A MINIMAX NEAR-OPTIMAL ALGORITHM FOR ADAPTIVE REJECTION SAMPLING

Juliette Achddou, Joseph Lam-Weil, Alexandra Carpentier, Gilles Blanchard March 2019

Otto-von-Guericke Magdeburg University

Rejection Sampling

Definitions Let

- f be the density you wish to sample from. (target density)

Rejection Sampling

Definitions Let

- f be the density you wish to sample from. (target density)
- g be a density that is easy to sample from. (proposal density)
- M be a constant such that $M g \geq f$. (rejection constant)

REJECTION SAMPLING

Figure: Illustration of Rejection Sampling

AdAPTIVE REJECTION SAMPLING

Let n be the budget. Let $\mathcal{S}=\emptyset$ be the set of samples from f.
Procedure At each step $t \leq n$,

Adaptive Rejection Sampling

Let n be the budget. Let $\mathcal{S}=\emptyset$ be the set of samples from f.
Procedure At each step $t \leq n$,

- $\left\{\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{t-1}, f\left(X_{t-1}\right)\right)\right\}$ are known.

AdAPTIVE REJECTION SAMPLING

Let n be the budget. Let $\mathcal{S}=\emptyset$ be the set of samples from f.
Procedure At each step $t \leq n$,

- $\left\{\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{t-1}, f\left(X_{t-1}\right)\right)\right\}$ are known.
- g_{t}, M_{t} are chosen.

AdAPTIVE REJECTION SAMPLING

Let n be the budget. Let $\mathcal{S}=\emptyset$ be the set of samples from f.
Procedure At each step $t \leq n$,

- $\left\{\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{t-1}, f\left(X_{t-1}\right)\right)\right\}$ are known.
- g_{t}, M_{t} are chosen.
- A rejection sampling step is done using $\left(g_{t}, M_{t}\right)$. This generates X_{t}.

Adaptive Rejection Sampling

Let n be the budget. Let $\mathcal{S}=\emptyset$ be the set of samples from f.
Procedure At each step $t \leq n$,

- $\left\{\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{t-1}, f\left(X_{t-1}\right)\right)\right\}$ are known.
- g_{t}, M_{t} are chosen.
- A rejection sampling step is done using $\left(g_{t}, M_{t}\right)$. This generates X_{t}.
- If X_{t} is not rejected, it is added to \mathcal{S}.

Adaptive Rejection Sampling

Let n be the budget. Let $\mathcal{S}=\emptyset$ be the set of samples from f.
Procedure At each step $t \leq n$,

- $\left\{\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{t-1}, f\left(X_{t-1}\right)\right)\right\}$ are known.
- g_{t}, M_{t} are chosen.
- A rejection sampling step is done using $\left(g_{t}, M_{t}\right)$. This generates X_{t}.
- If X_{t} is not rejected, it is added to \mathcal{S}.

Definition of the loss $L_{n}=n-\# \mathcal{S} \times 1\left\{\forall t \leq n: f \leq M_{t} g_{t}\right\}$.

OUR CONTRIBUTIONS

1. Nearest Neighbor Adaptive Rejection Sampling (NNARS).

OUR CONTRIBUTIONS

1. Nearest Neighbor Adaptive Rejection Sampling (NNARS).
2. Minimax lower bound.

OUR CONTRIBUTIONS

1. Nearest Neighbor Adaptive Rejection Sampling (NNARS).
2. Minimax lower bound.
3. NNARS is minimax near-optimal.

MINIMAX OPTIMALITY

Let
\mathcal{A} be the set of ARS algorithms.

- \mathcal{F}_{0} be the set of densities: positively lower bounded, with bounded support, and (s, H)-Hölder ($0<S \leq 1$):

$$
\forall x, y \in[0,1]^{d},|f(x)-f(y)| \leq H\|x-y\|_{\infty}^{s}
$$

Minimax rate

$$
\frac{L_{n}(A ; f)}{n} .
$$

MINIMAX OPTIMALITY

Let
\mathcal{A} be the set of ARS algorithms.

- \mathcal{F}_{0} be the set of densities: positively lower bounded, with bounded support, and (s, H)-Hölder ($0<S \leq 1$):

$$
\forall x, y \in[0,1]^{d},|f(x)-f(y)| \leq H\|x-y\|_{\infty}^{s}
$$

Minimax rate

$$
\sup _{f \in \mathcal{F}_{0}} \frac{L_{n}(A ; f)}{n} .
$$

MINIMAX OPTIMALITY

Let
\mathcal{A} be the set of ARS algorithms.

- \mathcal{F}_{0} be the set of densities: positively lower bounded, with bounded support, and (s, H)-Hölder ($0<s \leq 1$):

$$
\forall x, y \in[0,1]^{d},|f(x)-f(y)| \leq H\|x-y\|_{\infty}^{s}
$$

Minimax rate

$$
\inf _{A \in \mathcal{A}} \sup _{f \in \mathcal{F}_{0}} \frac{L_{n}(A ; f)}{n} .
$$

MINIMAX OPTIMALITY

Let
\mathcal{A} be the set of ARS algorithms.

- \mathcal{F}_{0} be the set of densities: positively lower bounded, with bounded support, and (s, H)-Hölder ($0<S \leq 1$):

$$
\forall x, y \in[0,1]^{d},|f(x)-f(y)| \leq H\|x-y\|_{\infty}^{s}
$$

Minimax rate

$$
\varphi_{n}^{*}=\inf _{A \in \mathcal{A}} \sup _{f \in \mathcal{F}_{0}} \frac{L_{n}(A ; f)}{n}
$$

ObTAINING AN UPPER BOUND/FOCUS ON ONE ALGORITHM

Nearest Neighbor Adaptive Rejection Sampling. Divide the n steps into K rounds, where each round k contains twice the number of steps round $k-1$ has.

Obtaining an upper bound/Focus on one algorithm

Nearest Neighbor Adaptive Rejection Sampling.
Divide the n steps into K rounds, where each round k contains twice the number of steps round $k-1$ has.

At each round $0 \leq k \leq K-1$:

- Use an estimator \hat{f}_{k} of f based on the previous evaluations.
- Take $M_{(k+1)} g_{(k+1)}=\hat{f}_{k}+\hat{r}_{k}$, where \hat{r}_{k} is a confidence bound for $\left|\hat{f}_{k}-f\right|$.

APPROXIMATE NEAREST NEIGHBOR ESTIMATOR \hat{f}_{k}

At round k,

- we know $\left\{\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{N_{k}}, f\left(X_{N_{k}}\right)\right)\right\}$.
- build a uniform grid of $\sim N_{k}$ cells with side-length $\sim N_{k}^{-1 / d}$.

Let us determine $\hat{f}_{k}(x)$.

APPROXIMATE NEAREST NEIGHBOR ESTIMATOR \hat{f}_{k}

At round k,

- we know $\left\{\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{N_{k}}, f\left(X_{N_{k}}\right)\right)\right\}$.
- build a uniform grid of $\sim N_{k}$ cells with side-length $\sim N_{k}^{-1 / d}$.

Let us determine $\hat{f}_{k}(x)$.

1. x is in the l-th cell.

APPROXIMATE NEAREST NEIGHBOR ESTIMATOR \hat{f}_{k}

At round k ,

- we know $\left\{\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{N_{k}}, f\left(X_{N_{k}}\right)\right)\right\}$.
- build a uniform grid of $\sim N_{k}$ cells with side-length $\sim N_{k}^{-1 / d}$.

Let us determine $\hat{f}_{k}(x)$.

1. x is in the l-th cell.
2. Let X_{i} be the nearest neighbor of the center of the l-th cell.

APPROXIMATE NEAREST NEIGHBOR ESTIMATOR \hat{f}_{k}

At round k ,

- we know $\left\{\left(X_{1}, f\left(X_{1}\right)\right), \ldots,\left(X_{N_{k}}, f\left(X_{N_{k}}\right)\right)\right\}$.
- build a uniform grid of $\sim N_{k}$ cells with side-length $\sim N_{k}^{-1 / d}$.

Let us determine $\hat{f}_{k}(x)$.

1. x is in the l-th cell.
2. Let X_{i} be the nearest neighbor of the center of the l-th cell.
3. Then $\hat{f}_{k}(x)=f\left(X_{i}\right)$.

APPROXIMATE NEAREST NEIGHBOR ESTIMATOR \hat{f}_{k}

Choice of parameter
Nearest Neighbor Estimator:
Choice of an optimal number of neighbors?

APPROXIMATE NEAREST NEIGHBOR ESTIMATOR \hat{f}_{k}

Choice of parameter
Nearest Neighbor Estimator:
Choice of an optimal number of neighbors?
Noiseless setting $\Rightarrow 1-\mathrm{NN}$ is optimal.

APPROXIMATE NEAREST NEIGHBOR ESTIMATOR \hat{f}_{k}

Choice of parameter
Nearest Neighbor Estimator:

- Choice of an optimal number of neighbors?
- Noiseless setting $\Rightarrow 1-N N$ is optimal.

Optimal bandwidth for a Kernel Estimator:
Noisy setting: $h=N^{-1 /(d+2 s)}$.

- Noiseless setting: $h=N^{-1 / d}$.

Approximate nearest Neighbor estimator \hat{f}_{k}

Why approximate?

- Direct 1-NN \Rightarrow Voronoi cells.

Approximate nearest Neighbor estimator \hat{f}_{k}

Why approximate?

- Direct 1-NN \Rightarrow Voronoi cells.
- Approximate NN \Rightarrow hypercubes.

APPROXIMATE NEAREST NEIGHBOR ESTIMATOR \hat{f}_{k}

Why approximate?

- Direct 1-NN \Rightarrow Voronoi cells.
- Approximate NN \Rightarrow hypercubes.

Then

$$
g_{k+1}: x \rightarrow \frac{\hat{f}_{k}(x)+\hat{r}_{k}}{M_{k+1}} \quad \text { is easy to sample from. }
$$

The algorithm: NNARS

First step of NNARS: uniform sampling

THE ALGORITHM: NNARS

First step of NNARS: building the proposal

The bounds obtained

Assume n is large enough.
Upper bound

$$
\begin{aligned}
\mathbb{E}_{f} L_{n}(\text { NNARS }) \leq & 40 H c_{f}^{-1}(1+\sqrt{2 \log (3 n)})(\log (2 n))^{s / d} n^{1-s / d} \\
& +\left(25+80 c_{f}^{-1}+2(10 H)^{d / s} c_{f}^{-1-d / s}\right) \log ^{2}(n) \\
= & O\left(\log ^{2}(n) n^{1-s / d}\right)
\end{aligned}
$$

The bounds obtained

Assume n is large enough.
Upper bound

$$
\begin{aligned}
\mathbb{E}_{f} L_{n}(\text { NNARS }) \leq & 40 H c_{f}^{-1}(1+\sqrt{2 \log (3 n)})(\log (2 n))^{s / d} n^{1-s / d} \\
& +\left(25+80 c_{f}^{-1}+2(10 H)^{d / s} c_{f}^{-1-d / s}\right) \log ^{2}(n) \\
= & O\left(\log ^{2}(n) n^{1-s / d}\right) .
\end{aligned}
$$

Lower bound

$$
\begin{aligned}
\inf _{A \in \mathcal{A}} \sup _{f \in \mathcal{F}_{0}(s, 1,1 / 2, d) \cap\left\{f: 1 \mathcal{L}_{f}=1\right\}} \mathbb{E}_{f}\left(L_{n}(A)\right) & \geq 3^{-1} 2^{-1-3 s-2 d^{-s / d} n^{1-s / d}} \\
& =O\left(n^{1-s / d}\right) .
\end{aligned}
$$

ObTAINING THE LOWER BOUND

Simpler setting. An algorithm in \mathcal{A}^{\prime} chooses

1. n points in order to evaluate them with f.
2. an envelope in order to sample n other points using rejection sampling.

$$
\varphi_{n}^{*}=\inf _{A \in \mathcal{A}} \sup _{f \in \mathcal{F}_{0}} \frac{L_{n}(A ; f)}{n}
$$

ObTAINING THE LOWER BOUND

Simpler setting. An algorithm in \mathcal{A}^{\prime} chooses

1. n points in order to evaluate them with f.
2. an envelope in order to sample n other points using rejection sampling.

$$
\varphi_{n}^{*}=\inf _{A \in \mathcal{A}} \sup _{f \in \mathcal{F}_{0}} \frac{L_{n}(A ; f)}{n} \geq \inf _{A \in \mathcal{A}^{\prime}} \sup _{f \in \mathcal{F}_{0}} \frac{L_{n}(A ; f)}{n} .
$$

OBTAINING THE LOWER BOUND

Reduction of the space

$$
\inf _{A \in \mathcal{A}^{\prime}} \sup _{f \in \mathcal{F}_{0}} \frac{L_{n}(A ; f)}{n}
$$

OBTAINING THE LOWER BOUND

Reduction of the space

$$
\inf _{A \in \mathcal{A}^{\prime}} \sup _{f \in \mathcal{F}_{0}} \frac{L_{n}(A ; f)}{n} \geq \inf _{A \in \mathcal{A}^{\prime}} \frac{\mathbb{E}_{f \sim D_{\mathcal{F}_{0}}} L_{n}(A ; f)}{n}
$$

OBTAINING THE LOWER BOUND

Reduction of the space

$$
\inf _{A \in \mathcal{A}^{\prime}} \sup _{f \in \mathcal{F}_{0}} \frac{L_{n}(A ; f)}{n} \geq \inf _{A \in \mathcal{A}^{\prime}} \frac{\mathbb{E}_{f \sim D_{\mathcal{F}_{0}}} L_{n}(A ; f)}{n}
$$

OBTAINING THE LOWER BOUND

Reduction of the space

OBTAINING THE LOWER BOUND

Reduction of the space

SUMMARY OF THE CONTRIBUTIONS

- A minimax lower bound was found for the adaptive rejection sampling problem.
- NNARS is a near-optimal adaptive rejection sampling algorithm.
- NNARS does well experimentally.

Resources

國 J. Achddou, J. Lam-Weil, A. Carpentier, and G. Blanchard. A minimax near-optimal algorithm for adaptive rejection sampling.
ArXiv e-prints, October 2018.
Github: jlamweil/NNARS

QUESTIONS?

