Intertwinings and spectral analysis of diffusion operators

Aldéric Joulin

Institut de Mathématiques de Toulouse
Based on a series of works with M. Bonnefont (Bordeaux)

March 13, 2019
Toulouse - Postdam International Workshop
"DoktorandenKolleg Franco-Allemand"
(1) Introduction
(2) Intertwinings and Brascamp-Lieb type inequalities
(3) The one-dimensional case
(4) Perspectives

Setting

Consider the Euclidean space $\left(\mathbb{R}^{n},|\cdot|\right)$ endowed with the probability measure $d \mu(x) \propto e^{-V(x)} d x$, where V is some smooth potential with Hessian matrix $\nabla^{2} V$ bounded from below.
Canonical diffusion operator: $L f=\Delta f-\nabla V \cdot \nabla f$, for which:

- L is (essentially) self-adjoint:

$$
\int_{\mathbb{R}^{n}} f L g d \mu=\int_{\mathbb{R}^{n}} L f g d \mu=-\int_{\mathbb{R}^{n}} \nabla f \cdot \nabla g d \mu
$$

- By spectral theorem, we define $P_{t}:=e^{t L}, t \geq 0$, a family of symmetric operators on $L^{2}(\mu)$, satisfying the semigroup property:

$$
P_{t} \circ P_{s}=P_{s} \circ P_{t}=P_{t+s}, \quad \text { and } \quad P_{0}=\mathrm{id},
$$

and for which μ is invariant:

$$
\int_{\mathbb{R}^{n}} P_{t} f d \mu=\int_{\mathbb{R}^{n}} f d \mu
$$

Probabilistic interpretation

- Markov diffusion process $\left(X_{t}\right)_{t \geq 0}$ on \mathbb{R}^{n}, solution to the Stochastic Differential Equation

$$
d X_{t}=-\nabla V\left(X_{t}\right) d t+\sqrt{2} d B_{t}
$$

where $\left(B_{t}\right)_{t \geq 0}$ is a standard Brownian motion on \mathbb{R}^{n}.

- Law of the process coincides with the semigroup:

$$
\mathbb{E}\left[f\left(X_{t}\right) \mid X_{0}=x\right]=P_{t} f(x)
$$

- The process has (infinitesimal) generator L.
- Invariance: if $X_{0} \sim \mu$ then $X_{t} \sim \mu$ for all $t>0$.
- Symmetry of the semigroup: if $X_{0} \sim \mu$ then for all $T>0$, the processes $\left(X_{t}\right)_{t \in[0, T]}$ and $\left(X_{T-t}\right)_{t \in[0, T]}$ have the same law.

Examples

- The Gaussian case:

$$
V(x)=\frac{|x|^{2}}{2}
$$

and $\mu=\gamma$ the standard Gaussian distribution $\mathcal{N}\left(0, I_{n}\right)$.

- The Subbotin, or exponential power, distribution:

$$
V(x)=\frac{|x|^{\alpha}}{\alpha}
$$

with $\alpha \in[1, \infty]$, the case $\alpha=\infty$ being the uniform measure on the Euclidean unit ball.

- More generally, the log-concave case, i.e. V is convex.
- Heavy-tailed case: Generalized Cauchy:

$$
V(x)=\beta \log \left(1+|x|^{2}\right)
$$

with $\beta>\boldsymbol{n} / 2$, so that

$$
d \mu(x) \propto \frac{1}{\left(1+|x|^{2}\right)^{\beta}} d x
$$

- The double-well potential:

$$
V(x)=\frac{|x|^{4}}{4}-\frac{|x|^{2}}{2} .
$$

- Product measures perturbed by an interacting term:

$$
V(x)=\sum_{k=1}^{n} V_{k}\left(x_{k}\right)+\sum_{k=1}^{n} \varphi\left(\left|x_{k}-x_{k+1}\right|\right) .
$$

Long-time behaviour

As $t \rightarrow \infty$, we have

$$
X_{t} \Longrightarrow X_{\infty} \quad \text { in law, where } \quad X_{\infty} \sim \mu .
$$

Many different notions of convergences, and among them:

- Convergence in $L^{2}(\mu)$ (related to the χ^{2} divergence):

$$
\operatorname{Var}_{\mu}\left(P_{t} f\right):=\left\|P_{t} f-\mu(f)\right\|_{L^{2}(\mu)}^{2} \underset{t \rightarrow \infty}{\longrightarrow} 0,
$$

where $\mu(f):=\int_{\mathbb{R}^{n}} f d \mu$.

- Convergence in $L^{1}(\mu)$ (related to the total variation distance).
- Convergence in relative entropy (related to the Kullback-Leibler divergence).
- Convergence in Wasserstein (or Kantorovich) distances.

Long-time behaviour

As $t \rightarrow \infty$, we have

$$
X_{t} \Longrightarrow X_{\infty} \text { in law, where } X_{\infty} \sim \mu .
$$

Many different notions of convergences, and among them:

- Convergence in $L^{2}(\mu)$ (related to the χ^{2} divergence):

$$
\operatorname{Var}_{\mu}\left(P_{t} f\right):=\left\|P_{t} f-\mu(f)\right\|_{L^{2}(\mu)}^{2} \underset{t \rightarrow \infty}{\longrightarrow} 0,
$$

where $\mu(f):=\int_{\mathbb{R}^{n}} f d \mu$.

- Convergence in $L^{1}(\mu)$ (related to the total variation distance).
- Convergence in relative entropy (related to the Kullback-Leibler divergence).
- Convergence in Wasserstein (or Kantorovich) distances.

Poincaré inequality and spectral gap

Proposition

Letting $\lambda>0$, the following assertions are equivalent:

- Exponential convergence in $L^{2}(\mu)$: for all $f \in L^{2}(\mu)$,

$$
\left\|P_{t} f-\mu(f)\right\|_{L^{2}(\mu)} \leq e^{-\lambda t}\|f-\mu(f)\|_{L^{2}(\mu)} .
$$

- Poincaré inequality $\operatorname{PI}(\lambda)$: for all $f \in \mathcal{D}(L)$,

$$
\lambda \operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^{n}} f(-L f) d \mu
$$

Actually, one has: $\mathrm{PI}(\lambda) \Longleftrightarrow \sigma(-L) \subset\{0\} \cup[\lambda, \infty)$, with $\sigma(-L)$ the spectrum of the non-negative operator $-L$.
The largest λ is called the spectral gap of $-L$ and is denoted λ_{1}.

Brascamp-Lieb inequality

Theorem (Brascamp-Lieb ('76))

Assume V is strictly convex, i.e. $\nabla^{2} V$ is a positive definite matrix. Then for all f smooth enough,

$$
\begin{equation*}
\operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^{d}} \nabla f \cdot\left(\nabla^{2} V\right)^{-1} \nabla f d \mu \tag{2.1}
\end{equation*}
$$

- In particular if V is strongly convex, i.e., $\nabla^{2} V \geq \lambda I_{n}$ for some $\lambda>0$ - an instance of the famous Bakry-Émery curvature-dimension criterion ('85) - then $\mathrm{PI}(\lambda)$ holds.
- Except the Gaussian case, none of the previous examples enter into the strongly convex situation.
- The proof of BL uses a tedious induction on the dimension.
- The inequality is saturated for $f=\nabla V \cdot c$, with $c \in \mathbb{R}^{n}$ some constant vector.

Classical intertwining

Helffer ('98) revisited the BL inequality, by proposing a simple proof based on an intertwining relation between gradient and operator, the so-called Witten Laplacian approach:

$$
\nabla L f=\left(\mathcal{L}-\nabla^{2} V\right)(\nabla f)
$$

with $\mathcal{L}=\operatorname{diag}(L)$ a (diagonal) matrix diffusion operator acting on vector fields and $\nabla^{2} V$ is a multiplicative, or 0 -order, operator. At the level of semigroups, we have

$$
\nabla P_{t} f=\mathcal{P}_{t}^{\nabla^{2} V}(\nabla f)
$$

with $\left(\mathcal{P}_{t}^{\nabla^{2} V}\right)_{t \geq 0}$ the Feynman-Kac semigroup acting on vector fields with generator the Schrödinger operator $\mathcal{L}-\nabla^{2} V$.

Classical intertwining

In dimension 1, the Feynman-Kac semigroup $\left(\mathcal{P}_{t}^{\nabla^{2} V}\right)_{t \geq 0}$ admits a simple probabilistic representation: denoting $\left(X_{t}^{\times}\right)_{t \geq 0}$ the process with $X_{0}=x \in \mathbb{R}$,

$$
P_{t}^{V^{\prime \prime}} f(x)=\mathbb{E}\left[f\left(X_{t}^{x}\right) \exp \left(-\int_{0}^{t} V^{\prime \prime}\left(X_{s}^{x}\right) d s\right)\right]
$$

Helffer's proof of the BL inequality

Since we have

$$
\nabla(-L)^{-1} f=\int_{0}^{\infty} \nabla P_{t} f d t=\int_{0}^{\infty} \mathcal{P}_{t}^{\nabla^{2} V}(\nabla f) d t=\left(-\mathcal{L}+\nabla^{2} V\right)^{-1}(\nabla f)
$$

Helffer's proof of the BL inequality

Since we have
$\nabla(-L)^{-1} f=\int_{0}^{\infty} \nabla P_{t} f d t=\int_{0}^{\infty} \mathcal{P}_{t}^{\nabla^{2} V}(\nabla f) d t=\left(-\mathcal{L}+\nabla^{2} V\right)^{-1}(\nabla f)$,
we get after some computations,

$$
\operatorname{Var}_{\mu}(f)=\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f d \mu d t
$$

Helffer's proof of the BL inequality

Since we have
$\nabla(-L)^{-1} f=\int_{0}^{\infty} \nabla P_{t} f d t=\int_{0}^{\infty} \mathcal{P}_{t}^{\nabla^{2} V}(\nabla f) d t=\left(-\mathcal{L}+\nabla^{2} V\right)^{-1}(\nabla f)$,
we get after some computations,

$$
\begin{aligned}
\operatorname{Var}_{\mu}(f) & =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \mathcal{P}_{t}^{\nabla^{2} V}(\nabla f) d \mu d t
\end{aligned}
$$

Helffer's proof of the BL inequality

Since we have
$\nabla(-L)^{-1} f=\int_{0}^{\infty} \nabla P_{t} f d t=\int_{0}^{\infty} \mathcal{P}_{t}^{\nabla^{2} V}(\nabla f) d t=\left(-\mathcal{L}+\nabla^{2} V\right)^{-1}(\nabla f)$,
we get after some computations,

$$
\begin{aligned}
\operatorname{Var}_{\mu}(f) & =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \mathcal{P}_{t}^{\nabla^{2} V}(\nabla f) d \mu d t \\
& =\int_{\mathbb{R}^{n}} \nabla f \cdot\left(-\mathcal{L}+\nabla^{2} V\right)^{-1}(\nabla f) d \mu
\end{aligned}
$$

Helffer's proof of the BL inequality

Since we have
$\nabla(-L)^{-1} f=\int_{0}^{\infty} \nabla P_{t} f d t=\int_{0}^{\infty} \mathcal{P}_{t}^{\nabla^{2} V}(\nabla f) d t=\left(-\mathcal{L}+\nabla^{2} V\right)^{-1}(\nabla f)$,
we get after some computations,

$$
\begin{aligned}
\operatorname{Var}_{\mu}(f) & =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \mathcal{P}_{t}^{\nabla^{2} V}(\nabla f) d \mu d t \\
& =\int_{\mathbb{R}^{n}} \nabla f \cdot\left(-\mathcal{L}+\nabla^{2} V\right)^{-1}(\nabla f) d \mu \\
& \leq \int_{\mathbb{R}^{n}} \nabla f \cdot\left(\nabla^{2} V\right)^{-1} \nabla f d \mu
\end{aligned}
$$

where we used the following inequality, to understand in the sense of self-adjoint operators: $\left(-\mathcal{L}+\nabla^{2} V\right)^{-1} \leq\left(\nabla^{2} V\right)^{-1}$.

A new intertwining

Question: how to correct the lack of (strong) convexity in the previous examples?
Idea: to introduce a weight in the previous intertwining.
Letting $x \in \mathbb{R}^{n} \rightarrow A(x) \in G L_{n}(\mathbb{R})$ be a smooth mapping seen as a weight, we have

$$
A \nabla L f=A\left(\mathcal{L}-\nabla^{2} V\right)\left(A^{-1} A \nabla f\right)
$$

A new intertwining

Question: how to correct the lack of (strong) convexity in the previous examples ?
Idea: to introduce a weight in the previous intertwining.
Letting $x \in \mathbb{R}^{n} \rightarrow A(x) \in G L_{n}(\mathbb{R})$ be a smooth mapping seen as a weight, we have

$$
\begin{aligned}
A \nabla L f= & A\left(\mathcal{L}-\nabla^{2} V\right)\left(A^{-1} A \nabla f\right) \\
= & \underbrace{\left(\mathcal{L}+2 A \nabla\left(A^{-1}\right) \cdot \nabla\right)}_{=: \mathcal{L}_{A}}(A \nabla f) \\
& -\underbrace{\left(A \nabla^{2} V A^{-1}-A \mathcal{L}\left(A^{-1}\right)\right)}_{=: M_{A}}(A \nabla f)
\end{aligned}
$$

A new intertwining

Question: how to correct the lack of (strong) convexity in the previous examples ?
Idea: to introduce a weight in the previous intertwining.
Letting $x \in \mathbb{R}^{n} \rightarrow A(x) \in G L_{n}(\mathbb{R})$ be a smooth mapping seen as a weight, we have

$$
\begin{aligned}
A \nabla L f= & A\left(\mathcal{L}-\nabla^{2} V\right)\left(A^{-1} A \nabla f\right) \\
= & \underbrace{\left(\mathcal{L}+2 A \nabla\left(A^{-1}\right) \cdot \nabla\right)}_{=: \mathcal{L}_{A}}(A \nabla f) \\
& -\underbrace{\left(A \nabla^{2} V A^{-1}-A \mathcal{L}\left(A^{-1}\right)\right)}_{=: M_{A}}(A \nabla f) \\
= & \left(\mathcal{L}_{A}-M_{A}\right)(A \nabla f)
\end{aligned}
$$

A new intertwining

- \mathcal{L}_{A} is a (non-diagonal) matrix diffusion operator acting on vector fields, and M_{A} is 0-order.
- The scalar product of interest on vectors fields is $L^{2}\left(\left(A A^{T}\right)^{-1}, \mu\right)$, so that $-\mathcal{L}_{A}$ is (essentially) self-adjoint and non-negative as soon as

$$
A^{-1} M_{A} A=\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A
$$

is a symmetric matrix which is bounded from below.

- In terms of semigroups, the intertwining with weight A means that

$$
A \nabla P_{t} f=\mathcal{P}_{t, A}^{M_{A}}(A \nabla f)
$$

with $\left(\mathcal{P}_{t, A}^{M_{A}}\right)_{t \geq 0}$ the Feynman-Kac semigroup acting on vector fields, associated to the operator $\mathcal{L}_{A}-M_{A}$.

A new intertwining

In dimension 1, the intertwining with weight a is nothing but a composition of the classical intertwining with Doob's 1 /a-transform: "we multiply inside by $1 / a$ and divide outside by $1 / a$ ":

$$
\left(P_{t} f\right)^{\prime}(x)=\mathbb{E}\left[f^{\prime}\left(X_{t}^{\times}\right) \exp \left(-\int_{0}^{t} V^{\prime \prime}\left(X_{s}^{\times}\right) d s\right)\right]
$$

A new intertwining

In dimension 1, the intertwining with weight a is nothing but a composition of the classical intertwining with Doob's $1 / a$-transform: "we multiply inside by $1 / a$ and divide outside by $1 / a$ ":

$$
\begin{aligned}
\left(P_{t} f\right)^{\prime}(x) & =\mathbb{E}\left[f^{\prime}\left(X_{t}^{x}\right) \exp \left(-\int_{0}^{t} V^{\prime \prime}\left(X_{s}^{x}\right) d s\right)\right] \\
& =\mathbb{E}\left[f^{\prime}\left(X_{a, t}^{x}\right) \exp \left(-\int_{0}^{t} V^{\prime \prime}\left(X_{a, s}^{x}\right) d s\right) M_{t}^{(a)}\right]
\end{aligned}
$$

where $\left(X_{t}^{(a)}\right)_{t \geq 0}$ is the diffusion process with generator L_{a} and $\left(M_{t}^{(a)}\right)_{t \geq 0}$ is the Girsanov martingale

$$
M_{t}^{(a)}=\frac{a\left(X_{a, t}^{x}\right)}{a(x)} \exp \left(-\int_{0}^{t} \frac{L_{a}(a)}{a}\left(X_{a, s}^{x}\right) d s\right)
$$

A new intertwining

In dimension 1, the intertwining with weight a is nothing but a composition of the classical intertwining with Doob's $1 / a$-transform: "we multiply inside by $1 / a$ and divide outside by $1 / a$ ":

$$
\begin{aligned}
\left(P_{t} f\right)^{\prime}(x) & =\mathbb{E}\left[f^{\prime}\left(X_{t}^{x}\right) \exp \left(-\int_{0}^{t} V^{\prime \prime}\left(X_{s}^{x}\right) d s\right)\right] \\
& =\mathbb{E}\left[f^{\prime}\left(X_{a, t}^{x}\right) \exp \left(-\int_{0}^{t} V^{\prime \prime}\left(X_{a, s}^{x}\right) d s\right) M_{t}^{(a)}\right]
\end{aligned}
$$

where $\left(X_{t}^{(a)}\right)_{t \geq 0}$ is the diffusion process with generator L_{a} and $\left(M_{t}^{(a)}\right)_{t \geq 0}$ is the Girsanov martingale

$$
\begin{aligned}
M_{t}^{(a)} & =\frac{a\left(X_{a, t}^{x}\right)}{a(x)} \exp \left(-\int_{0}^{t} \frac{L_{a}(a)}{a}\left(X_{a, s}^{x}\right) d s\right) \\
& =\frac{a\left(X_{a, t}^{\times}\right)}{a(x)} \exp \left(\int_{0}^{t} a L(1 / a)\left(X_{a, s}^{x}\right) d s\right),
\end{aligned}
$$

A new intertwining

so that the intertwining with weight a rewrites as
$a\left(P_{t} f\right)^{\prime}(x)=\mathbb{E}\left[\left(a f^{\prime}\right)\left(X_{\mathrm{a}, t}^{\times}\right) \exp \left(-\int_{0}^{t}\left(V^{\prime \prime}-a L(1 / a)\right)\left(X_{\mathrm{a}, \mathrm{s}}^{\times}\right) d s\right)\right]$.

Generalized BL inequality

$$
\operatorname{Var}_{\mu}(f)=\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f d \mu d t
$$

Generalized BL inequality

$$
\begin{aligned}
\operatorname{Var}_{\mu}(f) & =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1} A \nabla P_{t} f d \mu d t
\end{aligned}
$$

Generalized BL inequality

$$
\begin{aligned}
\operatorname{Var}_{\mu}(f) & =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1} A \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1} \mathcal{P}_{t, A}^{M_{A}}(A \nabla f) d \mu d t
\end{aligned}
$$

Generalized BL inequality

$$
\begin{aligned}
\operatorname{Var}_{\mu}(f) & =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1} A \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1} \mathcal{P}_{t, A}^{M_{A}}(A \nabla f) d \mu d t \\
& =\int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1}\left(-\mathcal{L}_{A}+M_{A}\right)^{-1}(A \nabla f) d \mu
\end{aligned}
$$

Generalized BL inequality

$$
\begin{aligned}
\operatorname{Var}_{\mu}(f) & =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1} A \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1} \mathcal{P}_{t, A}^{M_{A}}(A \nabla f) d \mu d t \\
& =\int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1}\left(-\mathcal{L}_{A}+M_{A}\right)^{-1}(A \nabla f) d \mu \\
& \leq \int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1} M_{A}^{-1} A \nabla f d \mu
\end{aligned}
$$

Generalized BL inequality

$$
\begin{aligned}
\operatorname{Var}_{\mu}(f) & =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \nabla f \cdot \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1} A \nabla P_{t} f d \mu d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1} \mathcal{P}_{t, A}^{M_{A}}(A \nabla f) d \mu d t \\
& =\int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1}\left(-\mathcal{L}_{A}+M_{A}\right)^{-1}(A \nabla f) d \mu \\
& \leq \int_{\mathbb{R}^{n}} A \nabla f \cdot\left(A A^{T}\right)^{-1} M_{A}^{-1} A \nabla f d \mu \\
& =\int_{\mathbb{R}^{n}} \nabla f \cdot\left(\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A\right)^{-1} \nabla f d \mu .
\end{aligned}
$$

Generalized BL inequality and spectral gap

Theorem (Arnaudon, Bonnefont, J. ('18))

Let $x \in \mathbb{R}^{n} \rightarrow A(x) \in G L_{n}(\mathbb{R})$ be a smooth mapping such that $\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A$ is a symmetric positive definite matrix. Then,

$$
\operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^{n}} \nabla f \cdot\left(\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A\right)^{-1} \nabla f d \mu
$$

Corollary

As a consequence, for all such matrices A,

$$
\lambda_{1} \geq \inf _{x \in \mathbb{R}^{n}} \rho\left(\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A\right)(x)
$$

where, if M stands for some symmetric matrix, $\rho(M)$ denotes its smallest eigenvalue.

Generalized BL inequality and spectral gap

Why such a form $\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A$?
Through the Bakry-Émery Γ_{2}-calculus, the generalized BL inequality is equivalent to its dual form

$$
\int_{\mathbb{R}^{n}}(L f)^{2} d \mu \geq \int_{\mathbb{R}^{n}} \nabla f \cdot\left(\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A\right) \nabla f d \mu
$$

which is true since

$$
\int_{\mathbb{R}^{n}}(L f)^{2} d \mu=\int_{\mathbb{R}^{n}} \nabla f \cdot \nabla(-L) f d \mu
$$

Generalized BL inequality and spectral gap

Why such a form $\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A$?
Through the Bakry-Émery Γ_{2}-calculus, the generalized BL inequality is equivalent to its dual form

$$
\int_{\mathbb{R}^{n}}(L f)^{2} d \mu \geq \int_{\mathbb{R}^{n}} \nabla f \cdot\left(\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A\right) \nabla f d \mu
$$

which is true since

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}(L f)^{2} d \mu & =\int_{\mathbb{R}^{n}} \nabla f \cdot \nabla(-L) f d \mu \\
& =\int_{\mathbb{R}^{n}} \nabla f \cdot\left(-\mathcal{L}+\nabla^{2} V\right)(\nabla f) d \mu
\end{aligned}
$$

Generalized BL inequality and spectral gap

Why such a form $\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A$?
Through the Bakry-Émery Γ_{2}-calculus, the generalized BL inequality is equivalent to its dual form

$$
\int_{\mathbb{R}^{n}}(L f)^{2} d \mu \geq \int_{\mathbb{R}^{n}} \nabla f \cdot\left(\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A\right) \nabla f d \mu
$$

which is true since

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}(L f)^{2} d \mu & =\int_{\mathbb{R}^{n}} \nabla f \cdot \nabla(-L) f d \mu \\
& =\int_{\mathbb{R}^{n}} \nabla f \cdot\left(-\mathcal{L}+\nabla^{2} V\right)(\nabla f) d \mu \\
& \geq \int_{\mathbb{R}^{n}} \nabla f \cdot\left(-\mathcal{L}\left(A^{-1}\right) A+\nabla^{2} V\right) \nabla f d \mu
\end{aligned}
$$

the inequality being a generalization of Barta's inequality at the level of gradients.

Generalized BL inequality and spectral gap

Question: Case of equality in the generalized BL inequality ?
Answer: If H is some diffeomorphism on \mathbb{R}^{n}, then choose the matrix $A=\left(J a c H^{T}\right)^{-1}$, so that

$$
\nabla^{2} V-\mathcal{L}\left(A^{-1}\right) A=-\operatorname{Jac} \mathcal{L} H^{T}\left(J a c H^{T}\right)^{-1}
$$

and provided this matrix is symmetric positive definite, then the equality holds for $f=\mathcal{L} H \cdot c$, with $c \in \mathbb{R}^{n}$ some constant vector, generalizing the extremal functions in the classical BL inequality: if $H=i d$, then $\mathcal{L i d}=-\nabla V$.
Question: Case of equality for the spectral gap ?
Answer: It depends on the structure of the associated eigenspace...

Generalized BL inequality and spectral gap

Example: The term involving the matrix A allows to compensate the lack of strong convexity, as in the following model: a Lipschitz perturbation of a non-strongly log-concave product measure.
The potential is

$$
V(x)=\sum_{k=1}^{n} \frac{\left|x_{k}\right|^{\alpha}}{\alpha}+\beta \sum_{k=1}^{n}\left|x_{k}-x_{k+1}\right|, \quad x \in \mathbb{R}^{n}
$$

with $1<\alpha<2$.

Proposition

For β small enough, there exists $\lambda>0$ such that for all $n \geq 1$, the spectral gap satisfies $\lambda_{1} \geq \lambda$.

It seems that our approach goes beyond the classical method of requiring uniform estimate for the one-dimensional conditional distributions (Helffer, Ledoux, Gentil-Roberto in the end '90), for which some strong convexity at infinity is often needed.

Other consequences of the intertwining approach

- Second-order generalized BL inequalities (Bonnefont, J. ('18)), in the spirit of Cordero-Fradelizi-Maurey ('04) about the so-called B-conjecture.
A second-order BL inequality is: for all f such that $\operatorname{Cov}_{\mu}(f, i d)=0$,

$$
\operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^{n}} \nabla f \cdot\left(\nabla^{2} V+\lambda_{1} I_{n}\right)^{-1} \nabla f d \mu
$$

- Comparison of spectra of the diffusion operator $-L$ and the Schrödinger-type operators $-\mathcal{L}+\nabla^{2} V$ and $-\mathcal{L}_{A}+M_{A}$ acting on gradients (Bonnefont, J. ('19); such a comparison has been emphasized in the non-weighted case by Johnsen ('00)):

$$
\sigma(-L) \backslash\{0\}=\sigma\left(-\mathcal{L}+\left.\nabla^{2} V\right|_{\nabla}\right)=\sigma\left(-\mathcal{L}_{A}+\left.M_{A}\right|_{A \nabla}\right)
$$

- Optimality in dimension 1 and higher eigenvalues estimates (Bonnefont, J. ('19)).

Other consequences of the intertwining approach

- Second-order generalized BL inequalities (Bonnefont, J. ('18)), in the spirit of Cordero-Fradelizi-Maurey ('04) about the so-called B-conjecture.
A second-order BL inequality is: for all f such that $\operatorname{Cov}_{\mu}(f, i d)=0$,

$$
\operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^{n}} \nabla f \cdot\left(\nabla^{2} V+\lambda_{1} I_{n}\right)^{-1} \nabla f d \mu
$$

- Comparison of spectra of the diffusion operator $-L$ and the Schrödinger-type operators $-\mathcal{L}+\nabla^{2} V$ and $-\mathcal{L}_{A}+M_{A}$ acting on gradients (Bonnefont, J. ('19); such a comparison has been emphasized in the non-weighted case by Johnsen ('00)):

$$
\sigma(-L) \backslash\{0\}=\sigma\left(-\mathcal{L}+\left.\nabla^{2} V\right|_{\nabla}\right)=\sigma\left(-\mathcal{L}_{A}+\left.M_{A}\right|_{A \nabla}\right)
$$

- Optimality in dimension 1 and higher eigenvalues estimates (Bonnefont, J. ('19)).

Optimality in dimension 1

In dimension 1, can we get the equality in

$$
\lambda_{1} \geq \sup _{a} \inf _{x \in \mathbb{R}}\left(V^{\prime \prime}-a L(1 / a)\right)(x) \quad ?
$$

Taking the weight of the form $a=1 / h^{\prime}$, with some function $h^{\prime}>0$, then

$$
V^{\prime \prime}-a L(1 / a)=\frac{(-L h)^{\prime}}{h^{\prime}}
$$

If the spectral gap λ_{1} is attained, then the associated eigenfunction g_{1} is strictly monotone with g_{1}^{\prime} non-vanishing, so that taking $h=g_{1}$ entails the desired equality, recovering Chen's famous variational formula ('97) obtained by coupling.
Question: Does the intertwining approach allow to go beyond the spectral gap?
Answer: Yes.

Higher order eigenvalues

Assume for simplicity that $\sigma_{\text {ess }}(-L)=\emptyset$, i.e., $\sigma(-L)=\sigma_{\text {disc }}(-L)$. The eigenvalues $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$, ordered according to the Courant-Fisher min-max theorem, form a sequence tending to infinity as $n \rightarrow \infty$.
We have

$$
\begin{aligned}
L_{a} f & =L f+2 a\left(\frac{1}{a}\right)^{\prime} f^{\prime} \\
& =f^{\prime \prime}-V^{\prime} f^{\prime}-\log \left(a^{2}\right)^{\prime} f^{\prime} \\
& =f^{\prime \prime}-V_{a}^{\prime} f^{\prime}
\end{aligned}
$$

with $V_{a}=V+\log \left(a^{2}\right)$, the associated invariant measure μ_{a} having Lebesgue-density proportional to $e^{-V_{a}}=e^{-V} / a^{2}$.

Higher order eigenvalues

The restriction to gradients being useless in dimension 1, the previous comparison of spectra rewrites as follows: letting $a=a_{1}$, then for all $k \in \mathbb{N}$,

$$
\lambda_{k+1}(-L)=\lambda_{k}\left(-L_{a_{1}}+M_{a_{1}}\right)
$$

Higher order eigenvalues

The restriction to gradients being useless in dimension 1, the previous comparison of spectra rewrites as follows: letting $a=a_{1}$, then for all $k \in \mathbb{N}$,

$$
\begin{aligned}
\lambda_{k+1}(-L) & =\lambda_{k}\left(-L_{a_{1}}+M_{a_{1}}\right) \\
& \geq \lambda_{k}\left(-L_{a_{1}}+\inf M_{a_{1}}\right)
\end{aligned}
$$

Higher order eigenvalues

The restriction to gradients being useless in dimension 1, the previous comparison of spectra rewrites as follows: letting $a=a_{1}$, then for all $k \in \mathbb{N}$,

$$
\begin{aligned}
\lambda_{k+1}(-L) & =\lambda_{k}\left(-L_{a_{1}}+M_{a_{1}}\right) \\
& \geq \lambda_{k}\left(-L_{a_{1}}+\inf M_{a_{1}}\right) \\
& =\lambda_{k}\left(-L_{a_{1}}\right)+\inf M_{a_{1}}
\end{aligned}
$$

where $M_{a_{1}}=V^{\prime \prime}-a_{1} L\left(1 / a_{1}\right)$, which is for $k=0$ the spectral gap estimate provided by the generalized BL inequality.
In dimension 1, we can iterate the argument: let us see how it works for $k=1$: the intertwining with some smooth positive weight a_{2} (say) applied to $L_{a_{1}}$ gives

$$
a_{2}\left(L_{a_{1}} f\right)^{\prime}=\left(L_{a_{1} \times a_{2}}-M_{a_{1}}^{a_{2}}\right)\left(a_{2} f^{\prime}\right),
$$

where

$$
M_{a_{1}}^{a_{2}}=V_{a_{1}}^{\prime \prime}-a_{2} L_{a_{1}}\left(1 / a_{2}\right) .
$$

Higher order eigenvalues

Hence,

$$
\lambda_{2}(-L) \geq \lambda_{1}\left(-L_{a_{1}}\right)+\inf M_{a_{1}}
$$

Higher order eigenvalues

Hence,

$$
\begin{aligned}
\lambda_{2}(-L) & \geq \lambda_{1}\left(-L_{a_{1}}\right)+\inf M_{a_{1}} \\
& =\lambda_{0}\left(-L_{a_{1} a_{2}}+M_{a_{1}}^{a_{2}}\right)+\inf M_{a_{1}}
\end{aligned}
$$

Higher order eigenvalues

Hence,

$$
\begin{aligned}
\lambda_{2}(-L) & \geq \lambda_{1}\left(-L_{a_{1}}\right)+\inf M_{a_{1}} \\
& =\lambda_{0}\left(-L_{a_{1} a_{2}}+M_{a_{1}}^{a_{2}}\right)+\inf M_{a_{1}} \\
& \geq \lambda_{0}\left(-L_{a_{1} a_{2}}+\inf M_{a_{1}}^{a_{2}}\right)+\inf M_{a_{1}}
\end{aligned}
$$

Higher order eigenvalues

Hence,

$$
\begin{aligned}
\lambda_{2}(-L) & \geq \lambda_{1}\left(-L_{a_{1}}\right)+\inf M_{a_{1}} \\
& =\lambda_{0}\left(-L_{a_{1} a_{2}}+M_{a_{1}}^{a_{2}}\right)+\inf M_{a_{1}} \\
& \geq \lambda_{0}\left(-L_{a_{1} a_{2}}+\inf M_{a_{1}}^{a_{2}}\right)+\inf M_{a_{1}} \\
& =\inf M_{a_{1}}^{a_{2}}+\inf M_{a_{1}} .
\end{aligned}
$$

Higher order eigenvalues

Hence,

$$
\begin{aligned}
\lambda_{2}(-L) & \geq \lambda_{1}\left(-L_{a_{1}}\right)+\inf M_{a_{1}} \\
& =\lambda_{0}\left(-L_{a_{1} a_{2}}+M_{a_{1}}^{a_{2}}\right)+\inf M_{a_{1}} \\
& \geq \lambda_{0}\left(-L_{a_{1} a_{2}}+\inf M_{a_{1}}^{a_{2}}\right)+\inf M_{a_{1}} \\
& =\inf M_{a_{1}}^{a_{2}}+\inf M_{a_{1}} .
\end{aligned}
$$

Theorem

In the case $\sigma_{\text {ess }}(-L)=\emptyset$, we have for all $k \geq 1$,

$$
\lambda_{k}(-L)=\sup _{a_{1}, \ldots, a_{k}>0} \inf M_{a_{1}}+\inf M_{a_{1}}^{a_{2}}+\ldots+\inf M_{a_{1} \ldots a_{k-1}}^{a_{k}}
$$

the equality being satisfied when choosing the a_{i} conveniently in terms of the eigenfunctions g_{1}, \ldots, g_{k}.

Higher order eigenvalues

Choosing the $a_{i}=1$ in the strongly convex case, we recover:

Theorem (Milman ('18))

Assume that V is strongly convex, i.e. inf $V^{\prime \prime} \geq \rho>0$. Then for all $k \geq 1$,

$$
\lambda_{k}(-L) \geq \lambda_{k}\left(-L_{O U, \rho}\right) \quad(=\rho k),
$$

where

$$
\operatorname{L}_{O U, \rho} f(x)=f^{\prime \prime}(x)-\rho x f^{\prime}(x), \quad V_{O U, \rho}(x)=\rho|x|^{2} / 2 .
$$

We also prove an estimate on the gap between consecutive eigenvalues:

Theorem

Under the same assumption, we have for all $k \geq 1$,

$$
\lambda_{k}-\lambda_{k-1} \geq \rho
$$

Higher order eigenvalues

A non-strongly convex example: Subbotin distribution:

$$
V(x)=\frac{|x|^{\alpha}}{\alpha}, \quad 1<\alpha \leq 2
$$

Choosing the $a_{i}=e^{\varepsilon_{i} V}$ for some convenient constants ε_{i}, then we get for all $k \geq 1$,

$$
\lambda_{k} \geq C_{\alpha, \varepsilon} k^{2-\frac{2}{\alpha}-\varepsilon},
$$

in accordance with Weyl's law describing the asymptotic behaviour of eigenvalues:

$$
\lambda_{k} \underset{k \rightarrow \infty}{\simeq} C_{\alpha} k^{2-\frac{2}{\alpha}} .
$$

Some perspectives and open questions

- Structure of the eigenspace associated to λ_{1} (Barthe-Klartag, forthcoming).
- Iteration of the intertwinings, to recover and extend Milman's theorem.
- The case of Riemannian manifolds.
- Relate our Barta inequality to the dimensional aspect in the Bakry-Emery curvature-dimension criterion.
- Understand the probabilistic representation of the operator \mathcal{L}_{A}.
- Study the gap between consecutive eigenvalues in the non-strongly convex case, at least in dimension 1 .
- Explore the consequences of the intertwinings in terms of:
- Other functional inequalities (for instance log-Sobolev);
- Stability by measure-transformation;
- Concentration of measure.

Some perspectives and open questions

- Structure of the eigenspace associated to λ_{1} (Barthe-Klartag, forthcoming).
- Iteration of the intertwinings, to recover and extend Milman's theorem.
- The case of Riemannian manifolds.
- Relate our Barta inequality to the dimensional aspect in the Bakry-Emery curvature-dimension criterion.
- Understand the probabilistic representation of the operator \mathcal{L}_{A}.
- Study the gap between consecutive eigenvalues in the non-strongly convex case, at least in dimension 1.
- Explore the consequences of the intertwinings in terms of:
- Other functional inequalities (for instance log-Sobolev);
- Stability by measure-transformation;
- Concentration of measure.

Steiner, forthcoming ?

As predicted by Jim Morrison, this is the end...

THANK YOU
 FOR YOUR ATTENTION

