▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のの⊙

Intertwinings and spectral analysis of diffusion operators

Aldéric Joulin

Institut de Mathématiques de Toulouse

Based on a series of works with M. Bonnefont (Bordeaux)

March 13, 2019 Toulouse - Postdam International Workshop "DoktorandenKolleg Franco-Allemand"

Intertwinings and Brascamp-Lieb type inequalities

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Setting

Consider the Euclidean space $(\mathbb{R}^n, |\cdot|)$ endowed with the probability measure $d\mu(x) \propto e^{-V(x)} dx$, where V is some smooth potential with Hessian matrix $\nabla^2 V$ bounded from below.

Canonical diffusion operator: $Lf = \Delta f - \nabla V \cdot \nabla f$, for which:

• L is (essentially) self-adjoint:

$$\int_{\mathbb{R}^n} f Lg \, d\mu = \int_{\mathbb{R}^n} Lf \, g \, d\mu = - \int_{\mathbb{R}^n}
abla f \cdot
abla g \, d\mu.$$

 By spectral theorem, we define P_t := e^{tL}, t ≥ 0, a family of symmetric operators on L²(μ), satisfying the semigroup property:

$$P_t \circ P_s = P_s \circ P_t = P_{t+s}, \quad \text{and} \quad P_0 = \mathsf{id},$$

and for which μ is invariant:

$$\int_{\mathbb{R}^n} P_t f \, d\mu = \int_{\mathbb{R}^n} f \, d\mu.$$

Probabilistic interpretation

• Markov diffusion process $(X_t)_{t\geq 0}$ on \mathbb{R}^n , solution to the Stochastic Differential Equation

$$dX_t = -\nabla V(X_t)dt + \sqrt{2}dB_t,$$

where $(B_t)_{t\geq 0}$ is a standard Brownian motion on \mathbb{R}^n .

- Law of the process coincides with the semigroup: $\mathbb{E}[f(X_t) \mid X_0 = x] = P_t f(x).$
- The process has (infinitesimal) generator L.
- Invariance: if $X_0 \sim \mu$ then $X_t \sim \mu$ for all t > 0.
- Symmetry of the semigroup: if X₀ ~ μ then for all T > 0, the processes (X_t)_{t∈[0,T]} and (X_{T-t})_{t∈[0,T]} have the same law.

Examples

The Gaussian case:

$$V(x)=\frac{|x|^2}{2},$$

and $\mu = \gamma$ the standard Gaussian distribution $\mathcal{N}(0, I_n)$.

• The Subbotin, or exponential power, distribution:

$$V(x)=\frac{|x|^{\alpha}}{\alpha},$$

with $\alpha \in [1,\infty]$, the case $\alpha = \infty$ being the uniform measure on the Euclidean unit ball.

- More generally, the log-concave case, i.e. V is convex.
- Heavy-tailed case: Generalized Cauchy:

$$V(x) = \beta \log(1 + |x|^2),$$

with $\beta > n/2$, so that

$$d\mu(x) \propto rac{1}{\left(1+|x|^2
ight)^eta} dx.$$

• The double-well potential:

$$V(x) = \frac{|x|^4}{4} - \frac{|x|^2}{2}.$$

• Product measures perturbed by an interacting term:

$$V(x) = \sum_{k=1}^{n} V_k(x_k) + \sum_{k=1}^{n} \varphi(|x_k - x_{k+1}|).$$

▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のの⊙

Long-time behaviour

As $t \to \infty$, we have

$$X_t \Longrightarrow X_\infty$$
 in law, where $X_\infty \sim \mu$.

Many different notions of convergences, and among them:

• Convergence in $L^2(\mu)$ (related to the χ^2 divergence):

$$\operatorname{Var}_{\mu}(P_t f) := \|P_t f - \mu(f)\|_{L^2(\mu)}^2 \xrightarrow[t \to \infty]{} 0,$$

where $\mu(f) := \int_{\mathbb{R}^n} f \, d\mu$.

- Convergence in $L^1(\mu)$ (related to the total variation distance).
- Convergence in relative entropy (related to the Kullback-Leibler divergence).
- Convergence in Wasserstein (or Kantorovich) distances.

Long-time behaviour

As $t \to \infty$, we have

$$X_t \Longrightarrow X_\infty$$
 in law, where $X_\infty \sim \mu$.

Many different notions of convergences, and among them:

• Convergence in $L^2(\mu)$ (related to the χ^2 divergence):

$$\operatorname{Var}_{\mu}(P_t f) := \|P_t f - \mu(f)\|_{L^2(\mu)}^2 \xrightarrow[t \to \infty]{} 0,$$

where $\mu(f) := \int_{\mathbb{R}^n} f \, d\mu$.

- Convergence in $L^1(\mu)$ (related to the total variation distance).
- Convergence in relative entropy (related to the Kullback-Leibler divergence).
- Convergence in Wasserstein (or Kantorovich) distances.

Poincaré inequality and spectral gap

Proposition

Letting $\lambda > 0$, the following assertions are equivalent:

• Exponential convergence in $L^2(\mu)$: for all $f \in L^2(\mu)$,

$$\|P_t f - \mu(f)\|_{L^2(\mu)} \le e^{-\lambda t} \|f - \mu(f)\|_{L^2(\mu)}$$

• Poincaré inequality $PI(\lambda)$: for all $f \in D(L)$,

$$\lambda \operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^n} f(-Lf) d\mu.$$

Actually, one has: $PI(\lambda) \iff \sigma(-L) \subset \{0\} \cup [\lambda, \infty)$, with $\sigma(-L)$ the spectrum of the non-negative operator -L.

The largest λ is called the spectral gap of -L and is denoted λ_1 .

Brascamp-Lieb inequality

Theorem (Brascamp-Lieb ('76))

Assume V is strictly convex, i.e. $\nabla^2 V$ is a positive definite matrix. Then for all f smooth enough,

$$\operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^d} \nabla f \cdot (\nabla^2 V)^{-1} \, \nabla f \, d\mu. \tag{2.1}$$

- In particular if V is strongly convex, i.e., ∇²V ≥ λ I_n for some λ > 0 an instance of the famous Bakry-Émery curvature-dimension criterion ('85) then PI(λ) holds.
- Except the Gaussian case, none of the previous examples enter into the strongly convex situation.
- The proof of BL uses a tedious induction on the dimension.
- The inequality is saturated for $f = \nabla V \cdot c$, with $c \in \mathbb{R}^n$ some constant vector.

Classical intertwining

Helffer ('98) revisited the BL inequality, by proposing a simple proof based on an intertwining relation between gradient and operator, the so-called Witten Laplacian approach:

$$\nabla Lf = (\mathcal{L} - \nabla^2 V) \, (\nabla f),$$

with $\mathcal{L} = \text{diag}(L)$ a (diagonal) matrix diffusion operator acting on vector fields and $\nabla^2 V$ is a multiplicative, or 0-order, operator. At the level of semigroups, we have

$$\nabla P_t f = \mathcal{P}_t^{\nabla^2 V} (\nabla f),$$

with $(\mathcal{P}_t^{\nabla^2 V})_{t\geq 0}$ the Feynman-Kac semigroup acting on vector fields with generator the Schrödinger operator $\mathcal{L} - \nabla^2 V$.

ション ふゆ アメヨア メヨア しょうくの

Classical intertwining

In dimension 1, the Feynman-Kac semigroup $(\mathcal{P}_t^{\nabla^2 V})_{t\geq 0}$ admits a simple probabilistic representation: denoting $(X_t^x)_{t\geq 0}$ the process with $X_0 = x \in \mathbb{R}$,

$$P_t^{V''}f(x) = \mathbb{E}\left[f(X_t^x) \exp\left(-\int_0^t V''(X_s^x)\,ds\right)\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Helffer's proof of the BL inequality

Since we have

$$\nabla (-L)^{-1}f = \int_0^\infty \nabla P_t f \, dt = \int_0^\infty \mathcal{P}_t^{\nabla^2 V} (\nabla f) \, dt = (-\mathcal{L} + \nabla^2 V)^{-1} (\nabla f),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Helffer's proof of the BL inequality

Since we have

$$\nabla (-L)^{-1}f = \int_0^\infty \nabla P_t f \, dt = \int_0^\infty \mathcal{P}_t^{\nabla^2 V} (\nabla f) \, dt = (-\mathcal{L} + \nabla^2 V)^{-1} (\nabla f),$$

we get after some computations,

$$\operatorname{Var}_{\mu}(f) = \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f \, d\mu \, dt$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Helffer's proof of the BL inequality

Since we have

$$\nabla (-L)^{-1}f = \int_0^\infty \nabla P_t f \, dt = \int_0^\infty \mathcal{P}_t^{\nabla^2 V} (\nabla f) \, dt = (-\mathcal{L} + \nabla^2 V)^{-1} (\nabla f),$$

we get after some computations,

$$\operatorname{Var}_{\mu}(f) = \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f \, d\mu \, dt$$
$$= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \mathcal{P}_{t}^{\nabla^{2} V} \left(\nabla f \right) d\mu \, dt$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Helffer's proof of the BL inequality

Since we have

$$\nabla (-L)^{-1}f = \int_0^\infty \nabla P_t f \, dt = \int_0^\infty \mathcal{P}_t^{\nabla^2 V} (\nabla f) \, dt = (-\mathcal{L} + \nabla^2 V)^{-1} (\nabla f),$$

we get after some computations,

$$\operatorname{Var}_{\mu}(f) = \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f \, d\mu \, dt$$
$$= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \mathcal{P}_{t}^{\nabla^{2} V} (\nabla f) \, d\mu \, dt$$
$$= \int_{\mathbb{R}^{n}} \nabla f \cdot (-\mathcal{L} + \nabla^{2} V)^{-1} (\nabla f) \, d\mu$$

Helffer's proof of the BL inequality

Since we have

$$\nabla (-L)^{-1}f = \int_0^\infty \nabla P_t f \, dt = \int_0^\infty \mathcal{P}_t^{\nabla^2 V} (\nabla f) \, dt = (-\mathcal{L} + \nabla^2 V)^{-1} (\nabla f),$$

we get after some computations,

$$\begin{aligned} \operatorname{Var}_{\mu}(f) &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f \, d\mu \, dt \\ &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \mathcal{P}_{t}^{\nabla^{2} V} \left(\nabla f \right) d\mu \, dt \\ &= \int_{\mathbb{R}^{n}} \nabla f \cdot \left(-\mathcal{L} + \nabla^{2} V \right)^{-1} \left(\nabla f \right) d\mu \\ &\leq \int_{\mathbb{R}^{n}} \nabla f \cdot \left(\nabla^{2} V \right)^{-1} \nabla f \, d\mu, \end{aligned}$$

where we used the following inequality, to understand in the sense of self-adjoint operators: $(-\mathcal{L} + \nabla^2 V)^{-1} \leq (\nabla^2 V)^{-1}$

イロト 不得 トイヨ トイヨ うらくの

A new intertwining

Question: how to correct the lack of (strong) convexity in the previous examples ?

Idea: to introduce a weight in the previous intertwining.

Letting $x \in \mathbb{R}^n \to A(x) \in GL_n(\mathbb{R})$ be a smooth mapping seen as a weight, we have

$$\mathbf{A}\nabla Lf = \mathbf{A}\left(\mathcal{L} - \nabla^2 V\right) \left(\mathbf{A}^{-1} \mathbf{A} \nabla f\right)$$

イロト 不得 トイヨ トイヨ うらくの

A new intertwining

Question: how to correct the lack of (strong) convexity in the previous examples ?

Idea: to introduce a weight in the previous intertwining.

Letting $x \in \mathbb{R}^n \to A(x) \in GL_n(\mathbb{R})$ be a smooth mapping seen as a weight, we have

$$A \nabla L f = A(\mathcal{L} - \nabla^2 V) (A^{-1} A \nabla f)$$

= $(\mathcal{L} + 2A \nabla (A^{-1}) \cdot \nabla) (A \nabla f)$
=: \mathcal{L}_A
- $(A \nabla^2 V A^{-1} - A \mathcal{L} (A^{-1})) (A \nabla f)$
=: M_A

イロト 不得 トイヨ トイヨ うらくの

A new intertwining

Question: how to correct the lack of (strong) convexity in the previous examples ?

Idea: to introduce a weight in the previous intertwining.

Letting $x \in \mathbb{R}^n \to A(x) \in GL_n(\mathbb{R})$ be a smooth mapping seen as a weight, we have

$$A \nabla L f = A(\mathcal{L} - \nabla^2 V) (A^{-1} A \nabla f)$$

= $(\mathcal{L} + 2A \nabla (A^{-1}) \cdot \nabla) (A \nabla f)$
=: \mathcal{L}_A
- $(A \nabla^2 V A^{-1} - A \mathcal{L} (A^{-1})) (A \nabla f)$
= $(\mathcal{L}_A - M_A) (A \nabla f).$

A new intertwining

- \mathcal{L}_A is a (non-diagonal) matrix diffusion operator acting on vector fields, and M_A is 0-order.
- The scalar product of interest on vectors fields is $L^2((AA^T)^{-1}, \mu)$, so that $-\mathcal{L}_A$ is (essentially) self-adjoint and non-negative as soon as

$$A^{-1}M_A A = \nabla^2 V - \mathcal{L}(A^{-1})A,$$

is a symmetric matrix which is bounded from below.

• In terms of semigroups, the intertwining with weight A means that

$$A\nabla P_t f = \mathcal{P}_{t,A}^{M_A} (A\nabla f),$$

with $(\mathcal{P}_{t,A}^{M_A})_{t\geq 0}$ the Feynman-Kac semigroup acting on vector fields, associated to the operator $\mathcal{L}_A - M_A$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

A new intertwining

In dimension 1, the intertwining with weight *a* is nothing but a composition of the classical intertwining with Doob's 1/a-transform: "we multiply inside by 1/a and divide outside by 1/a":

$$(P_t f)'(x) = \mathbb{E}\left[f'(X_t^x) \exp\left(-\int_0^t V''(X_s^x) ds\right)\right]$$

A new intertwining

In dimension 1, the intertwining with weight *a* is nothing but a composition of the classical intertwining with Doob's 1/a-transform: "we multiply inside by 1/a and divide outside by 1/a":

$$(P_t f)'(x) = \mathbb{E}\left[f'(X_t^x) \exp\left(-\int_0^t V''(X_s^x) ds\right)\right]$$

= $\mathbb{E}\left[f'(X_{a,t}^x) \exp\left(-\int_0^t V''(X_{a,s}^x) ds\right) M_t^{(a)}\right],$

where $(X_t^{(a)})_{t\geq 0}$ is the diffusion process with generator L_a and $(M_t^{(a)})_{t\geq 0}$ is the Girsanov martingale

$$M_t^{(a)} = \frac{a(X_{a,t}^x)}{a(x)} \exp\left(-\int_0^t \frac{L_a(a)}{a} \left(X_{a,s}^x\right) ds\right)$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ らへぐ

A new intertwining

In dimension 1, the intertwining with weight *a* is nothing but a composition of the classical intertwining with Doob's 1/a-transform: "we multiply inside by 1/a and divide outside by 1/a":

$$(P_t f)'(x) = \mathbb{E}\left[f'(X_t^x) \exp\left(-\int_0^t V''(X_s^x) ds\right)\right]$$

= $\mathbb{E}\left[f'(X_{a,t}^x) \exp\left(-\int_0^t V''(X_{a,s}^x) ds\right) M_t^{(a)}\right],$

where $(X_t^{(a)})_{t\geq 0}$ is the diffusion process with generator L_a and $(M_t^{(a)})_{t\geq 0}$ is the Girsanov martingale

$$\begin{aligned} M_t^{(a)} &= \frac{a(X_{a,t}^x)}{a(x)} \exp\left(-\int_0^t \frac{L_a(a)}{a} (X_{a,s}^x) \, ds\right) \\ &= \frac{a(X_{a,t}^x)}{a(x)} \exp\left(\int_0^t a \, L(1/a) \, (X_{a,s}^x) \, ds\right), \end{aligned}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ らへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A new intertwining

so that the intertwining with weight a rewrites as

$$a(P_t f)'(x) = \mathbb{E}\left[(af')(X_{a,t}^{x}) \exp\left(-\int_0^t (V'' - aL(1/a))(X_{a,s}^{x}) ds\right)\right]$$

$$\operatorname{Var}_{\mu}(f) = \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f \, d\mu \, dt$$

$$\begin{aligned} \operatorname{Var}_{\mu}(f) &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f \, d\mu \, dt \\ &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \, \nabla f \cdot (A \, A^{T})^{-1} \, A \, \nabla P_{t} f \, d\mu \, dt \end{aligned}$$

$$\begin{aligned} \operatorname{Var}_{\mu}(f) &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f \, d\mu \, dt \\ &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, A \nabla P_{t} f \, d\mu \, dt \\ &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, \mathcal{P}_{t,A}^{M_{A}} \, (A \nabla f) \, d\mu \, dt \end{aligned}$$

$$\begin{aligned} \operatorname{Var}_{\mu}(f) &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f \, d\mu \, dt \\ &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, A \nabla P_{t} f \, d\mu \, dt \\ &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, \mathcal{P}_{t,A}^{M_{A}} \, (A \nabla f) \, d\mu \, dt \\ &= \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, (-\mathcal{L}_{A} + M_{A})^{-1} \, (A \nabla f) \, d\mu \end{aligned}$$

Generalized BL inequality

$$\begin{aligned} \operatorname{Var}_{\mu}(f) &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f \, d\mu \, dt \\ &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, A \nabla P_{t} f \, d\mu \, dt \\ &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, \mathcal{P}_{t,A}^{M_{A}} \, (A \nabla f) \, d\mu \, dt \\ &= \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, (-\mathcal{L}_{A} + M_{A})^{-1} \, (A \nabla f) \, d\mu \\ &\leq \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, M_{A}^{-1} \, A \nabla f \, d\mu \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の�@

Generalized BL inequality

$$\begin{aligned} \operatorname{Var}_{\mu}(f) &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f \, d\mu \, dt \\ &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, A \nabla P_{t} f \, d\mu \, dt \\ &= \int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, \mathcal{P}_{t,A}^{M_{A}} \, (A \nabla f) \, d\mu \, dt \\ &= \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, (-\mathcal{L}_{A} + M_{A})^{-1} \, (A \nabla f) \, d\mu \\ &\leq \int_{\mathbb{R}^{n}} A \nabla f \cdot (A A^{T})^{-1} \, M_{A}^{-1} \, A \nabla f \, d\mu \\ &= \int_{\mathbb{R}^{n}} \nabla f \cdot (\nabla^{2} V - \mathcal{L}(A^{-1}) \, A)^{-1} \, \nabla f \, d\mu. \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の�@

Generalized BL inequality and spectral gap

Theorem (Arnaudon, Bonnefont, J. ('18))

Let $x \in \mathbb{R}^n \to A(x) \in GL_n(\mathbb{R})$ be a smooth mapping such that $\nabla^2 V - \mathcal{L}(A^{-1})A$ is a symmetric positive definite matrix. Then,

$$\operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^n} \nabla f \cdot \left(\nabla^2 V - \mathcal{L}(A^{-1}) A \right)^{-1} \nabla f \, d\mu$$

Corollary

As a consequence, for all such matrices A,

$$\lambda_1 \geq \inf_{x \in \mathbb{R}^n} \rho\left(\nabla^2 V - \mathcal{L}(A^{-1}) A\right)(x),$$

where, if M stands for some symmetric matrix, $\rho(M)$ denotes its smallest eigenvalue.

ション ふゆ アメヨア メヨア しょうくの

Generalized BL inequality and spectral gap

Why such a form $\nabla^2 V - \mathcal{L}(A^{-1}) A$?

Through the Bakry-Émery Γ_2 -calculus, the generalized BL inequality is equivalent to its dual form

$$\int_{\mathbb{R}^n} (Lf)^2 \, d\mu \geq \int_{\mathbb{R}^n} \nabla f \cdot \left(\nabla^2 V - \mathcal{L}(A^{-1}) A \right) \, \nabla f \, d\mu,$$

which is true since

$$\int_{\mathbb{R}^n} (Lf)^2 \, d\mu = \int_{\mathbb{R}^n} \nabla f \cdot \nabla (-L) f \, d\mu$$

ション ふゆ アメヨア メヨア しょうくの

Generalized BL inequality and spectral gap

Why such a form $\nabla^2 V - \mathcal{L}(A^{-1}) A$?

Through the Bakry-Émery Γ_2 -calculus, the generalized BL inequality is equivalent to its dual form

$$\int_{\mathbb{R}^n} (Lf)^2 \, d\mu \geq \int_{\mathbb{R}^n} \nabla f \cdot \left(\nabla^2 V - \mathcal{L}(A^{-1}) A \right) \, \nabla f \, d\mu,$$

which is true since

$$\int_{\mathbb{R}^n} (Lf)^2 d\mu = \int_{\mathbb{R}^n} \nabla f \cdot \nabla (-L) f d\mu$$
$$= \int_{\mathbb{R}^n} \nabla f \cdot (-\mathcal{L} + \nabla^2 V) (\nabla f) d\mu$$

Generalized BL inequality and spectral gap

Why such a form $\nabla^2 V - \mathcal{L}(A^{-1}) A$?

Through the Bakry-Émery Γ_2 -calculus, the generalized BL inequality is equivalent to its dual form

$$\int_{\mathbb{R}^n} (Lf)^2 \, d\mu \geq \int_{\mathbb{R}^n} \nabla f \cdot \left(\nabla^2 V - \mathcal{L}(A^{-1}) A \right) \, \nabla f \, d\mu,$$

which is true since

$$\begin{split} \int_{\mathbb{R}^n} (Lf)^2 \, d\mu &= \int_{\mathbb{R}^n} \nabla f \cdot \nabla (-L) f \, d\mu \\ &= \int_{\mathbb{R}^n} \nabla f \cdot \left(-\mathcal{L} + \nabla^2 V \right) \, (\nabla f) \, d\mu \\ &\geq \int_{\mathbb{R}^n} \nabla f \cdot \left(-\mathcal{L} (A^{-1}) A + \nabla^2 V \right) \, \nabla f \, d\mu, \end{split}$$

the inequality being a generalization of Barta's inequality at the level of gradients. イロト 不得 トイヨ トイヨ うらくの

Generalized BL inequality and spectral gap

Question: Case of equality in the generalized BL inequality ? **Answer:** If *H* is some diffeomorphism on \mathbb{R}^n , then choose the matrix $A = (Jac H^T)^{-1}$, so that

$$abla^2 \textit{V} - \mathcal{L}(\textit{A}^{-1})\textit{A} = -\textit{Jac} \, \mathcal{L}\textit{H}^{T} \, (\textit{Jac} \, \textit{H}^{T})^{-1},$$

and provided this matrix is symmetric positive definite, then the equality holds for $f = \mathcal{L}H \cdot c$, with $c \in \mathbb{R}^n$ some constant vector, generalizing the extremal functions in the classical BL inequality: if H = id, then $\mathcal{L}id = -\nabla V$.

Question: Case of equality for the spectral gap ?

Answer: It depends on the structure of the associated eigenspace...

Generalized BL inequality and spectral gap

Example: The term involving the matrix *A* allows to compensate the lack of strong convexity, as in the following model: a Lipschitz perturbation of a non-strongly log-concave product measure. The potential is

$$V(x) = \sum_{k=1}^{n} \frac{|x_k|^{\alpha}}{\alpha} + \beta \sum_{k=1}^{n} |x_k - x_{k+1}|, \quad x \in \mathbb{R}^n,$$

with $1 < \alpha < 2$.

Proposition

For β small enough, there exists $\lambda > 0$ such that for all $n \ge 1$, the spectral gap satisfies $\lambda_1 \ge \lambda$.

It seems that our approach goes beyond the classical method of requiring uniform estimate for the one-dimensional conditional distributions (Helffer, Ledoux, Gentil-Roberto in the end '90), for which some strong convexity at infinity is often needed.

Introduction

Other consequences of the intertwining approach

• Second-order generalized BL inequalities (Bonnefont, J. ('18)), in the spirit of Cordero-Fradelizi-Maurey ('04) about the so-called *B*-conjecture.

A second-order BL inequality is: for all f such that $\operatorname{Cov}_{\mu}(f, id) = 0$,

$$\operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^n} \nabla f \cdot \left(\nabla^2 V + \lambda_1 I_n \right)^{-1} \nabla f \, d\mu.$$

• Comparison of spectra of the diffusion operator -L and the Schrödinger-type operators $-\mathcal{L} + \nabla^2 V$ and $-\mathcal{L}_A + M_A$ acting on gradients (Bonnefont, J. ('19); such a comparison has been emphasized in the non-weighted case by Johnsen ('00)):

$$\sigma(-\mathcal{L}) \setminus \{0\} = \sigma(-\mathcal{L} + \nabla^2 V \mid_{\nabla}) = \sigma(-\mathcal{L}_A + M_A \mid_{A \nabla}).$$

• Optimality in dimension 1 and higher eigenvalues estimates (Bonnefont, J. ('19)).

Introduction

Other consequences of the intertwining approach

 Second-order generalized BL inequalities (Bonnefont, J. ('18)), in the spirit of Cordero-Fradelizi-Maurey ('04) about the so-called *B*-conjecture.

A second-order BL inequality is: for all f such that $\operatorname{Cov}_{\mu}(f, id) = 0$,

$$\operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^n} \nabla f \cdot \left(\nabla^2 V + \lambda_1 I_n \right)^{-1} \nabla f \, d\mu.$$

• Comparison of spectra of the diffusion operator -L and the Schrödinger-type operators $-\mathcal{L} + \nabla^2 V$ and $-\mathcal{L}_A + M_A$ acting on gradients (Bonnefont, J. ('19); such a comparison has been emphasized in the non-weighted case by Johnsen ('00)):

$$\sigma(-L) \setminus \{0\} = \sigma(-\mathcal{L} + \nabla^2 V \mid_{\nabla}) = \sigma(-\mathcal{L}_A + M_A \mid_{A \nabla}).$$

• Optimality in dimension 1 and higher eigenvalues estimates (Bonnefont, J. ('19)).

Optimality in dimension 1

In dimension 1, can we get the equality in

$$\lambda_1 \geq \sup_{a} \inf_{x \in \mathbb{R}} \left(V'' - a L(1/a)
ight) (x)$$
 ?

Taking the weight of the form a = 1/h', with some function h' > 0, then

$$\mathcal{V}''-\mathsf{a}\,\mathcal{L}(1/\mathsf{a})=rac{(-\mathcal{L}h)'}{h'}.$$

If the spectral gap λ_1 is attained, then the associated eigenfunction g_1 is strictly monotone with g'_1 non-vanishing, so that taking $h = g_1$ entails the desired equality, recovering Chen's famous variational formula ('97) obtained by coupling.

Question: Does the intertwining approach allow to go beyond the spectral gap ?

Answer: Yes.

うして ふぼう ふほう ふほう しょう

Higher order eigenvalues

Assume for simplicity that $\sigma_{ess}(-L) = \emptyset$, i.e., $\sigma(-L) = \sigma_{disc}(-L)$. The eigenvalues $(\lambda_n)_{n \in \mathbb{N}}$, ordered according to the Courant-Fisher min-max theorem, form a sequence tending to infinity as $n \to \infty$. We have

$$L_{a}f = Lf + 2a \left(\frac{1}{a}\right)' f'$$

= $f'' - V' f' - \log(a^{2})' f'$
= $f'' - V'_{a} f',$

with $V_a = V + \log(a^2)$, the associated invariant measure μ_a having Lebesgue-density proportional to $e^{-V_a} = e^{-V}/a^2$.

イロト 不得 トイヨ トイヨ うらくの

Higher order eigenvalues

The restriction to gradients being useless in dimension 1, the previous comparison of spectra rewrites as follows: letting $a = a_1$, then for all $k \in \mathbb{N}$,

$$\lambda_{k+1}(-L) = \lambda_k(-L_{a_1} + M_{a_1})$$

イロト 不得 トイヨ トイヨ うらくの

Higher order eigenvalues

The restriction to gradients being useless in dimension 1, the previous comparison of spectra rewrites as follows: letting $a = a_1$, then for all $k \in \mathbb{N}$,

$$\begin{array}{rcl} \lambda_{k+1}(-L) &=& \lambda_k(-L_{a_1}+M_{a_1})\\ &\geq& \lambda_k(-L_{a_1}+\inf\,M_{a_1}) \end{array}$$

The restriction to gradients being useless in dimension 1, the previous comparison of spectra rewrites as follows: letting $a = a_1$, then for all $k \in \mathbb{N}$,

$$\begin{array}{rcl} \lambda_{k+1}(-L) &=& \lambda_k(-L_{a_1}+M_{a_1})\\ &\geq& \lambda_k(-L_{a_1}+\inf M_{a_1})\\ &=& \lambda_k(-L_{a_1})+\inf M_{a_1}, \end{array}$$

where $M_{a_1} = V'' - a_1 L(1/a_1)$, which is for k = 0 the spectral gap estimate provided by the generalized BL inequality.

In dimension 1, we can iterate the argument: let us see how it works for k = 1: the intertwining with some smooth positive weight a_2 (say) applied to L_{a_1} gives

$$a_2 (L_{a_1} f)' = (L_{a_1 \times a_2} - M_{a_1}^{a_2}) (a_2 f'),$$

where

$$M_{a_1}^{a_2} = V_{a_1}'' - a_2 \, L_{a_1}(1/a_2).$$

$$\lambda_2(-L) \geq \lambda_1(-L_{a_1}) + \inf M_{a_1}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の�@

Higher order eigenvalues

$$\begin{array}{rcl} \lambda_2(-L) & \geq & \lambda_1(-L_{a_1}) + \inf \ M_{a_1} \\ & = & \lambda_0(-L_{a_1a_2} + M_{a_1}^{a_2}) + \inf \ M_{a_1} \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の�@

Higher order eigenvalues

$$\begin{array}{rcl} \lambda_{2}(-L) & \geq & \lambda_{1}(-L_{a_{1}}) + \inf \, M_{a_{1}} \\ & = & \lambda_{0}(-L_{a_{1}a_{2}} + M_{a_{1}}^{a_{2}}) + \inf \, M_{a_{1}} \\ & \geq & \lambda_{0}(-L_{a_{1}a_{2}} + \inf \, M_{a_{1}}^{a_{2}}) + \inf \, M_{a_{1}} \end{array}$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

Higher order eigenvalues

$$\begin{array}{rcl} \lambda_{2}(-L) & \geq & \lambda_{1}(-L_{a_{1}}) + \inf \, M_{a_{1}} \\ & = & \lambda_{0}(-L_{a_{1}a_{2}} + M_{a_{1}}^{a_{2}}) + \inf \, M_{a_{1}} \\ & \geq & \lambda_{0}(-L_{a_{1}a_{2}} + \inf \, M_{a_{1}}^{a_{2}}) + \inf \, M_{a_{1}} \\ & = & \inf \, M_{a_{1}}^{a_{2}} + \inf \, M_{a_{1}}. \end{array}$$

Hence,

$$\begin{array}{rcl} \lambda_{2}(-L) & \geq & \lambda_{1}(-L_{a_{1}}) + \inf \, M_{a_{1}} \\ & = & \lambda_{0}(-L_{a_{1}a_{2}} + M_{a_{1}}^{a_{2}}) + \inf \, M_{a_{1}} \\ & \geq & \lambda_{0}(-L_{a_{1}a_{2}} + \inf \, M_{a_{1}}^{a_{2}}) + \inf \, M_{a_{1}} \\ & = & \inf \, M_{a_{1}}^{a_{2}} + \inf \, M_{a_{1}}. \end{array}$$

Theorem

In the case $\sigma_{ess}(-L) = \emptyset$, we have for all $k \ge 1$,

$$\lambda_k(-L) = \sup_{a_1, \dots, a_k > 0} \inf M_{a_1} + \inf M_{a_1}^{a_2} + \dots + \inf M_{a_1 \dots a_{k-1}}^{a_k},$$

the equality being satisfied when choosing the a_i conveniently in terms of the eigenfunctions g_1, \ldots, g_k .

Choosing the $a_i = 1$ in the strongly convex case, we recover:

Theorem (Milman ('18))

Assume that V is strongly convex, i.e. inf $V'' \ge \rho > 0$. Then for all $k \ge 1$,

$$\lambda_k(-L) \geq \lambda_k(-L_{OU,\rho}) \quad (= \rho k),$$

where

$$L_{OU,\rho}f(x) = f''(x) - \rho x f'(x), \quad V_{OU,\rho}(x) = \rho |x|^2/2.$$

We also prove an estimate on the gap between consecutive eigenvalues:

Theorem

Under the same assumption, we have for all $k \ge 1$,

$$\lambda_k - \lambda_{k-1} \ge \rho.$$

ション ふゆ アメヨア メヨア しょうくの

Higher order eigenvalues

A non-strongly convex example: Subbotin distribution:

$$V(x) = rac{|x|^{lpha}}{lpha}, \quad 1 < lpha \leq 2.$$

Choosing the $a_i = e^{\varepsilon_i V}$ for some convenient constants ε_i , then we get for all $k \ge 1$,

$$\lambda_k \geq C_{\alpha,\varepsilon} k^{2-rac{2}{lpha}-arepsilon},$$

in accordance with Weyl's law describing the asymptotic behaviour of eigenvalues:

$$\lambda_k \simeq_{k \to \infty} C_{\alpha} k^{2 - \frac{2}{\alpha}}.$$

Some perspectives and open questions

- Structure of the eigenspace associated to λ_1 (Barthe-Klartag, forthcoming).
- Iteration of the intertwinings, to recover and extend Milman's theorem.
- The case of Riemannian manifolds.
- Relate our Barta inequality to the dimensional aspect in the Bakry-Emery curvature-dimension criterion.
- Understand the probabilistic representation of the operator \mathcal{L}_A .
- Study the gap between consecutive eigenvalues in the non-strongly convex case, at least in dimension 1.
- Explore the consequences of the intertwinings in terms of:
 - Other functional inequalities (for instance log-Sobolev);
 - Stability by measure-transformation;
 - Concentration of measure.

Some perspectives and open questions

- Structure of the eigenspace associated to λ_1 (Barthe-Klartag, forthcoming).
- Iteration of the intertwinings, to recover and extend Milman's theorem.
- The case of Riemannian manifolds.
- Relate our Barta inequality to the dimensional aspect in the Bakry-Emery curvature-dimension criterion.
- Understand the probabilistic representation of the operator \mathcal{L}_A .
- Study the gap between consecutive eigenvalues in the non-strongly convex case, at least in dimension 1.
- Explore the consequences of the intertwinings in terms of:
 - Other functional inequalities (for instance log-Sobolev);
 - Stability by measure-transformation;
 - Concentration of measure. Steiner, forthcoming ?

Introduction

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Perspectives

As predicted by Jim Morrison, this is the end...

THANK YOU FOR YOUR ATTENTION