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0uQ BASIS



NOTION OF ROBUSTNESS

Let G be our computer code, such that F, (k) = P,(G(X) < h).

Inputs values are generated from an associated joint distribution,
choosen thanks to an expert opinion.



NOTION OF ROBUSTNESS

Let G be our computer code, such that F, (k) = P,(G(X) < h).

We are interested in a risk measurement, here a quantile of order p.
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Let G be our computer code, such that £, (k) = P,(G(X) < h).

S
i
>z

|
|
|
|
|
!
!
|
|
l
0 x2

But if we change the associated joint distribution, the resulting
guantile may differ.



NOTION OF ROBUSTNESS

Let G be our computer code, such that £, (k) = P,(G(X) < h).

In order to be robust, we'd like to obtain the maximum quantile
over a given class of measure.




DUALITY THEOREM

Let A be a class of measure. We are looking for the maximum
quantile over this class.

DUALITY THEOREM




RESULTING PROBLEM

We will therefore be looking for the lowest CDF

inf F,(h
Jnf, u(h)

Problem : this is an optimization over an infinite non parametric
space...



REDUCTION THEOREM



EXTEME POINTS OF MOMENT SETS

- Let X = {1, 2,3} be a finite sample space, so that M;(X) is
isomorphic to the simplex of R3,

- Admit that the objective function reaches its optimums on the
extreme points.



EXTEME POINTS OF MOMENT SETS

- Let X = {1, 2,3} be a finite sample space, so that M;(X) is
isomorphic to the simplex of R3,

- Admit that the objective function reaches its optimums on the
extreme points.

524 A= Mi(X)
/ e c ext(A)
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~ Extreme points are Dirac mass.




EXTEME POINTS OF MOMENT SETS

- Let X = {1, 2,3} be a finite sample space, so that M;(X) is
isomorphic to the simplex of R3,

- Admit that the objective function reaches its optimums on the
extreme paints.

A= {p e My(X) |E[¢] < ¢}

e cext(A)

~» After adding one constraint, the extreme points are convex
combination of at most two Dirac masses.
~ JérémeStenger  CDFA-13/03/2019 &



EXTEME POINTS OF MOMENT SETS

- Let X = {1, 2,3} be a finite sample space, so that M;(X) is
isomorphic to the simplex of R3,

- Admit that the objective function reaches its optimums on the
extreme paints.

d2 A= {p e Mi(X)|Elp1] < c1,E[pa] < ca}

e cext(A)

3 ‘,,f"f

~» After adding two constraints, the extreme points are convex
combination of at most three Dirac masses.
~ JérémeStenger  CDFA-13/03/2019 &



WINKLER'S CLASSIFICATION OF EXTREME POINTS

Heuristic

If you have N pieces of information relevant to the random va-
riable X then it is enough to pretend that X takes at most N + 1
values in X.

1. Winkler (1988)
~ JérémeStenger CDFA-13/03/2019 g9



WINKLER'S CLASSIFICATION OF EXTREME POINTS

Heuristic

If you have N pieces of information relevant to the random va-
riable X then it is enough to pretend that X takes at most NV + 1
values in X.

Winkler theorem

1. Winkler (1988)




SPACE REDUCTION

Let A be our multivariate optimization space

P
A= {u — @i € QM u) | Eylof] < V| j= 1N} ,

i=1

~ Input ¢ has N; constraints.



SPACE REDUCTION

Let A be our multivariate optimization space

P
A= {u — @i € QM u) | Eylof] < V| j= 1N} ,

i=1

~ Input ¢ has N; constraints.

N;+1 ) )
Ap = {M €A=" w,ﬁ”é&?}

k=1




OUQ REDUCTION THEOREM

OuUAQ reduction theorem

- The problem is now parameterized with the positions and the
weights of the discrete measures

= The code is evaluated on a grid of size [[%_, (N; + 1)
1. Owhadi et al. (2013)




DISCRETE MEASURES

Let enforce N equality constraint on a measure p. OUQ theorem
guaranties the solution to be supported on at most N + 1 points

N+1

H= Z w;idg;
i=1

We have the following system

w1 + ...+ wy+1 =1

wirr + ... + WN41IN+1 = C
N N

wiry + ...+ WN+1Ty41 = CN

~+ The weights are uniquely determined by the positions.



ADMISSIBLE MEASURE

We now possess a parameterization for our optimization problem.
But generating a discrete measure having constraints on its
moments is not easy...

Example : Let u be supported on [0, 1] such that E,,[] = 0.5 and
E,[z%] = 0.3.

3
Ap = {u =" wiby, € Mi([0,1]) | Ey[a] = 0.5, B,[2?) = 0.3} ,

i=1




ADMISSIBLE MEASURE

We now possess a parameterization for our optimization problem
But generating a discrete measure having constraints on its
moments is not easy...

Example : Let u be supported on [0, 1] such that E, [2] = 0.5 and
E,[z%] = 0.3.

3
Ap = {,u = Zwidm € My([0,1]) | E,[z] = 0.5, E,[2%] = 0.3} ,

i=1

= VAZ{X=(9€1,$2,953) €01 | p= ZW%E-AA}

=1




ADMISSIBLE MEASURE

We now possess a parameterization for our optimization problem.
But generating a discrete measure having constraints on its
moments is not easy...

Example : Let u be supported on [0, 1] such that E,,[] = 0.5 and
E,[z%] = 0.3.

3
Ap = {u =" wiby, € Mi([0,1]) | Ey[a] = 0.5, B,[2?) = 0.3} ,

i=1

~ = w10z + w2dg, + W30,

x = (0.1,0.4,0.9) gives weights w = (0.05,0.73,0.22) v
x = (0.1,0.3,0.9) gives weights w = (—0.19,0.92,0.27) X




ADMISSIBLE MEASURE

We now possess a parameterization for our optimization problem.
But generating a discrete measure having constraints on its
moments is not easy...

Example : Let u be supported on [0, 1] such that E,,[] = 0.5 and
E,[z%] = 0.3.

3
Ap = {u =" wiby, € Mi([0,1]) | Ey[a] = 0.5, B,[2?) = 0.3} ,
=1

~ = w10z + w2dg, + W30,

x = (0.1,0.4,0.9) gives weights w = (0.05,0.73,0.22) v
x = (0.1,0.3,0.9) gives weights w = (—0.19,0.92,0.27) X

How to optimize over A ?




POSSIBLE WAYS OF OPTIMIZING

- QOptimization under constraints : the position and the weight
must satisfy the Vandermonde system.
- Optimization by rewriting the objective function : changing the

parameterization of the problem so that the constraint are
naturally enforced in the objective function.



POSSIBLE WAYS OF OPTIMIZING

- QOptimization under constraints : the position and the weight
must satisfy the Vandermonde system.

- Optimization by rewriting the objective function : changing the
parameterization of the problem so that the constraint are
naturally enforced in the objective function.

\—> Canonical moments allows to efficiently ex-
plore the set of optimization Aa.




CANONICAL MOMENTS
PARAMETERIZATION



MOMENT SPACE

We define the moment space M,, =
{en(p) = (c15-- - en) [ € Ma([0,1])} 1

Given c¢,, € intM,, we define the extreme
values

¢y =max{c: (c1,...,cn, ) € Mpy1}

Cppp =min{c: (c1,...,¢n, ) € My}

They represent the maximum and
minimum values of the (n+1)th mo-
ment a measure can have, when its
moments up to order n equals to ¢,.




CANONICAL MOMENTS

The nth canonical moment is defined as

Cp— C
Pn = pn(c) = [ —
Cn — Cn

n

Properties of canonical moments

pn € [0, 1],

Canonical moments are defined up to degree

N =min{neN|c, € O0M,}and py € {0,1},

The canonical moments are invariants by affine
transformation. Which means we can always transform a
measure supported on [a, b] to [0, 1]

. Dette, Studden (1997)




THE STIELTJES TRANSFORM

The Stieltjes transform is the analytic function on C\supp(u)

b xXr
8(:) = 8(zu) = [ dplz).

W 2—T

n

If 1 has a finite support : S(z) = Z Wi Qn1(z)

2 - - Pi(z2)

Pt =TIi(z — ;) ~ its roots are the support points of p

n




THE STIELTJES TRANSFORM

The Stieltjes transform is the analytic function on C\supp(u)

b T
5() = () = [ 24D,
" wi anl(z)

If x has a finite support: S(z) = Z

AT B Pr(2) 7
Pt =TIi(z — ;) ~ its roots are the support points of p

Properties of the Stieltjes transform

P can be expressed recursively with the canonical moments :

Prii(z) = (z—a—(b—a)(Cor+ Cont1)) Pr(z) — (b— a)*Con—1CorPr_1 (2)

where ¢ = (1 — pe_1)pr




GENERATION OF ADMISSIBLE MEASURES

Theorem




EFFECTIVE PARAMETERIZATION

Let n € Ap = {Z:Lill W'Lém € Ml([av b]) |
Eu(zj): ¢, j = 1,...,n}



EFFECTIVE PARAMETERIZATION

JURSIVIUN
h The support of y is the roots of a polynomial P,

3
Pn+1



EFFECTIVE PARAMETERIZATION

JURSIVIUN
The support of y is the roots of a polynomial P,
P*

Coefficients are defined with the sequence of canonical moments

(pla ce s Pny Pty .- 7P2n+1)



EFFECTIVE PARAMETERIZATION

JURSIVIUN
The support of y is the roots of a polynomial P,
P*

Coefficients are defined with the sequence of canonical moments

(pla ce s Pny Pty .- 7P2n+1)

set by constraints in]0, 1]




EFFECTIVE PARAMETERIZATION

JURSIVIUN
P We can explore the whole set Aa
ftd using a parameterization in ]0, 1[**1,

(pla"wpn@a'”?p?n-i-l

set by constraints in]0, 1]




SET OF ADMISSIBLE MEASURES

0.8

max(ps, pa, Ps)

0.2

Each point correspond to a measure p on [0, 1], we enforced ¢; = 0.5 and
co = 0.3 so that p; = 0.5 and p, = 0.2. We generated a regular grid
where ps3, p4 and p5 goes from O to 1. The three Dirac masses
corresponding to the roots of P5 are projected on each axis.



ALGORITHM - P.O.F CALCULATION

Inputs:
lower bounds, 1 = (I1,..., 1)
upper bounds, u = (w1, ..., up)
constraints sequences of moments, ¢; = (¢{”, ... (”) and its
corresponding sequences of canonical moments, p; = (p f), . ,p%z) for
i=1,...,p

Ensure : pJ e0,1]forj=1,....N;, i=1,...,p

1: function P.O.F(pg\})+1, e p(221+1, e ,p%ZH, o ,pé};\;ﬁl)
2 fori=1,...,pdo
3: fork=1,...N;do .
4 Pl = (X =l — (u z)( ! Ge)) P
—(ui — 1;)? C2k 1C2k *(Z)

5: 79 Lz = roots( P, @ )

' 1 9 Ni+1 — N;+1
6 wg),...,wg\;)+1_welght(x1 7...,xl(v)Jrl,c,)

Ni+1 N +1 1
I return 2111;1 .. 'Zip:l wgl) .. z(:) ]]-{G(Igl)““,z(p))<h}
i i ) S



APPLICATIONS



PRESENTATION OF THE TOY CASE

Distribution Bounds Mean 2nd 3rd
moment moment
Q | Gumbel(1013,558) | [160,3580] | 1320.42 | 2.1632e6 | 4.18¢9
K, | N(Z=30,0 =7.5) | [12.55,47.45] 30 949 31422
Zy U(49,51) [49, 51] 50 2500 125050
Zm, U(54,55) (54, 55] 54.5 2970 161892

3/5
. (Q)
Zm—Zy
300K/ “Z555

Figure : Hydraulic model.




COMPARAISON OF DIFFERENTS MOMENTS CONSTRAINTS

wf
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N e Initial distribution
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h

Figure : The more we add constraints, the more the space size is
reduced, hence the minimum obtained is higher.



COMPARAISON OF DIFFERENTS MOMENTS CONSTRAINTS

—— Moment 1
----- Initial distribution

2 3 4 5 6 7 8 9

Figure : The more we add constraints, the more the space size is
reduced, hence the minimum obtained is higher.



COMPARAISON OF DIFFERENTS MOMENTS CONSTRAINTS

wf
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Figure : The more we add constraints, the more the space size is
reduced, hence the minimum obtained is higher.



COMPARAISON OF DIFFERENTS MOMENTS CONSTRAINTS

1.0
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Figure : The more we add constraints, the more the space size is
reduced, hence the minimum obtained is higher.



PRESENTATION OF THE USE-CASE

Our use-case is a thermal-hydraulic computer experiment, which
simulates a Intermediate Break Loss Of Coolant Accident
(IBLOCA). The variable of interest is the maximum temperature.

Test 2 - Fuel rod surface temperature

[ camror o]

Temperature (C)

—_—

100 200 300 200 500 E
Time (s)

Figure : CATHARE temperature
output for nominal parameters.

Pressurizer
vy 10mHigh [

Cold LZ; | Pressure
Vessel

|| Steam
|24 Generator

) Primary

Coolant
Pump

29m

Figure : The replica of a water
pressured reactor, with the hot and

cold leg.




PRESENTATION OF THE USE-CASE

The code takes 27 inputs, but using a screening strategy we
highlighted the 9 most influent variables.

Initial distribution

Second order

Variable Bounds Mean
(truncated) moment

n°10 [0.1,10] LogNormal(0,0.76) 1.33 3.02
n°22 [0,12.8] Normal(6.4,4.27) 6.4 45.39
n°25 [11.1,16.57] Normal(13.79 13.83 192.22
n°2 [44.9,63.5] | Uniform(—44.9,63.5) | 9.3 1065
n°12 [0.1,10] LogNormal(0,0.76) 1.33 3.02
n°9 [0.1,10] LogNormal(0,0.76) 1.33 3.02
n°14 [0.235,3.45] | LogNormal(—0.1,0.45) | 0.99 1.19
n°15 [0.1,3] LogNormal(—0.6,0.57) | 0.64 0.55
n°13 [0.1,10] LogNormal(0,0.76) 1.33 3.02

Table : Corresponding moment constraints of the 9 most influential
inputs of the CATHARE model.




COMPARAISON WITH THE MYSTIC FRAMEWORK

1.0

Initial distribution

——  Mystic Framework

Canonical Moments

700 725 750 75 800 825 850 875 900
h

Figure : Our algorithm performs better than existing solution. Mystic
Framework struggles to explore the whole optimization space.



FURTHER WORKS

e Different optimization spaces :

All distributions Unimodal distributions

Moment constraints | Moment constraints

Constraints Eu[wj] < E#[xj] <.

Extreme

points n= Zwl(sftz n= Zwiuzi

e Different quantities of interest :

- Superquantile.
- Bayesian estimate associated to a given utility or loss

function.
~ JérémeStenger CDFA-13/03/2019 29



CONCLUSION

- We optimize a measure affine functional on the extreme point
of the moment class.

- The extreme points are discrete measures. Canonical
moments provide an efficient way to explore the set of
extreme points

- Global optimization free of constraints is performed,
achievable up to dimension 10, due to exponential growing
cost.
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