

Jérôme Stenger

13/03/2019

Fabrice Gamboa (IMT) Merlin Keller (EDF) - Bertrand looss (EDF)

EDF R&D - Université Paul Sabatier

1. OUQ basis

- 2. Reduction Theorem
- 3. Canonical Moments Parameterization
- 4. Applications

OUQ BASIS

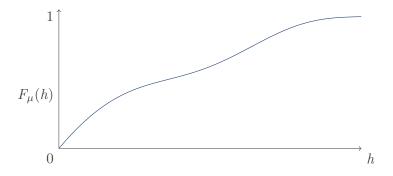
Reduction Theorem

Canonical Moments Parameterization

Applications

NOTION OF ROBUSTNESS

Let G be our computer code, such that $F_{\mu}(h) = P_{\mu}(G(X) \leq h)$.



Inputs values are generated from an associated joint distribution, choosen thanks to an expert opinion.

CDFA - 13/03/2019

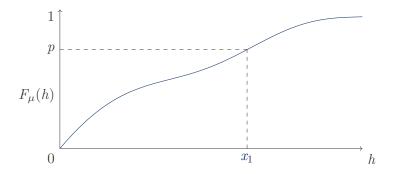
Reduction Theorem

Canonical Moments Parameterization

Applications

NOTION OF ROBUSTNESS

Let G be our computer code, such that $F_{\mu}(h) = P_{\mu}(G(X) \leq h)$.



We are interested in a risk measurement, here a quantile of order p.

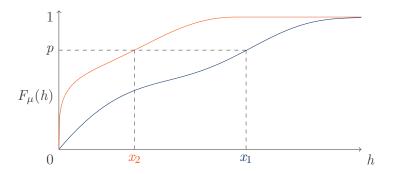
Reduction Theorem

Canonical Moments Parameterization

Applications

NOTION OF ROBUSTNESS

Let G be our computer code, such that $F_{\mu}(h) = P_{\mu}(G(X) \leq h)$.



But if we change the associated joint distribution, the resulting quantile may differ.

CDFA - 13/03/2019

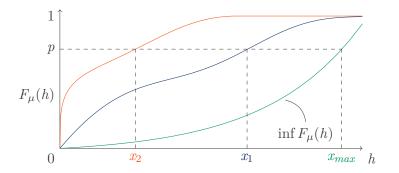
Reduction Theorem

Canonical Moments Parameterization

Applications

NOTION OF ROBUSTNESS

Let G be our computer code, such that $F_{\mu}(h) = P_{\mu}(G(X) \leq h)$.



In order to be robust, we'd like to obtain the maximum quantile over a given class of measure.

CDFA - 13/03/2019

DUALITY THEOREM

Let ${\mathcal A}$ be a class of measure. We are looking for the maximum quantile over this class.

$$\begin{array}{l} \begin{array}{l} \underset{\mu \in \mathcal{A}}{\text{ sup } \left[\inf \left\{ h > 0; \ F_{\mu}(h) \geq p \right\} \right] } \\ \underset{\text{max quantile over all cdf}}{\text{ sup } \left[\inf \left\{ h > 0 \mid \inf_{\mu \in \mathcal{A}} F_{\mu}(h) \geq p \right\} \right] \end{array}$$

RESULTING PROBLEM

We will therefore be looking for the lowest CDF

 $\inf_{\mu\in\mathcal{A}}F_{\mu}(h)$

Problem : this is an optimization over an infinite non parametric space...

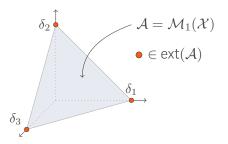
REDUCTION THEOREM

EXTEME POINTS OF MOMENT SETS

- → Let $\mathcal{X} = \{1, 2, 3\}$ be a finite sample space, so that $\mathcal{M}_1(\mathcal{X})$ is isomorphic to the simplex of \mathbb{R}^3 ,
- → Admit that the objective function reaches its optimums on the extreme points.

EXTEME POINTS OF MOMENT SETS

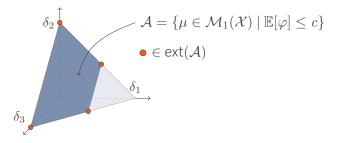
- → Let $\mathcal{X} = \{1, 2, 3\}$ be a finite sample space, so that $\mathcal{M}_1(\mathcal{X})$ is isomorphic to the simplex of \mathbb{R}^3 ,
- → Admit that the objective function reaches its optimums on the extreme points.



→ Extreme points are Dirac mass.

EXTEME POINTS OF MOMENT SETS

- → Let $\mathcal{X} = \{1, 2, 3\}$ be a finite sample space, so that $\mathcal{M}_1(\mathcal{X})$ is isomorphic to the simplex of \mathbb{R}^3 ,
- → Admit that the objective function reaches its optimums on the extreme points.

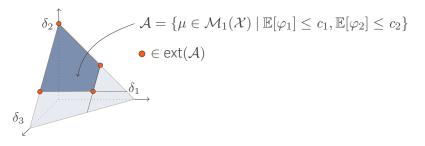


 \rightsquigarrow After adding **one** constraint, the extreme points are convex combination of at most two Dirac masses.

CDFA - 13/03/2019

EXTEME POINTS OF MOMENT SETS

- → Let $\mathcal{X} = \{1, 2, 3\}$ be a finite sample space, so that $\mathcal{M}_1(\mathcal{X})$ is isomorphic to the simplex of \mathbb{R}^3 ,
- → Admit that the objective function reaches its optimums on the extreme points.



 \rightsquigarrow After adding two constraints, the extreme points are convex combination of at most three Dirac masses.

CDFA - 13/03/2019

WINKLER'S CLASSIFICATION OF EXTREME POINTS

Heuristic

If you have N pieces of information relevant to the random variable X then it is enough to pretend that X takes at most N + 1 values in \mathcal{X} .

1. Winkler (1988)

WINKLER'S CLASSIFICATION OF EXTREME POINTS

Heuristic

If you have N pieces of information relevant to the random variable X then it is enough to pretend that X takes at most N + 1 values in \mathcal{X} .

Winkler theorem

The extreme measures of moment class

 $\{\mu \in \mathcal{M}_1(\mathcal{X}) \mid \mathbb{E}_{\mu}[\varphi_1] \leq 0, \dots, \mathbb{E}_{\mu}[\varphi_n] \leq 0\}$

are the discrete measures that are supported on at most n + 1 points.

1. Winkler (1988)

SPACE REDUCTION

Let ${\mathcal A}$ be our multivariate optimization space

$$\mathcal{A} = \left\{ \mu = \otimes \mu_i \in \bigotimes_{i=1}^p \mathcal{M}_1([l_i, u_i]) \mid \mathbb{E}_{\mu_i}[x^j] \leq c_j^{(i)}, \ j = 1, \dots, N_i \right\},\$$

 \rightsquigarrow Input *i* has N_i constraints.

SPACE REDUCTION

н

Let ${\mathcal A}$ be our multivariate optimization space

$$\mathcal{A} = \left\{ \mu = \otimes \mu_i \in \bigotimes_{i=1}^p \mathcal{M}_1([l_i, u_i]) \mid \mathbb{E}_{\mu_i}[x^j] \leq c_j^{(i)}, \ j = 1, \dots, N_i \right\},\$$

 \rightsquigarrow Input *i* has N_i constraints.

Reduction Theorem

Canonical Moments Parameterization

Applications

OUQ REDUCTION THEOREM

OUQ reduction theorem

$$\inf_{\mu \in \mathcal{A}} F_{\mu}(h) = \inf_{\mu \in \mathcal{A}} P_{\mu}(G(X) \le h) = \inf_{\mu \in \mathcal{A}} \int \mathbb{1}_{\{G(x) \le h\}} d\mu(x) ,$$

$$= \inf_{\mu \in \mathcal{A}_{\Delta}} P_{\mu}(G(X) \le h) ,$$

$$= \inf_{\mu \in \mathcal{A}_{\Delta}} \sum_{i_{1}=1}^{N_{1}+1} \dots \sum_{i_{p}=1}^{N_{p}+1} \omega_{i_{1}}^{(1)} \dots \omega_{i_{p}}^{(p)} \mathbb{1}_{\{G(x_{i_{1}}^{(1)}, \dots, x_{i_{p}}^{(p)}) \le h\}}$$

- → The problem is now parameterized with the positions and the weights of the discrete measures
- → The code is evaluated on a grid of size $\prod_{i=1}^{p} (N_i + 1)$
 - 1. Owhadi et al. (2013)

Reduction Theorem

Canonical Moments Parameterization

Applications

DISCRETE MEASURES

Let enforce N equality constraint on a measure μ . OUQ theorem guaranties the solution to be supported on at most N + 1 points

$$\mu = \sum_{i=1}^{N+1} \omega_i \delta_{x_i}$$

We have the following system

$$\begin{cases} \omega_1 + \dots + \omega_{N+1} = 1\\ \omega_1 x_1 + \dots + \omega_{N+1} x_{N+1} = c_1\\ \vdots & \vdots & \vdots\\ \omega_1 x_1^N + \dots + \omega_{N+1} x_{N+1}^N = c_N \end{cases}$$

 \rightsquigarrow The weights are uniquely determined by the positions.

ADMISSIBLE MEASURE

We now possess a parameterization for our optimization problem. But generating a discrete measure having constraints on its moments is not easy...

Example : Let μ be supported on [0, 1] such that $\mathbb{E}_{\mu}[x] = 0.5$ and $\mathbb{E}_{\mu}[x^2] = 0.3$.

$$\mathcal{A}_{\Delta} = \left\{ \mu = \sum_{i=1}^{3} \omega_i \delta_{x_i} \in \mathcal{M}_1([0,1]) \mid E_{\mu}[x] = 0.5, \ E_{\mu}[x^2] = 0.3 \right\} ,$$

Reduction Theorem

Canonical Moments Parameterization

Applications

ADMISSIBLE MEASURE

We now possess a parameterization for our optimization problem. But generating a discrete measure having constraints on its moments is not easy...

Example : Let μ be supported on [0, 1] such that $\mathbb{E}_{\mu}[x] = 0.5$ and $\mathbb{E}_{\mu}[x^2] = 0.3$.

$$\mathcal{A}_{\Delta} = \left\{ \mu = \sum_{i=1}^{3} \omega_i \delta_{x_i} \in \mathcal{M}_1([0,1]) \mid E_{\mu}[x] = 0.5, \ E_{\mu}[x^2] = 0.3 \right\} ,$$

$$\implies \mathcal{V}_{\Delta} = \left\{ \mathbf{x} = (x_1, x_2, x_3) \in [0, 1]^3 \mid \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \mathcal{A}_{\Delta} \right\}$$

ADMISSIBLE MEASURE

We now possess a parameterization for our optimization problem. But generating a discrete measure having constraints on its moments is not easy...

Example : Let μ be supported on [0, 1] such that $\mathbb{E}_{\mu}[x] = 0.5$ and $\mathbb{E}_{\mu}[x^2] = 0.3$.

$$\mathcal{A}_{\Delta} = \left\{ \mu = \sum_{i=1}^{3} \omega_i \delta_{x_i} \in \mathcal{M}_1([0,1]) \mid E_{\mu}[x] = 0.5, \ E_{\mu}[x^2] = 0.3 \right\} ,$$

$$\rightsquigarrow \mu = \omega_1 \delta_{x_1} + \omega_2 \delta_{x_2} + \omega_3 \delta_{x_3}$$

ADMISSIBLE MEASURE

We now possess a parameterization for our optimization problem. But generating a discrete measure having constraints on its moments is not easy...

Example : Let μ be supported on [0, 1] such that $\mathbb{E}_{\mu}[x] = 0.5$ and $\mathbb{E}_{\mu}[x^2] = 0.3$.

$$\mathcal{A}_{\Delta} = \left\{ \mu = \sum_{i=1}^{3} \omega_i \delta_{x_i} \in \mathcal{M}_1([0,1]) \mid E_{\mu}[x] = 0.5, \ E_{\mu}[x^2] = 0.3 \right\} ,$$

$$\rightsquigarrow \mu = \omega_1 \delta_{x_1} + \omega_2 \delta_{x_2} + \omega_3 \delta_{x_3}$$

How to optimize over \mathcal{A}_{Δ} ?

POSSIBLE WAYS OF OPTIMIZING

- → Optimization under constraints : the position and the weight must satisfy the Vandermonde system.
- → Optimization by rewriting the objective function : changing the parameterization of the problem so that the constraint are naturally enforced in the objective function.

POSSIBLE WAYS OF OPTIMIZING

- → Optimization under constraints : the position and the weight must satisfy the Vandermonde system.
- → Optimization by rewriting the objective function : changing the parameterization of the problem so that the constraint are naturally enforced in the objective function.
 - \longrightarrow Canonical moments allows to efficiently explore the set of optimization \mathcal{A}_{Δ} .

CANONICAL MOMENTS PARAMETERIZATION Canonical Moments Parameterization •000000

MOMENT SPACE

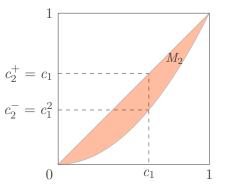
We define the moment space $M_n = {\mathbf{c}_n(\mu) = (c_1, \dots, c_n) \mid \mu \in \mathcal{M}_1([0, 1])}$

Given $\mathbf{c}_n \in \mathrm{int} M_n$ we define the extreme values

$$c_{n+1}^{+} = \max \{ c : (c_1, \dots, c_n, c) \in M_{n+1} \}$$

$$c_{n+1}^{-} = \min \{ c : (c_1, \dots, c_n, c) \in M_{n+1} \}$$

They represent the maximum and minimum values of the (n+1)th moment a measure can have, when its moments up to order n equals to c_n .



Reduction Theorem

Canonical Moments Parameterization 000000

Applications

CANONICAL MOMENTS

The nth canonical moment is defined as

$$p_n = p_n(\mathbf{c}) = \frac{c_n - c_n^-}{c_n^+ - c_n^-}$$

Properties of canonical moments

 $\rightarrow p_n \in [0,1]$,

- → Canonical moments are defined up to degree $N = \min \{ n \in \mathbb{N} \mid \mathbf{c}_n \in \partial M_n \}$ and $p_N \in \{0, 1\}$
- → The canonical moments are invariants by affine transformation. Which means we can always transform a measure supported on [a, b] to [0, 1]
- 1. Dette, Studden (1997)

Reduction Theorem

Canonical Moments Parameterization

Applications

THE STIELTJES TRANSFORM

The Stieltjes transform is the analytic function on $\mathbb{C}\backslash \mathrm{supp}(\mu)$

$$S(z) = S(z,\mu) = \int_a^b \frac{d\mu(x)}{z-x} ,$$

If
$$\mu$$
 has a finite support : $S(z) = \sum_{i=1}^{n} \frac{\omega_i}{z - x_i} = \frac{Q_{n-1}(z)}{P_n^*(z)}$,
 $P_n^* = \prod_{i=1}^{n} (z - x_i) \rightsquigarrow$ its roots are the support points of μ

Reduction Theorem

Canonical Moments Parameterization

Applications

THE STIELTJES TRANSFORM

The Stieltjes transform is the analytic function on $\mathbb{C} \setminus \mathrm{supp}(\mu)$

$$S(z) = S(z,\mu) = \int_a^b \frac{d\mu(x)}{z-x} ,$$

If
$$\mu$$
 has a finite support : $S(z) = \sum_{i=1}^n \frac{\omega_i}{z - x_i} = \frac{Q_{n-1}(z)}{P_n^*(z)} \; ,$

 $P_n^* = \prod_{i=1}^n (z - x_i) \rightsquigarrow$ its roots are the support points of μ

Properties of the Stieltjes transform

 P_n^* can be expressed recursively with the canonical moments :

$$P_{k+1}^*(x) = (x - a - (b - a)(\zeta_{2k} + \zeta_{2k+1}))P_k^*(x) - (b - a)^2\zeta_{2k-1}\zeta_{2k}P_{k-1}^*(x)$$

where $\zeta_k = (1 - p_{k-1})p_k$

GENERATION OF ADMISSIBLE MEASURES

Theorem

Consider a sequence of moment $\mathbf{c}_n = (c_1, \ldots, c_n) \in M_n$, and the set of measure

$$\mathcal{A}_{\Delta} = \left\{ \mu = \sum_{i=1}^{n+1} \omega_i \delta_{x_i} \in \mathcal{M}_1([a, b]) \mid \mathbb{E}_{\mu}(x^j) = c_j, \ j = 1, \dots, n \right\}.$$

We define

$$\Gamma = \left\{ (p_{n+1}, \dots, p_{2n+1}) \in [0, 1]^{n+1} \mid p_i \in \{0, 1\} \Rightarrow p_k = 0, \ k > i \right\}$$

Then there exists a bijection between \mathcal{A}_{Δ} and Γ .

Reduction Theorem

Canonical Moments Parameterization

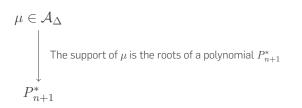
Applications

Let
$$\mu \in \mathcal{A}_{\Delta} = \left\{ \sum_{i=1}^{n+1} \omega_i \delta_{x_i} \in \mathcal{M}_1([a, b]) \mid \mathbb{E}_{\mu}(x^j) = c_j, \ j = 1, \dots, n \right\}$$

Reduction Theorem

Canonical Moments Parameterization

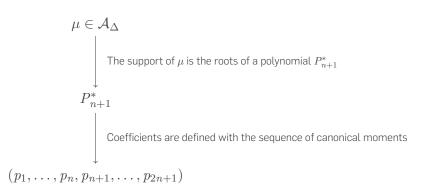
Applications



Reduction Theorem

Canonical Moments Parameterization

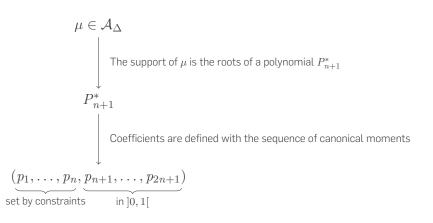
Applications



Reduction Theorem

Canonical Moments Parameterization

Applications

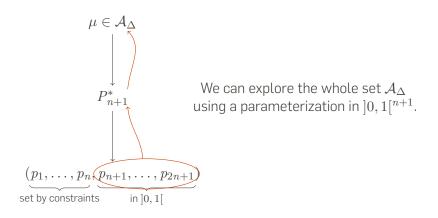


Reduction Theorem

Canonical Moments Parameterization

Applications

EFFECTIVE PARAMETERIZATION

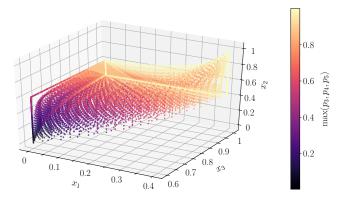


Reduction Theorem

Canonical Moments Parameterization

Applications

SET OF ADMISSIBLE MEASURES



Each point correspond to a measure μ on [0, 1], we enforced $c_1 = 0.5$ and $c_2 = 0.3$ so that $p_1 = 0.5$ and $p_2 = 0.2$. We generated a regular grid where p_3 , p_4 and p_5 goes from 0 to 1. The three Dirac masses corresponding to the roots of P_3^* are projected on each axis.

Jérôme Stenger

CDFA - 13/03/2019

ALGORITHM - P.O.F CALCULATION

Inputs :

lower bounds, $\mathbf{l} = (l_1, \ldots, l_p)$ upper bounds, $\mathbf{u} = (u_1, \ldots, u_p)$ constraints sequences of moments, $\mathbf{c}_i = (c_1^{(i)}, \ldots, c_{N_i}^{(i)})$ and its corresponding sequences of canonical moments, $\mathbf{p}_i = (p_1^{(i)}, \ldots, p_{N_i}^{(i)})$ for $i = 1, \ldots, p$

Ensure : $p_j^{(i)} \in [0, 1]$ for $j = 1, ..., N_i$, i = 1, ..., p

$$\begin{array}{lll} : \mbox{ function } {\sf P.O.F}(p_{N_1+1}^{(1)},\ldots,p_{2N_1+1}^{(1)},\ldots,p_{N_p+1}^{(p)},\ldots,p_{2N_p+1}^{(p)}) \\ 2 : \mbox{ for } i=1,\ldots,p\mbox{ do} \\ 3 : \mbox{ for } k=1,\ldots,N_i\mbox{ do} \\ 4 : \mbox{ } P_{k+1}^{*(i)}=(X-l_i-(u_i-l_i)(\zeta_{2k}^{(i)}+\zeta_{2k+1}^{(i)}))P_k^{*(i)} \\ & -(u_i-l_i)^2\zeta_{2k-1}^{(i)}\zeta_{2k}^{(i)}P_{k-1}^{*(i)} \\ 5 : \mbox{ } x_1^{(i)},\ldots,x_{N_i+1}^{(i)}={\rm roots}(P_{N_i+1}^{*(i)}) \\ 6 : \mbox{ } \omega_1^{(i)},\ldots,\omega_{N_i+1}^{(i)}={\rm weight}(x_1^{(i)},\ldots,x_{N_i+1}^{(i)},{\bf c}_i) \\ 7 : \mbox{ return } \sum_{i_1=1}^{N_1+1}\ldots\sum_{i_p=1}^{N_p+1}\omega_{i_1}^{(1)}\ldots\omega_{i_p}^{(p)}\mbox{ 1 } _{\{G(x_{i_1}^{(1)},\ldots,x_{i_p}^{(p)})\leq h\}} \end{array}$$

APPLICATIONS

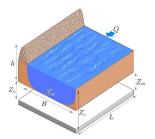
Reduction Theorem

Canonical Moments Parameterization

Applications

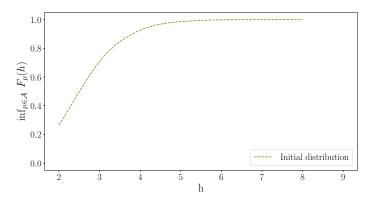
PRESENTATION OF THE TOY CASE

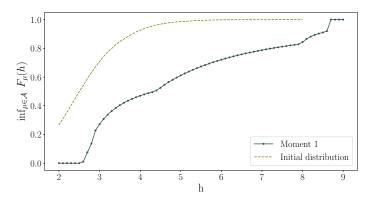
	Distribution	Bounds	Mean	2nd	3rd
	DIStribution	Dourius	Ifiedii	moment	moment
G.	Gumbel(1013, 558)	[160, 3580]	1320.42	$2.1632{ m e6}$	$4.18{ m e9}$
K	$\mathcal{N}(\overline{x} = 30, \sigma = 7.5)$	[12.55, 47.45]	30	949	31422
	U(49, 51)	[49, 51]	50	2500	125050
Z	$\mathcal{U}(54,55)$	[54, 55]	54.5	2970	161892

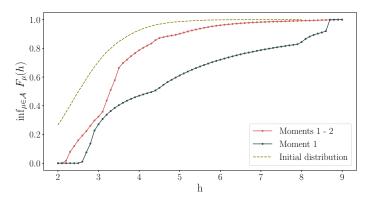


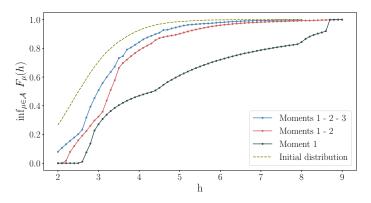
$$H = \left(\frac{Q}{300 K_s \sqrt{\frac{Z_m - Z_v}{5000}}}\right)^{3/5}$$

Figure : Hydraulic model.









Reduction Theorem

Canonical Moments Parameterization

Applications

PRESENTATION OF THE USE-CASE

Our use-case is a thermal-hydraulic computer experiment, which simulates a Intermediate Break Loss Of Coolant Accident (IBLOCA). The variable of interest is the maximum temperature.

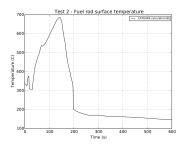


Figure : CATHARE temperature output for nominal parameters.

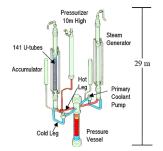


Figure : The replica of a water pressured reactor, with the hot and cold leg.

PRESENTATION OF THE USE-CASE

The code takes 27 inputs, but using a screening strategy we highlighted the 9 most influent variables.

Variable	Bounds	Initial distribution	Mean	Second order
variable		(truncated)	Incan	moment
n°10	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02
$n^{\circ}22$	[0, 12.8]	Normal(6.4, 4.27)	6.4	45.39
$n^{\circ}25$	[11.1, 16.57]	Normal(13.79)	13.83	192.22
$n^{\circ}2$	[-44.9, 63.5]	Uniform(-44.9, 63.5)	9.3	1065
$n^{\circ}12$	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02
$n^{\circ}9$	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02
$n^{\circ}14$	[0.235, 3.45]	LogNormal(-0.1, 0.45)	0.99	1.19
$n^{\circ}15$	[0.1, 3]	LogNormal(-0.6, 0.57)	0.64	0.55
$n^{\circ}13$	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02

Table : Corresponding moment constraints of the 9 most influential inputs of the CATHARE model.

Reduction Theorem

Canonical Moments Parameterization

Applications

COMPARAISON WITH THE MYSTIC FRAMEWORK

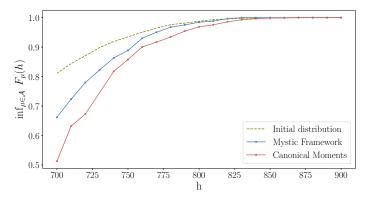


Figure : Our algorithm performs better than existing solution. Mystic Framework struggles to explore the whole optimization space.

FURTHER WORKS

• Different optimization spaces :

	All distributions	Unimodal distributions
Constraints	Moment constraints $\mathbb{E}_{\mu}[x^j] \leq c_j$	Moment constraints $\mathbb{E}_{\mu}[x^j] \leq c_j$
Extreme points	$\mu = \sum \omega_i \delta_{x_i}$	$\mu = \sum \omega_i u_{z_i}$

- Different quantities of interest :
 - → Superquantile.
 - → Bayesian estimate associated to a given utility or loss function.

CONCLUSION

- → We optimize a measure affine functional on the extreme point of the moment class.
- → The extreme points are discrete measures. Canonical moments provide an efficient way to explore the set of extreme points
- → Global optimization free of constraints is performed, achievable up to dimension 10, due to exponential growing cost.

OUQ basis 000	Reduction Theorem	Canonical Moments Parameterization	Applications 0000000

- Dette Holger, Studden William J. The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis. New York : Wiley-Blackwell, IX 1997.
- Owhadi Houman, Scovel Clint, Sullivan Timothy John, McKerns Mike, Ortiz Michael. Optimal Uncertainty Quantification // SIAM Review. I 2013. 55, 2. 271–345. arXiv : 1009.0679.
- Winkler Gerhard. Extreme Points of Moment Sets // Math. Oper. Res. XI 1988. 13, 4. 581–587.

THANK YOU FOR YOUR ATTENTION!