∫
1{G(x)≤h}dµ(x) ,

= inf
µ∈A∆

Pµ(G(X) ≤ h) ,

= inf
µ∈A∆

N1+1∑
i1=1

. . .

Np+1∑
ip=1

ω
(1)
i1 . . . ω

(p)
ip 1{G(x(1)

i1
,...,x(p)

ip )≤h}

→ The problem is now parameterized with the positions and the
weights of the discrete measures

→ The code is evaluated on a grid of size
∏p

i=1(Ni + 1)

1. Owhadi et al. (2013)
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DISCRETE MEASURES

Let enforce N equality constraint on a measure µ. OUQ theorem
guaranties the solution to be supported on at most N + 1 points

µ =

N+1∑
i=1

ωiδxi

We have the following system
ω1 + . . . + ωN+1 = 1
ω1x1 + . . . + ωN+1xN+1 = c1
...

...
...

ω1xN
1 + . . . + ωN+1xN

N+1 = cN

 The weights are uniquely determined by the positions.
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ADMISSIBLE MEASURE

We now possess a parameterization for our optimization problem.
But generating a discrete measure having constraints on its
moments is not easy...

Example : Let µ be supported on [0, 1] such that Eµ[x] = 0.5 and
Eµ[x2] = 0.3.

A∆ =

{
µ =

3∑
i=1

ωiδxi ∈ M1([0, 1]) | Eµ[x] = 0.5, Eµ[x2] = 0.3

}
,

 µ = ω1δx1 + ω2δx2 + ω3δx3

x = (0.1, 0.4, 0.9) gives weights ω = (0.05, 0.73, 0.22) X
x = (0.1, 0.3, 0.9) gives weights ω = (−0.19, 0.92, 0.27) ×

How to optimize over A∆ ?

Jérôme Stenger CDFA - 13/03/2019 13
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POSSIBLE WAYS OF OPTIMIZING

→ Optimization under constraints : the position and the weight
must satisfy the Vandermonde system.

→ Optimization by rewriting the objective function : changing the
parameterization of the problem so that the constraint are
naturally enforced in the objective function.

a Canonical moments allows to efficiently ex-
plore the set of optimizationA∆.
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MOMENT SPACE

We define the moment space Mn =
{cn(µ) = (c1, . . . , cn) | µ ∈ M1([0, 1])}

Given cn ∈ intMn we define the extreme
values

c+n+1 = max {c : (c1, . . . , cn, c) ∈ Mn+1}
c−n+1 = min {c : (c1, . . . , cn, c) ∈ Mn+1}

They represent the maximum and
minimum values of the (n+1)thmo-
ment a measure can have, when its
moments up to order n equals to cn .

1

0 1

M2

c1

c+2 = c1

c−2 = c21

Jérôme Stenger CDFA - 13/03/2019 16



OUQ basis Reduction Theorem Canonical Moments Parameterization Applications

CANONICAL MOMENTS

The nth canonical moment is defined as

pn = pn(c) =
cn − c−n
c+n − c−n

Properties of canonical moments

→ pn ∈ [0, 1],
→ Canonical moments are defined up to degree

N = min {n ∈ N | cn ∈ ∂Mn} and pN ∈ {0, 1},
→ The canonical moments are invariants by affine

transformation. Which means we can always transform a
measure supported on [a, b] to [0, 1]

1. Dette, Studden (1997)
Jérôme Stenger CDFA - 13/03/2019 17
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THE STIELTJES TRANSFORM

The Stieltjes transform is the analytic function on C\supp(µ)

S(z) = S(z, µ) =
∫ b

a

dµ(x)
z − x

,

If µ has a finite support : S(z) =
n∑

i=1

ωi
z − xi

=
Qn−1(z)
P∗

n(z)
,

P∗
n =

∏n
i=1(z − xi) its roots are the support points of µ

Properties of the Stieltjes transform

P∗
n can be expressed recursively with the canonical moments :

P∗
k+1(x) = (x−a−(b−a)(ζ2k +ζ2k+1))P∗

k (x)−(b−a)2ζ2k−1ζ2kP∗
k−1(x)

where ζk = (1− pk−1)pk

Jérôme Stenger CDFA - 13/03/2019 18
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GENERATION OF ADMISSIBLE MEASURES

Theorem

Consider a sequence of moment cn = (c1, . . . , cn) ∈ Mn, and
the set of measure

A∆ =

{
µ =

n+1∑
i=1

ωiδxi ∈ M1([a, b]) | Eµ(x j) = cj , j = 1, . . . ,n

}
.

We define

Γ =
{
(pn+1, . . . , p2n+1) ∈ [0, 1]n+1 | pi ∈ {0, 1} ⇒ pk = 0, k > i

}
.

Then there exists a bijection between A∆ and Γ.

Jérôme Stenger CDFA - 13/03/2019 19
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EFFECTIVE PARAMETERIZATION

Let =
{∑n+1

i=1 ωiδxi ∈ M1([a, b]) |

Eµ(x j) = cj , j = 1, . . . ,n
}µ ∈ A∆

P∗
n+1

The support of µ is the roots of a polynomial P∗
n+1

(p1, . . . , pn, pn+1, . . . , p2n+1)

Coefficients are defined with the sequence of canonical moments

set by constraints in ]0, 1[

We can explore the whole setA∆

using a parameterization in ]0, 1[n+1.

Jérôme Stenger CDFA - 13/03/2019 20
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SET OF ADMISSIBLE MEASURES

x1

0
0.1

0.2
0.3

0.4

x3

0.6
0.7

0.8
0.9

1

x
2

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

m
ax

(p
3
,p

4
,p

5
)

Each point correspond to a measure µ on [0, 1], we enforced c1 = 0.5 and
c2 = 0.3 so that p1 = 0.5 and p2 = 0.2. We generated a regular grid
where p3, p4 and p5 goes from 0 to 1. The three Dirac masses
corresponding to the roots of P∗

3 are projected on each axis.
Jérôme Stenger CDFA - 13/03/2019 21
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ALGORITHM - P.O.F CALCULATION

Inputs :
lower bounds, l = (l1, . . . , lp)
upper bounds, u = (u1, . . . , up)

constraints sequences of moments, ci = (c(i)
1 , . . . , c(i)

Ni
) and its

corresponding sequences of canonical moments, pi = (p(i)
1 , . . . , p(i)

Ni
) for

i = 1, . . . , p

Ensure : p(i)
j ∈ [0, 1] for j = 1, . . . ,Ni , i = 1, . . . , p

1 : function P.O.F(p(1)
N1+1, . . . , p

(1)
2N1+1, . . . , p

(p)
Np+1, . . . , p

(p)
2Np+1)

2 : for i = 1, . . . , p do
3 : for k = 1, . . .Ni do
4 : P∗(i)

k+1 = (X − li − (ui − li)(ζ(i)
2k + ζ

(i)
2k+1))P

∗(i)
k

−(ui − li)2ζ(i)
2k−1ζ

(i)
2k P∗(i)

k−1

5 : x(i)
1 , . . . , x(i)

Ni+1 = roots(P∗(i)
Ni+1)

6 : ω
(i)
1 , . . . , ω

(i)
Ni+1 = weight(x(i)

1 , . . . , x(i)
Ni+1, ci)

7 : return
∑N1+1

i1=1 . . .
∑Np+1

ip=1 ω
(1)
i1 . . . ω

(p)
ip 1{G(x(1)

i1
,...,x(p)

ip )≤h}

Jérôme Stenger CDFA - 13/03/2019 22
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PRESENTATION OF THE TOY CASE

Distribution Bounds Mean 2nd
moment

3rd
moment

Q Gumbel(1013, 558) [160, 3580] 1320.42 2.1632 e6 4.18 e9
Ks N (x = 30, σ = 7.5) [12.55, 47.45] 30 949 31422
Zv U(49, 51) [49, 51] 50 2500 125050
Zm U(54, 55) [54, 55] 54.5 2970 161892

Figure : Hydraulic model.

H =

 Q

300Ks

√
Zm−Zv
5000

3/5
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COMPARAISON OF DIFFERENTS MOMENTS CONSTRAINTS

2 3 4 5 6 7 8 9
h

0.0

0.2

0.4

0.6

0.8

1.0

in
f µ
∈A

F
µ
(h

)

Initial distribution

Figure : The more we add constraints, the more the space size is
reduced, hence the minimum obtained is higher.
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PRESENTATION OF THE USE-CASE

Our use-case is a thermal-hydraulic computer experiment, which
simulates a Intermediate Break Loss Of Coolant Accident
(IBLOCA). The variable of interest is the maximum temperature.

Figure : CATHARE temperature
output for nominal parameters.

Figure : The replica of a water
pressured reactor, with the hot and
cold leg.
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PRESENTATION OF THE USE-CASE

The code takes 27 inputs, but using a screening strategy we
highlighted the 9 most influent variables.

Variable Bounds Initial distribution
(truncated) Mean Second order

moment
n◦10 [0.1, 10] LogNormal(0, 0.76) 1.33 3.02
n◦22 [0, 12.8] Normal(6.4, 4.27) 6.4 45.39
n◦25 [11.1, 16.57] Normal(13.79 13.83 192.22
n◦2 [−44.9, 63.5] Uniform(−44.9, 63.5) 9.3 1065
n◦12 [0.1, 10] LogNormal(0, 0.76) 1.33 3.02
n◦9 [0.1, 10] LogNormal(0, 0.76) 1.33 3.02
n◦14 [0.235, 3.45] LogNormal(−0.1, 0.45) 0.99 1.19
n◦15 [0.1, 3] LogNormal(−0.6, 0.57) 0.64 0.55
n◦13 [0.1, 10] LogNormal(0, 0.76) 1.33 3.02

Table : Corresponding moment constraints of the 9 most influential
inputs of the CATHARE model.
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COMPARAISON WITH THE MYSTIC FRAMEWORK
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Figure : Our algorithm performs better than existing solution. Mystic
Framework struggles to explore the whole optimization space.
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FURTHER WORKS

• Different optimization spaces :

All distributions Unimodal distributions

Constraints
Moment constraints

Eµ[x j ] 5 cj

Moment constraints
Eµ[x j ] 5 cj

Extreme
points µ =

∑
ωiδxi µ =

∑
ωiuzi

• Different quantities of interest :

→ Superquantile.
→ Bayesian estimate associated to a given utility or loss

function.
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CONCLUSION

→ We optimize a measure affine functional on the extreme point
of the moment class.

→ The extreme points are discrete measures. Canonical
moments provide an efficient way to explore the set of
extreme points

→ Global optimization free of constraints is performed,
achievable up to dimension 10, due to exponential growing
cost.
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