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Rejection Sampling

Definitions Let

∙ f be the density you wish to sample from. (target density)

∙ g be a density that is easy to sample from. (proposal density)
∙ M be a constant such that Mg ≥ f. (rejection constant)
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Rejection Sampling

Figure: Illustration of Rejection Sampling 2/18



Adaptive Rejection Sampling

Let n be the budget. Let S = ∅ be the set of samples from f.

Procedure At each step t ≤ n,

∙ {(X1, f(X1)), . . . , (Xt−1, f(Xt−1))} are known.
∙ gt,Mt are chosen.
∙ A rejection sampling step is done using (gt,Mt). This generates Xt.
∙ If Xt is not rejected, it is added to S .

Definition of the loss Ln = n−#S × 1{∀t ≤ n : f ≤ Mtgt}.
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Our contributions

1. Nearest Neighbor Adaptive Rejection Sampling (NNARS).

2. Minimax lower bound.
3. NNARS is minimax near-optimal.
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Minimax optimality

Let

∙ A be the set of ARS algorithms.
∙ F0 be the set of densities: positively lower bounded, with
bounded support, and (s,H)-Hölder (0 < s ≤ 1):

∀x, y ∈ [0, 1]d, |f(x)− f(y)| ≤ H∥x− y∥s∞

Minimax rate

φ∗
n = inf

A∈A
sup
f∈F0

Ln(A; f)
n .
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Obtaining an upper bound/Focus on one algorithm

Nearest Neighbor Adaptive Rejection Sampling.
Divide the n steps into K rounds, where each round k contains twice
the number of steps round k− 1 has.

At each round 0 ≤ k ≤ K− 1:

∙ Use an estimator f̂k of f based on the previous evaluations.
∙ Take M(k+1)g(k+1) = f̂k + r̂k, where r̂k is a confidence bound for
|̂fk − f|.
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Approximate nearest neighbor estimator f̂k

At round k,

∙ we know {(X1, f(X1)), . . . , (XNk , f(XNk))}.
∙ build a uniform grid of ∼ Nk cells with side-length ∼ Nk−1/d.

Let us determine f̂k(x).

1. x is in the l-th cell.
2. Let Xi be the nearest neighbor of the center of the l-th cell.
3. Then f̂k(x) = f(Xi).
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Approximate nearest neighbor estimator f̂k

Choice of parameter

Nearest Neighbor Estimator:

∙ Choice of an optimal number of neighbors?

∙ Noiseless setting⇒ 1-NN is optimal.

Optimal bandwidth for a Kernel Estimator:

∙ Noisy setting: h = N−1/(d+2s).
∙ Noiseless setting: h = N−1/d.
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Approximate nearest neighbor estimator f̂k

Why approximate?

∙ Direct 1-NN⇒ Voronoi cells.

∙ Approximate NN⇒ hypercubes.

Then

gk+1 : x→
f̂k(x) + r̂k
Mk+1

is easy to sample from.
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The algorithm: NNARS

10/18



The algorithm: NNARS
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The bounds obtained

Assume n is large enough.

Upper bound

EfLn(NNARS) ≤ 40Hc−1f (1+
√
2 log(3n))(log(2n))s/dn1−s/d

+
(
25+ 80c−1f + 2(10H)d/sc−1−d/sf

)
log2(n)

= O(log2(n)n1−s/d).

Lower bound

inf
A∈A

sup
f∈F0(s,1,1/2,d)∩{f:If=1}

Ef(Ln(A)) ≥ 3−12−1−3s−2d5−s/dn1−s/d

= O(n1−s/d).
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Obtaining the lower bound

Simpler setting. An algorithm in A′ chooses

1. n points in order to evaluate them with f.
2. an envelope in order to sample n other points using rejection
sampling.

φ∗
n = inf

A∈A
sup
f∈F0

Ln(A; f)
n

≥ inf
A∈A′

sup
f∈F0

Ln(A; f)
n .
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Reduction of the space
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Obtaining the lower bound
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Summary of the contributions

∙ A minimax lower bound was found for the adaptive rejection
sampling problem.

∙ NNARS is a near-optimal adaptive rejection sampling algorithm.
∙ NNARS does well experimentally.
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Resources

J. Achddou, J. Lam-Weil, A. Carpentier, and G. Blanchard.
A minimax near-optimal algorithm for adaptive rejection
sampling.
ArXiv e-prints, October 2018.

Github: jlamweil/NNARS
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Questions?
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