CLT for L_p transportation cost on the real line 0000000

Simulation results

Application to fair learning

A central limit theorem for L_p transportation cost on the real line with application to fairness assessment in machine learning

Stochastic processes and statistical machine learning II Toulouse - Potsdam International Workshop

13 - 15 march 2019, Toulouse

Paula Gordaliza

IMT (Université de Toulouse) and IMUVa (Universidad de Valladolid)

Joint work with Jean-Michel Loubes (IMT) and Eustasio del Barrio (IMUVa)

CLT for L_p transportation cost on the real line

Simulation results

Application to fair learning

Introduction

M. Sommerfeld and A. Munk (2018) : "Transportation cost distance is an attractive tool for data analysis but statistical inference is hindered by the lack of distributional limits"

Kantorovich formulation:

- A transportation plan between two probabilities P and Q on \mathbb{R}^d is a joint probability π on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals P and Q
- The optimal transportation cost is the minimal value of

$$I[\pi] = \int_{\mathbb{R}^d \times \mathbb{R}^d} c(x, y) d\pi(x, y)$$

among all transportation plans π between P and Q

- If $c(x,y) = c_p(x,y) = \|x-y\|^p, p \ge 1$, the optimal transportation cost is

$$\mathcal{W}_{p}^{p}(P,Q) = \inf_{\pi \in \Pi(P,Q)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \left\| x - y \right\|^{p} d\pi(x,y)$$

Wasserstein distance: W_p defines a metric in the set $\mathcal{F}_p(\mathbb{R}^d)$ of probabilities on \mathbb{R}^d with finite *p*-th moment.

CLT for L_p transportation cost on the real line 0000000

Simulation results

Application to fair learning

Introduction

Consider X_1, \ldots, X_n i.i.d. P, P_n ; and Y_1, \ldots, Y_m i.i.d. Q, Q_m Assuming that P and Q have finite p-th moment,

$$\begin{split} &\mathcal{W}_p^p(P_n,Q)\to\mathcal{W}_p^p(P,Q), \ as \ n\to\infty, \ \textbf{a.s.}\\ &\mathcal{W}_p^p(P_n,Q_m)\to\mathcal{W}_p^p(P,Q), \ as \ n,m\to\infty, \ \textbf{a.s.} \end{split}$$

Distributional limit theorem?

- a) case P = Q : goodness-of-fit problems
 - $d \ge 1$
 - M. Atjai et al. (1984) and M. Talagrand and J.E. Yuckich (1993) : P = Q uniform distribution on the unit hypercube
 - V. Dobrić and J.E. Yuckich (1995), N. Fournier and A. Guillin (2015): rates of convergence
 - d = 1
 - p = 1: E. Del Barrio, E. Giné and C. Matrán (1999) (integrability conditions) $W_1(P_n, P) = O_P(n^{-1/2})$ with $\sqrt{n}W_1(P_n, P) \rightarrow_w$ non-Gaussian
 - p = 2: E. del Barrio, J.A. Cuesta-Albertos, C. Matrán and J.M. Rodríguez-Rodríguez (1999), E. del Barrio, E. Giné and F. Utzet (2005) (integrability + smoothness conditions on P) $\sqrt{n}W_p(P_n, P) \rightarrow w$

CLT for L_p transportation cost on the real line 0000000

Simulation results

Application to fair learning

Introduction

Provide statistical certification that the data are not too far from a model P = Q× Not rejecting the null H_0 : P = Q

- \checkmark Rejection of the null $H_0: \rho(P,Q) \ge \Delta_0$ for some distance ρ
- b) case $P \neq Q$

 $H_0: \mathcal{W}_p(P,Q) \ge \Delta_0$

 $\mathsf{CLT}: \begin{array}{c} r_n \left(\mathcal{W}_p^p(P_n, Q) - a_n \right) \\ r_{n,m} \left(\mathcal{W}_p^p(P_n, Q_m) - a_{n,m} \right) \end{array} \right\} \Rightarrow \mathsf{Computation of approximate } p - values$

- d = 1, p = 2: A. Munk and C. Czado (1998) W_2 or trimmed version
- $d \ge 1, p \ge 1$:
 - M. Sommerfeld and A. Munk (2018): P, Q finitely supported
 - A. Tameling, M. Sommerfeld and A. Munk (2018): *P*, *Q* countable support
- d ≥ 1, p = 2 : E. del Barrio and J.-M. Loubes (2017): P and Q continuous,
 CLT in general dimension: if Q has a positive density in the interior of its convex support and P and Q have finite moments of order 4 + δ for some δ > 0 then

$$\sqrt{n} \left(\mathcal{W}_2^2(P_n, Q) - E(\mathcal{W}_2^2(P_n, Q)) \right) \rightarrow_w N(0, \sigma^2(P, Q))$$

for some $\sigma^2(P,Q)$, which is not null if and only if $P \neq Q$. + two-sample version

CLT for L_p transportation cost on the real line 0000000

Simulation results

Application to fair learning

くしゃ 人間 マイボットボット 日 うんの

Main contributions of the paper

 $d=1\;,\;p\geq 1$

 \rightarrow **CLT** for general cost on the real line:

$$\sqrt{n} \left(\mathcal{W}_p^p(P_n, Q) - E(\mathcal{W}_p^p(P_n, Q)) \right) \to_w N(0, \sigma^2(P, Q))$$

 $\rightarrow p > 1$: under sharp moment and smoothness assumptions

- $\to p=1:$ when strict convexity of the cost function is lost, non-normal limits can occur, even in the case $P\neq Q$
- + two sample version: if $\frac{n}{n+m} \rightarrow \lambda \in (0,1)$

 $\sqrt{n} \Big(\mathcal{W}_p^p(P_n, Q_m) - E(\mathcal{W}_p^p(P_n, Q_m))) \to_w N(0, (1-\lambda)\sigma^2(P, Q) + \lambda\sigma^2(Q, P)) \Big)$

- \rightarrow General conditions under which $E(\mathcal{W}_p^p(P_n,Q))$ can be replaced by $\mathcal{W}_p^p(P,Q)$ as centering constant
- ightarrow Consistent estimator of the asymptotic variance in the CLT
- \rightarrow Confidence interval for $\mathcal{W}_p^p(P,Q)$ of asymptotic level $1-\alpha$
- \rightarrow Consistent test $H_0: \mathcal{W}_p(P,Q) \geq \Delta_0$ vs $H_a: \mathcal{W}_p(P,Q) < \Delta_0$

CLT for L_p transportation cost on the real line

Simulation results

Application to fair learning

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction

CLT for L_p transportation cost on the real line

Simulation results

Application to fair learning

CLT for L_p transportation cost on the real line \bullet 000000

Simulation results

Application to fair learning

CLT for L_p transportation cost on the real line

P and Q probabilities on \mathbb{R} , F, G d.f.'s

$$\mathcal{W}_{p}^{p}(F,G) = \int_{0}^{1} |F^{-1}(t) - G^{-1}(t)|^{p} dt$$
, (C. Villani, 2003)

Set $h_p(x) = |x|^p$, $x \in \mathbb{R}$, p > 1, and

$$c_p(t; F, G) := \int_{F^{-1}(\frac{1}{2})}^{F^{-1}(t)} h'_p \left(s - G^{-1}(F(s)) \right) ds, \quad 0 < t < 1$$

$$\bar{c}_p(t; F, G) := c_p(t; F, G) - \int_0^1 c_p(s; F, G) ds, \quad 0 < t < 1$$

Lemma

If $F, G \in \mathcal{F}_{2p}$, p > 1, then $c_p(\cdot; F, G) \in L_2(0, 1)$ and $\bar{c}_p(\cdot; F, G) \in L_2(0, 1)$. Furthermore, if $F_m, G_m \in \mathcal{F}_{2p}$ satisfy $\mathcal{W}_{2p}(F_m, F) \to 0$, $\mathcal{W}_{2p}(G_m, G) \to 0$ and G^{-1} is continuous on (0, 1) then $\bar{c}_p(\cdot; F_m, G_m) \to \bar{c}_p(\cdot; F, G)$ in $L_2(0, 1)$ as $m \to \infty$.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Introduction 00000

CLT for L_p transportation cost on the real line 000000

Simulation results

Application to fair learning

CLT for L_p transportation cost on the real line

$$\sigma_p^2(F,G) = \int_0^1 \bar{c}_p^2(t;F,G)dt$$

- $F, G \in \mathcal{F}_{2p} \Rightarrow \sigma_p^2(F, G) < \infty$
- $F = G \Rightarrow \sigma_p^2(F, G) = 0$
- $F \neq G \Rightarrow G^{-1} \circ F \neq Id$ on a set of positive measure $(G^{-1} \circ F = \text{o.t.m.} F \rightarrow G)$ and $\sigma_p^2(F,G) > 0$ if F is not a Dirac measure
- $\sigma_p^2(F,G)$ is not symmetric in F and G

Theorem (Central Limit Theorem for W_p with p > 1)

Assume that $F, G \in \mathcal{F}_{2p}$ and G^{-1} is continuous on (0,1) and p > 1. Then (i) If X_1, \ldots, X_n are i.i.d. F and F_n is the empirical d.f. based on the X_i 's

 $\sqrt{n}(\mathcal{W}_p^p(F_n, G) - E\mathcal{W}_p^p(F_n, G)) \to_w N(0, \sigma_p^2(F, G)).$

(ii) If, furthermore, F^{-1} is continuous, Y_1, \ldots, Y_m are *i.i.d. G*, independent of the X_i 's, G_m is the empirical d.f. based on the Y_j 's and $\frac{n}{n+m} \to \lambda \in (0,1)$ then

$$\sqrt{\frac{nm}{n+m}}(\mathcal{W}_p^p(F_n,G_m) - E\mathcal{W}_p^p(F_n,G_m)) \to_w N(0,(1-\lambda)\sigma_p^2(F,G) + \lambda\sigma_p^2(G,F)).$$

▲□▶▲圖▶▲필▶▲필▶ ■ のへで

CLT for L_p transportation cost on the real line 00000000

Simulation results

Application to fair learning

The assumptions in the CLT are sharp

1.
$$\mathcal{W}_p^p(F_n, G) = \int_0^1 |F_n^{-1}(t) - G^{-1}(t)|^p dt = \sum_{i=1}^n \int_{\frac{i-1}{n}}^{\frac{i}{n}} |X_{(i)} - G^{-1}(t)|^p \Rightarrow G \in \mathcal{F}_p$$

- 2. *F* satisfies (i) for every $G \in \mathcal{F}_p$ *G* Dirac's measure on 0, $\mathcal{W}_p^p(F_n, G) = \frac{1}{n} \sum_{i=1}^n |X_i|^p \Rightarrow F \in \mathcal{F}_{2p}$
- **3.** $\sigma_p^2(F,G) < \infty$ for all $F \in \mathcal{F}_{2p} \Leftrightarrow G \in \mathcal{F}_{2p}$
- \implies $F, G \in \mathcal{F}_{2p}$ minimal requirement for (i) to hold
 - * E. del Barrio and J.-M. Loubes (2017): $p = 2 \longrightarrow F, G \in \mathcal{F}_{4+\delta}, \delta > 0$
 - 4. Continuity of G^{-1}
 - S. Bobkov and M. Ledoux (2014) : F = G → absolute continuity of F⁻¹ is a necessary condition for E(W_p(F_n, F)) = O(¹/_{√n})
 - E. del Barrio and J.-M. Loubes (2017) $\longrightarrow G$ is supported in a (possibly unbounded) interval and G^{-1} is differentiable in the interior of that interval
 - M. Sommerfeld and A. Munk (2018): finitely supported probabilities on $\mathbb R$ \longrightarrow nonnormal limiting distributions

CLT for L_p transportation cost on the real line

Simulation results

Application to fair learning

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の ()

Role of the centering constants in the CLT

Kantorovich duality: (C. Villani, 2003)

$$\mathcal{W}_p^p(F,G) = \sup_{(\varphi,\psi)\in \Phi_p} \int \varphi dF + \int \psi dG,$$

 Φ_p set of pairs of integrable functions (with respect to F and G, respectively) satisfying $\varphi(x)+\psi(y)\leq |x-y|^p$

$$E(\mathcal{W}_p^p(F_n, G)) \ge \sup_{(\varphi, \psi) \in \Phi_p} E\left(\int \varphi dF_n\right) + \int \psi dG$$
$$= \sup_{(\varphi, \psi) \in \Phi_p} \int \varphi dF + \int \psi dG = \mathcal{W}_p^p(F, G)$$

If $0 \le \sqrt{n} \left(E(\mathcal{W}_p^p(F_n, G)) - \mathcal{W}_p^p(F, G) \right) \to 0$

 \Rightarrow we can replace the centering constants in CLT:

$$\sqrt{n}(\mathcal{W}_p^p(F_n,G) - \mathcal{W}_p^p(F,G)) \to_w N(0,\sigma_p^2(F,G))$$

CLT for L_p transportation cost on the real line 0000000

Simulation results

Application to fair learning

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sufficient conditions for $\sqrt{n} (E(\mathcal{W}_p^p(F_n, G)) - \mathcal{W}_p^p(F, G)) \to 0$ with $p \ge 2$ *F* is twice differentiable

f nonvanishing density in the interior of $supp(F) = cl\{x : F(x) \notin \{0,1\}\}$

$$\begin{array}{l} \text{I)} \ \sup_{t \in (0,1)} \frac{t(1-t)|f'(F^{-1}(t))|}{f^2(F^{-1}(t))} < \infty \\ \text{II)} \ \text{for some} \ \ s \in (\frac{p}{4}, \frac{p}{2}), \quad n^s E \mathcal{W}_p^p(F_n, F) \to 0 \quad \text{ as } n \to \infty, \\ \text{III)} \ \ \frac{1}{\sqrt{n}} \int_{\frac{1}{n}}^{1-\frac{1}{n}} \frac{(t(1-t))^{1/2}}{f^2(F^{-1}(t))} dt \to 0, \\ \text{IV)} \ \ \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(s \wedge t - st)^2}{f^2(F^{-1}(s))f^2(F^{-1}(t))} ds dt < \infty. \\ \text{V)} \ \ \int_{0}^{1} \frac{(t(1-t))^{p/2}}{f^p(F^{-1}(t))} dt < \infty \quad \Rightarrow \quad \text{II}), \text{III}), \text{IV} \end{array}$$

Proposition

Assume $p \ge 2$. Under the assumptions of the CLT,

(i) if F satisfies I) to IV) then $\sqrt{n}(\mathcal{W}_p^p(F_n, G) - \mathcal{W}_p^p(F, G)) \to_w N(0, \sigma_p^2(F, G)).$

(ii) if, furthermore, G satisfies I) to IV) and $\frac{n}{n+m} \to \lambda \in (0,1)$ then

$$\sqrt{\frac{nm}{n+m}}(\mathcal{W}_p^p(F_n,G_m)-\mathcal{W}_p^p(F,G))\to_w N(0,(1-\lambda)\sigma_p^2(F,G)+\lambda\sigma_p^2(G,F)).$$

CLT for L_p transportation cost on the real line 0000000

Simulation results

Application to fair learning

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sufficient conditions for $\sqrt{n} (E(\mathcal{W}_p^p(F_n, G)) - \mathcal{W}_p^p(F, G)) \to 0$ with $p \ge 2$ *F* is twice differentiable

f nonvanishing density in the interior of $supp(F) = cl\{x : F(x) \notin \{0,1\}\}$

$$\begin{array}{l} \text{I)} \ \sup_{t \in (0,1)} \frac{t(1-t)|f'(F^{-1}(t))|}{f^2(F^{-1}(t))} < \infty \\ \text{II)} \ \text{for some} \ \ s \in (\frac{p}{4}, \frac{p}{2}), \quad n^s E \mathcal{W}_p^p(F_n, F) \to 0 \quad \text{ as } n \to \infty, \\ \text{III)} \ \ \frac{1}{\sqrt{n}} \int_{\frac{1}{n}}^{1-\frac{1}{n}} \frac{(t(1-t))^{1/2}}{f^2(F^{-1}(t))} dt \to 0, \\ \text{IV)} \ \ \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(s \wedge t - st)^2}{f^2(F^{-1}(s))f^2(F^{-1}(t))} ds dt < \infty. \\ \text{V)} \ \ \int_{0}^{1} \frac{(t(1-t))^{p/2}}{f^p(F^{-1}(t))} dt < \infty \quad \Rightarrow \quad \text{II), III), IV) \\ \end{array}$$

Proposition

Assume $p \ge 2$. Under the assumptions of the CLT,

(i) if F satisfies I) to IV) then $\sqrt{n}(\mathcal{W}_p^p(F_n, G) - \mathcal{W}_p^p(F, G)) \to_w N(0, \sigma_p^2(F, G)).$

(ii) if, furthermore, G satisfies I) to IV) and $\frac{n}{n+m} \rightarrow \lambda \in (0,1)$ then

$$\sqrt{\frac{nm}{n+m}}(\mathcal{W}_p^p(F_n,G_m)-\mathcal{W}_p^p(F,G))\to_w N(0,(1-\lambda)\sigma_p^2(F,G)+\lambda\sigma_p^2(G,F)).$$

CLT for L_p transportation cost on the real line ${\rm OOOOO}{\bullet}{\rm O}$

Simulation results

Application to fair learning

A D > A 回 > A E > A E > E のQ @

Statistical application of the CLT: two sample case

$$\begin{split} P & \text{and } Q \text{ probabilities on } \mathbb{R} \\ X_1, \dots, X_n \text{ i.i.d. } P, F, F_n; \text{ and } Y_1, \dots, Y_m \text{ i.i.d. } Q, G, G_m, \text{ independent of the } X_i\text{'s} \\ \text{Recall} \begin{cases} h_p(x) = |x|^p, & x \in \mathbb{R}, p > 1 \\ c_p(t; F, G) = \int_{F^{-1}(\frac{1}{2})}^{F^{-1}(t)} h_p' \left(s - G^{-1}(F(s))\right) ds, & 0 < t < 1 \end{cases} \end{split}$$

Define:

$$\begin{cases} d_{i,n,m}(X,Y) := \sum_{j=2}^{i} \left[\left| X_{(j)} - G_m^{-1}(\frac{j-1}{n}) \right|^p - \left| X_{(j-1)} - G_m^{-1}(\frac{j-1}{n}) \right|^p \right], & i = 2, \dots, n \\ d_{1,n,m}(X,Y) := 0 \end{cases}$$

$$\Rightarrow \hat{\sigma}_{1,n,m}^2 = \frac{1}{n} \sum_{i=1}^n d_{i,n,m}^2(X,Y) - \left(\frac{1}{n} \sum_{i=1}^n d_{i,n,m}(X,Y)\right)^2$$

 $\hat{\sigma}_{2,n,m}^2$ similarly exchanging the roles of the X_i 's and the Y_j 's

Proposition (Consistency of variance estimation) If $F, G \in \mathcal{F}_{2p}$, F^{-1}, G^{-1} are continuous on (0, 1) and $\frac{n}{n+m} \to \lambda \in (0, 1)$, then $\hat{\sigma}_{n,m}^2 = \frac{m}{n+m} \hat{\sigma}_{1,n,m}^2 + \frac{n}{n+m} \hat{\sigma}_{2,n,m}^2 \to (1-\lambda) \sigma_p^2(F,G) + \lambda \sigma_p^2(G,F)$

almost surely.

Introduction 00000

CLT for L_p transportation cost on the real line $\tt 0000000 \bullet$

Simulation results

Application to fair learning

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Statistical application of the CLT

If, additionally, $F \neq G$ and F (or G) is not a Dirac measure then

$$\sqrt{\frac{nm}{n+m}} \frac{(\mathcal{W}_p^p(F_n, G_m) - \mathcal{W}_p^p(F, G))}{\hat{\sigma}_{n,m}} \to_w N(0, 1)$$

 \rightarrow Confidence interval for $\mathcal{W}_p^p(F,G)$ with asymptotic confidence level $1-\alpha$

$$\left[\mathcal{W}_p^p(F_n, G_m) \pm \sqrt{\frac{n+m}{nm}} \hat{\sigma}_{n,m} \Phi^{-1}(1-\frac{\alpha}{2})\right]$$

ightarrow Testing problem with asymptotic level lpha

$$H_0: \mathcal{W}_p(F,G) \ge \Delta_0, \quad \text{vs} \quad H_a: \mathcal{W}_p(F,G) < \Delta_0,$$

where Δ_0 is some threshold

 \Rightarrow Rejection of the null if

$$\mathcal{W}_p^p(F_n, G_m) < \Delta_0^p - \sqrt{\frac{n+m}{nm}} \hat{\sigma}_{n,m} \Phi^{-1}(1-\alpha)$$

Introduction 00000

CLT for L_p transportation cost on the real line

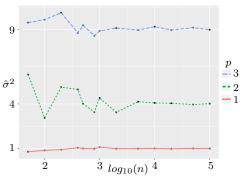
Simulation results

Application to fair learning

Normal model: variance estimates

$$F \sim N(0, 1), G \sim N(\mu, 1)$$
$$\sigma_p^2(F, G) = \sigma_p^2(G, F) = p^2 \mu^{2p-2}$$

Example: n = m, $\mu = 1$ $\hat{\sigma}_n^2 \rightarrow \sigma^2$ $MSE = \frac{1}{N} \sum_{j=1}^N \left| \hat{\sigma}_j^2 - \sigma^2 \right|^2$, N = 1000



n	p = 1	p = 2	p = 3	
50	0.03076	2.28517	79.70453	
100	0.01434	1.25248	36.57057	
200	0.00634	0.74908	15.10497	
400	0.00290	0.32747	6.15403	
500	0.00237	0.21351	5.50914	
800	0.00148	0.18638	3.20970	
1,000	0.00112	0.13431	2.59728	
2,000	0.00054	0.0711	1.41032	
5,000	0.00021	0.0304	0.52269	
10,000	0.00011	0.0145	0.24127	
σ^2	1	4	9	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

Simulation results 000

Normal location model: finite performance of the test

(i) 1,000 data sets: $P = N(0,1), Q = N(\mu,1)$ with $\Delta_0 = \mathcal{W}_p(N(0,1), N(1,1)) = 1$

p	n	<i>μ</i> =1	μ= 0.9	μ =0.7	μ=0.5
r	50	0.062	0.146	0.481	0.825
	100	0.055	0.193	0.698	0.974
	200	0.053	0.275	0.918	1
	400	0.051	0.413	0.995	1
1	500	0.051	0.481	0.999	1
	800	0.052	0.64	1	1
	1,000	0.054	0.728	1	1
	2,000	0.047	0.937	1	1
	50	0.074	0.167	0.513	0.839
	100	0.063	0.198	0.717	0.979
	200	0.059	0.272	0.927	1
2	400	0.055	0.422	0.995	1
2	500	0.05	0.484	0.999	1
	800	0.053	0.651	1	1
	1,000	0.053	0.736	1	1
	2,000	0.051	0.935	1	1
	50	0.071	0.154	0.515	0.822
	100	0.066	0.206	0.715	0.973
	200	0.057	0.266	0.925	1
3	400	0.052	0.422	0.992	1
	500	0.057	0.497	0.997	1
	800	0.053	0.652	1	1
	1,000	0.053	0.733	1	1
	2,000	0.051	0.937	1	1.

CLT for L_p transportation cost on the real line

Simulation results

Application to fair learning

Normal location-scale model: finite performance of the test

(ii) 1,000 data sets: $P = N(0, 1), Q = N(\mu, \lambda)$ with $\Delta_0 = \mathcal{W}_p(N(0, 1), N(1, 2))$

~	n	$\mu = 1$	$\mu = 1$	$\mu = 0$	$\mu = 0$					
p	n	$\lambda = 2$	$\lambda = 1.5$	$\lambda = 2$	$\lambda = 1.5$					
	50	0.047	0.165	0.535	0.996]				
	100	0.045	0.195	0.8	1					
	200	0.036	0.323	0.974	1					
1	400	0.052	0.532	1	1					
'	500	0.056	0.614	1	1					
	800	0.035	0.810	1	1	D . 1	A. (A. ((• • • •	
	1,000	0.045	0.895	1	1	Distances	$W_p(N(0$	$(\mu, 1), N(\mu)$	$(\lambda, \lambda))$	_
	2,000	0.050	0.994	1	1	<i>p</i>	1	2	3]
	50	0.078	0.376	0.595	0.998	$\mu = 1$	1.16664	1.41421	1.61120	1
	100	0.067	0.551	0.823	1	$\lambda = 2$	1.10004	1.41421	1.01120	
	200	0.062	0.786	0.976	1	$\mu = 1$	1.00849	1.11803	1.20538	1
2	400	0.055	0.969	1	1	$\lambda = 1.5$	1.00649	1.11003	1.20556	
2	500	0.059	0.985	1	1	$\mu = 0$	0 70700	1	1 10050	1
	800	0.052	1	1	1	$\lambda = 2$	0.79788		1.16858	
	1,000	0.056	1	1	1	$\mu = 0$	0.00004	0.5	0.50400	1
	2,000	0.05	1	1	1	$\lambda = 1.5$	0.39894	0.5	0.58429	
	50	0.091	0.569	0.571	0.997	L				1
	100	0.093	0.762	0.758	1					
	200	0.072	0.935	0.939	1					
3	400	0.06	1	0.996	1					
1	500	0.064	0.999	0.997	1					
	800	0.069	1	1	1					
	1,000	0.06	1	1	1					
	2,000	0.049	1	1	1		_	_	• = «	

CLT for L_p transportation cost on the real line

Simulation results

Application to fair learning

Fair Learning setting

- $Y = \begin{cases} 0 & failure \\ 1 & success \end{cases}$ target class - $X \in \mathbb{R}^d, d \ge 1$, visible attributes - $S = \begin{cases} 0 & unfavored \\ 1 & favored \end{cases}$ protected attribute
- \mathcal{G} family of binary classifiers $g: \mathbb{R}^d \to \{0, 1\}$

Criteria of fairness

• Disparate Impact

$$DI(g, X, S) = \frac{\mathbb{P}(g(X) = 1 \mid S = 0)}{\mathbb{P}(g(X) = 1 \mid S = 1)}$$

 $\rightarrow g$ is said not to have Disparate Impact at level $\tau \in (0,1]$ if $DI(g,X,S) > \tau$

Balanced Error Rate

$$BER(g,X,S) = \frac{\mathbb{P}\left(g(X) = 0 \mid S = 1\right) + \mathbb{P}\left(g(X) = 1 \mid S = 0\right)}{2}$$

 \rightarrow Given $\varepsilon > 0, S$ is not ε -predictable from X if $BER(g, X, S) > \varepsilon$, for all $g \in \mathcal{G}$

CLT for L_p transportation cost on the real line

Simulation results

Application to fair learning

Application to Fair Learning

E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes (2018):

$$\varepsilon^* := \min_{g \in \mathcal{G}} BER(g, X, S) = \frac{1}{2} \left(1 - d_{TV} \left(\mu_0, \mu_1 \right) \right), \ \mu_s = \mathcal{L}(X \mid S = s)$$

- $\Rightarrow S \text{ is not } \varepsilon \text{predictable from } X \text{ for all } \varepsilon < \varepsilon^*$
- \Rightarrow the maximal value of ε^* is $1/2 \Leftrightarrow d_{TV}(\mu_0, \mu_1) = 0$

 \Leftrightarrow total confusion between μ_0 and μ_1

⇔ complete absence of bias in the training data

Fairness assessment:

- $\times H_0: d_{TV}(\mu_0, \mu_1) \ge \Delta_0 \text{ vs } H_a: d_{TV}(\mu_0, \mu_1) < \Delta_0, \text{ for } \Delta_0 > 0 \text{ (Barron, 1989)}$
- $\checkmark H_0: \mathcal{W}_p(\mu_0, \mu_1) \ge \Delta_0 \text{ vs } H_a: \mathcal{W}_p(\mu_0, \mu_1) < \Delta_0, \text{ for } \Delta_0 > 0 \text{ and } p \ge 1$
- Confidence intervals for $\mathcal{W}_p(\mu_0, \mu_1)$ using CLT (two-sample version)
- Application to high-dimensional data:
 - score $f : \mathbb{R}^d \to \mathbb{R} \dashrightarrow \mathcal{W}_p(\mathcal{L}(f(X) \mid S = 0), \mathcal{L}(f(X) \mid S = 1))$
 - f logistic regression (other regression models or machine learning techniques: SVM, random forest...)

CLT for L_p transportation cost on the real line

Simulation results

Application to fair learning

Application to Fair Learning

E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes (2018):

$$\varepsilon^* := \min_{g \in \mathcal{G}} BER(g, X, S) = \frac{1}{2} \left(1 - d_{TV} \left(\mu_0, \mu_1 \right) \right), \ \mu_s = \mathcal{L}(X \mid S = s)$$

- $\Rightarrow S \text{ is not } \varepsilon \text{predictable from } X \text{ for all } \varepsilon < \varepsilon^*$
- \Rightarrow the maximal value of ε^* is $1/2 \Leftrightarrow d_{TV}(\mu_0, \mu_1) = 0$

 \Leftrightarrow total confusion between μ_0 and μ_1

⇔ complete absence of bias in the training data

Fairness assessment:

× $H_0: d_{TV}(\mu_0, \mu_1) \ge \Delta_0$ vs $H_a: d_{TV}(\mu_0, \mu_1) < \Delta_0$, for $\Delta_0 > 0$ (Barron, 1989)

- $\checkmark H_0: \mathcal{W}_p(\mu_0, \mu_1) \geq \Delta_0 \text{ vs } H_a: \mathcal{W}_p(\mu_0, \mu_1) < \Delta_0, \text{ for } \Delta_0 > 0 \text{ and } p \geq 1$
- Confidence intervals for $\mathcal{W}_p(\mu_0, \mu_1)$ using CLT (two-sample version)
- Application to high-dimensional data:
 - score $f : \mathbb{R}^d \to \mathbb{R} \dashrightarrow \mathcal{W}_p(\mathcal{L}(f(X) \mid S = 0), \mathcal{L}(f(X) \mid S = 1))$
 - f logistic regression (other regression models or machine learning techniques: SVM, random forest...)

CLT for L_p transportation cost on the real line

Simulation results

Application to fair learning

Application to Fair Learning

E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes (2018):

$$\varepsilon^* := \min_{g \in \mathcal{G}} BER(g, X, S) = \frac{1}{2} \left(1 - d_{TV} \left(\mu_0, \mu_1 \right) \right), \ \mu_s = \mathcal{L}(X \mid S = s)$$

- $\Rightarrow S \text{ is not } \varepsilon \text{predictable from } X \text{ for all } \varepsilon < \varepsilon^*$
- \Rightarrow the maximal value of ε^* is $1/2 \Leftrightarrow d_{TV}(\mu_0, \mu_1) = 0$

 \Leftrightarrow total confusion between μ_0 and μ_1

⇔ complete absence of bias in the training data

Fairness assessment:

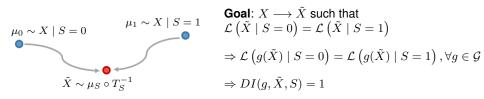
- × $H_0: d_{TV}(\mu_0, \mu_1) \ge \Delta_0$ vs $H_a: d_{TV}(\mu_0, \mu_1) < \Delta_0$, for $\Delta_0 > 0$ (Barron, 1989)
- $\checkmark \ H_0: \mathcal{W}_p(\mu_0, \mu_1) \geq \Delta_0 \text{ vs } H_a: \mathcal{W}_p(\mu_0, \mu_1) < \Delta_0, \text{ for } \Delta_0 > 0 \text{ and } p \geq 1$
- Confidence intervals for $\mathcal{W}_p(\mu_0, \mu_1)$ using CLT (two-sample version)
- Application to high-dimensional data:
 - score $f : \mathbb{R}^d \to \mathbb{R} \dashrightarrow \mathcal{W}_p(\mathcal{L}(f(X) \mid S = 0), \mathcal{L}(f(X) \mid S = 1))$
 - *f* logistic regression (other regression models or machine learning techniques: SVM, random forest...)

CLT for L_p transportation cost on the real line

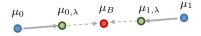
Simulation results

Application to fair learning

Repairing the data with Wasserstein barycenter



M. Feldman et al. (2015) \rightarrow Geometric Repair: move μ_0, μ_1 only part towards μ_B along Wasserstein's geodesic



$$\begin{split} \mu_{s,\lambda} &= \mathcal{L}(\lambda T_s(X) + (1-\lambda)X \mid S=s), \\ \lambda &\in [0,1] \text{ amount of repair desired for } X \end{split}$$

E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes (2018): under some regularity conditions, $\mathcal{E}(\tilde{X}) := R_B(\tilde{X}) - R_B(X, S)$

$$\mathcal{E}(\tilde{X}) \le 2\sqrt{2}K \left(\sum_{s=0,1} \pi_s \mathcal{W}_2^2(\mu_s, \mu_{s\sharp} T_s) \right)^{\frac{1}{2}}, K > 0$$

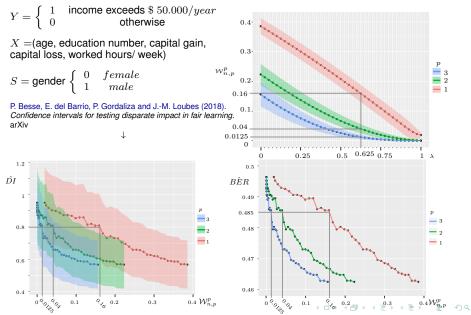
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CLT for L_p transportation cost on the real line

Simulation results

Application to fair learning

Application to a real data example: Adult Income data



Introduction 00000	CLT for L_{p} transportation cost on the real line 0000000	Simulation results 000	Application to fair learning

E. del Barrio, P. Gordaliza and J.-M. Loubes. (December, 2018)
 A central limit theorem on the real line with application to fairness assessment in machine learning.

Accepted for publication in Information and Inference.

Thanks for the attention!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @