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The topic

This talk : answer a computationnel issue

I Find
θ∗ ∈ argminθ∈Θ (f(θ) + g(θ)) (1)

where

Θ ⊆ Rd (extension to any Hilbert possible; not done)

g is not smooth, but is convex and proper, lower semi-continuous (”prox”
operator)

f is is not explicit / is untractable, ∇f exists but is not explicit / is
untractable
When proving results : f is convex and ∇f is Lipschitz

I In this talk : numerical tools to solve (1) based on first order methods;
convergence analysis.
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Applications in Statistical Learning

Example 1 : large scale learning

Minimization of a composite function

g = 0 or g is a penalty / regularization / constraint condition on the
parameter θ

f is an (empirical) loss function associated to N examples

f(θ) =
1

N

N∑
i=1

fi(θ)

when N is large

For any i, fi and ∇fi can be evaluated at any point θ but the computation of
the sum over N terms is too expensive.

Rmk that ∇f(θ) = E [∇fI(θ)] where I r.v. uniform on {1, · · · , N}.
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Applications in Statistical Learning

Example 2 : binary graphical model

Minimization of a composite function

Observation y ∈ {−1, 1}p (a binary vector of length p, collecting the
binary values of p nodes), with statistical model

πθ(y) ∝ exp

(
p∑
i=1

θiyi +

p∑
i=1

p∑
j=i+1

θijyiyj

)

with an untractable normalizing constant exp(Zθ). θ collects the
”weights”.

f is the negative log-likelihood of N indep. observations

f(θ) = − logZθ+

p∑
i=1

θi

(
N−1

N∑
n=1

Y
(n)
i

)
+

p∑
i=1

p∑
j=i+1

θij

(
N−1

N∑
n=1

1I
Y

(n)
i =Y

(n)
j

)

In this model ∇f(θ) = Eθ [H(X, θ)] where X ∼ πθ

g = 0 or g is a penalty / regularization / constraint condition on the
parameter θ (the number of observations N << p2/2)
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Applications in Statistical Learning

Example 3 : Parametric inference in Latent variable models

Minimization of a composite function

g is a penalty function (e.g. for sparsity condition on θ)

f is the negative log-likelihood of the N observations

f(θ) = − log

∫
X

h(x, Y1:N ; θ) ν(dx)

and the gradient is of the form

∇f(θ) =

∫
X

∂θ log h(x, Y1:N ; θ)
h(x, Y1:N ; θ)∫

X
h(u, Y1:N ; θ)ν(du)

ν(dx)

i.e. an expectation w.r.t. the a posteriori distribution (known up to a
normalizing constant in these models)
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A numerical solution: proximal-gradient based methods

Numerical solution : the ingredient

argminθ∈ΘF (θ) with F (θ) = f(θ)︸ ︷︷ ︸
smooth

+ g(θ)︸ ︷︷ ︸
non smooth

The Proximal Gradient algorithm

Given a stepsize sequence {γn, n ≥ 0}, iterative algorithm:

θn+1 = Proxγn+1,g (θn − γn+1∇f(θn))

where

Proxγ,g(τ)
def
= argminθ∈Θ

(
g(θ) +

1

2γ
‖θ − τ‖2

)
Proximal map: Moreau(1962)

Proximal Gradient algorithm: Beck-Teboulle(2010); Combettes-Pesquet(2011); Parikh-Boyd(2013)

A generalization of the gradient algorithm to a composite objective fct.

A Majorize-Minimize algorithm from a quadratic majorization of f (since Lipschitz gradient) which
produces a sequence {θn, n ≥ 0} such that

F (θn+1) ≤ F (θn).

In our frameworks, ∇f(θ) is not available.
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A numerical solution: proximal-gradient based methods

Numerical solution : a perturbed proximal-gradient algorithm

The Perturbed Proximal Gradient algorithm

Given a stepsize sequence {γn, n ≥ 0}, iterative algorithm:

θn+1 = Proxγn+1,g (θn − γn+1Hn+1)

where Hn+1 is an approximation of ∇f(θn).

Useful for the proof: observe

θn+1 = Proxγn+1,g

θn − γn+1∇f(θn)− γn+1 (Hn+1 −∇f(θn))︸ ︷︷ ︸
perturbation
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A numerical solution: proximal-gradient based methods

Convergence result : the assumptions (1/2)

argminθ∈ΘF (θ) with F (θ) = f(θ) + g(θ)

where

the function g: Rd → [0,∞] is convex, non smooth, not identically equal
to +∞, and lower semi-continuous

the function f : Rd → R is a smooth convex function

i.e. f is continuously differentiable and there exists L > 0 such that

‖∇f(θ)−∇f(θ′)‖ ≤ L ‖θ − θ′‖ ∀θ, θ′ ∈ Rd

Θ ⊆ Rd is the domain of g: Θ = {θ ∈ Rd : g(θ) <∞}.
The set argminΘF is a non-empty subset of Θ.
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A numerical solution: proximal-gradient based methods

Convergence results (2/2)

θn+1 = Proxγn+1,g (θn − γn+1 Hn+1) with Hn+1 ≈ ∇f(θn)

Set: L = argminΘ(f + g) ηn+1 = Hn+1 −∇f(θn)

Theorem (Atchadé, F., Moulines (2017))

Assume

g convex, lower semi-continuous; f convex, C1 and its gradient is
Lipschitz with constant L; L is non empty.∑
n γn = +∞ and γn ∈ (0, 1/L].

Convergence of the series∑
n

γ2
n+1‖ηn+1‖2,

∑
n

γn+1ηn+1,
∑
n

γn+1 〈Tn, ηn+1〉

where Tn = Proxγn+1,g(θn − γn+1∇f(θn)).

Then there exists θ? ∈ L such that limn θn = θ?.
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A numerical solution: proximal-gradient based methods

Sketch of proof

Its proof relies on
1 a deterministic Lyapunov inequality

‖θn+1−θ?‖
2 ≤ ‖θn−θ?‖2− 2γn+1

(
F (θn+1)−minF

)︸ ︷︷ ︸
non-negative

−2γn+1
〈

Tn − θ?, ηn+1
〉

+ 2γ
2
n+1‖ηn+1‖

2︸ ︷︷ ︸
signed noise

2 (an extension of) the Robbins-Siegmund lemma

Let {vn, n ≥ 0} and {χn, n ≥ 0} be non-negative sequences and
{ξn, n ≥ 0} be such that

∑
n ξn exists. If for any n ≥ 0,

vn+1 ≤ vn − χn+1 + ξn+1

then
∑
n χn <∞ and limn vn exists.

Rmk: deterministic lemma, signed noise.
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A numerical solution: proximal-gradient based methods

What about Nesterov-based acceleration ? (FISTA)

Let {tn, n ≥ 0} be a positive sequence s.t.

γn+1tn(tn − 1) ≤ γnt2n−1

Nesterov acceleration of the Proximal Gradient algorithm

θn+1 = Proxγn+1,g (τn − γn+1∇f(τn))

τn+1 = θn+1 +
tn − 1

tn+1
(θn+1 − θn)

Nesterov(2004), Tseng(2008), Beck-Teboulle(2009)

Zhu-Orecchia (2015); Attouch-Peypouquet(2015); Bubeck-Lee-Singh(2015); Su-Boyd-Candes(2015)

(deterministic) Proximal-gradient F (θn)−minF = O

(
1

n

)
(deterministic) Accelerated Proximal-gradient F (θn)−minF = O

(
1

n2

)
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A numerical solution: proximal-gradient based methods

Convergence results for perturbed FISTA

When ∇f(τn) is replaced with Hn+1

Perturbed FISTA

Hn+1 ≈ ∇f(τn)

θn+1 = Proxγn+1,g (τn − γn+1Hn+1)

τn+1 = θn+1 +
tn − 1

tn+1
(θn+1 − θn)

Under conditions on γn, tn and on the perturbation η̃n+1
def
= Hn+1 −∇f(τn)∑

n

γn+1tn 〈zn − θ∗, η̃n+1〉 <∞

we have (F., Risser, Atchadé, Moulines; 2018)

limn γn+1t
2
nF (θn) exists

Explicit control of this quantity.
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Case of Monte Carlo approximation

Monte Carlo approximation

I We consider the case when

∇f(θ) =

∫
X

H(x, θ) πθ(dx)

and the approximation relies on a Monte Carlo approximation

Hn+1
def
=

1

mn+1

mn+1∑
i=1

H(Xj,n; θn)

I In our motivating examples 2 and 3

πθ is known up to a normalization constant

exact sampling from πθ is not possible

MCMC techniques can always be used : at iteration n, the points
X1,n, X2,n, · · · are from a Markov chain with invariant distribution πθn .
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Case of Monte Carlo approximation

Convergence results on Markov chains F., Moulines (2003)

The approximation is biased

E

[
1

mn+1

mn+1∑
i=1

H(Xi,n, θ)|Fn

]
6=
∫
H(x, θ) πθn(dx)

The bias may vanish when the number of points tends to infinity∣∣∣∣∣E
[

1

mn+1

mn+1∑
i=1

H(Xi,n, θ)
∣∣∣Fn]− ∫ H(x, θ) πθn(dx)

∣∣∣∣∣ ≤ C(θn, X0,n)

mn+1

E

[∣∣∣∣∣ 1

mn+1

mn+1∑
i=1

H(Xi,n, θ)−
∫
H(x, θ) πθn(dx)

∣∣∣∣∣
p ∣∣∣Fn] ≤ C̃(θn, X0,n)

m
p/2
n+1

The control of this bias depends on the current value of the parameter θn

These results depend on the ergodic properties of the Markov chain:
assumptions on the target density πθ and on the transition kernel Pθ of the
Markov chain are required.
Assumptions of the form supθ supx |H(x, θ)|/W (x) <∞ are also used in these
bounds.
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Case of Monte Carlo approximation

Impact of the bias (1/2)

let us check the condition “
∑
n γnηn <∞ w.p.1”:

∑
n

γn+1ηn+1 =
∑
n

γn+1 (Hn+1 −∇f(θn))

I The RHS∑
n

γn+1 {Hn+1 − E [Hn+1|Fn]}+
∑
n

γn+1 {E [Hn+1|Fn]−∇f(θn)}︸ ︷︷ ︸
unbiased MC: null

biased MC: O(1/mn)

I The most technical case: the biased case with constant batch size mn = m



Stochastic approximation-based algorithms, when the Monte Carlo bias does not vanish

Case of Monte Carlo approximation

Impact of the bias (2/2) - case mn = m = 1

Let Pθ be the Markov transition kernel of the chain with inv. dstribution
πθ.

Solution Ĥθ to the Poisson equation

H(x, θ)−
∫
H(y, θ)πθ(dy) = Ĥθ − PθĤθ(x)

This yields, by choosing X0,n = X1,n−1

H(X1,n, θn)−
∫

X

H(y, θn)πθn(dy) = Ĥθn(X1)− PθnĤθn(X1,n)

= Ĥθn(X1,n)− PθnĤθn(X0,n) + PθnĤθn(X0,n)− PθnĤθn(X1,n)

= Ĥθn(X1,n)− PθnĤθn(X0,n) Martingale increment

+ PθnĤθn(X1,n−1)− Pθn−1Ĥθn−1(X1,n−1) Regularity in θ

+ Pθn−1Ĥθn−1(X1,n−1)− PθnĤθn(X1,n) telescopic
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Case of Monte Carlo approximation

Strategy 1: vanishing bias mn → ∞ (1/2)

I For almost-sure convergence of {θn, n ≥ 0}

Conditions on the batch size mn and the stepsize γn for the convergence∑
n

γn = +∞,
∑
n

γ2
n

mn
<∞;

∑
n

γn
mn

<∞ (biased case)

Conditions on the Markov kernels: There exist λ ∈ (0, 1), b <∞, p ≥ 2 and a measurable
function W : X→ [1,+∞) such that

sup
θ∈Θ

|Hθ|W <∞, sup
θ∈Θ

PθW
p ≤ λWp

+ b.

In addition, for any ` ∈ (0, p], there exist C <∞ and ρ ∈ (0, 1) such that for any x ∈ X,

sup
θ∈Θ

‖Pnθ (x, ·)− πθ‖W` ≤ Cρ
n
W
`
(x). (2)

Condition on Θ: Θ is bounded.

Constant step sizes γn = γ are allowed as soon as
∑
nm

−1
n <∞.
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Case of Monte Carlo approximation

Strategy 1: vanishing bias mn → ∞ (2/2)

I For rates of convergence in Lq on the functional

∥∥∥F ( 1

n

n∑
k=1

θk

)
−minF

∥∥∥
Lq
≤
∥∥∥ 1

n

n∑
k=1

F (θk)−minF
∥∥∥
Lq
≤ un

un = O(lnn/n)

with increasing batch size and constant stepsize

γn = γ? mn ∝ n.

Rate with O(n2) Monte Carlo samples !

After n iterations : the rate of the perturbed Proximal-Gradient is O(1/n),
using n2 Monte Carlo simulations.

Given n Monte Carlo simulations: the rate is O(1/
√
n).
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Case of Monte Carlo approximation

Strategy 2: NON-vanishing bias mn = m. (1/2)

I ”Stochastic Approximation” framework Benveniste, Metivier, Priouret (1990)

I For almost-sure convergence of {θn, n ≥ 0}

Conditions on the stepsize γn for the convergence

Condition on the step size:∑
n

γn = +∞
∑
n

γ2
n <∞

∑
n

|γn+1 − γn| <∞

Condition on the Markov chain: same as in the case ”increasing batch size” and there exists a
constant C such that for any θ, θ′ ∈ Θ

|Hθ −Hθ′ |W + sup
x

‖Pθ(x, ·)− Pθ′ (x, ·)‖W
W (x)

+ ‖πθ − πθ′‖W ≤ C ‖θ − θ
′‖.

Condition on the Prox:

sup
γ∈(0,1/L]

sup
θ∈Θ

γ−1 ‖Proxγ,g(θ)− θ‖ <∞.

Condition on Θ: Θ is bounded.
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Case of Monte Carlo approximation

Strategy 2: NON-vanishing bias mn = m. (2/2)

I For rates of convergence in Lq on the functional

∥∥∥F ( 1

n

n∑
k=1

θk

)
−minF

∥∥∥
Lq
≤
∥∥∥ 1

n

n∑
k=1

F (θk)−minF
∥∥∥
Lq
≤ un

un = O(1/
√
n)

with (slowly) decaying stepsize

γn =
γ?
na
, a ∈ [1/2, 1] mn = m?.

With averaging: optimal rate, even with slowly decaying stepsize γn ∼ 1/
√
n.

After n iterations : the rate of the perturbed Proximal-Gradient is O(1/
√
n),

using n Monte Carlo simulations.
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Case of Monte Carlo approximation

What about Stochastic FISTA ?

I We prove F., Risser, Atchadé, Moulines (2018)

lim
n
n2F (θn) <∞ a.s. sup

n
n2E [F (θn)] <∞

with
tn = O(n), γn = γ mn = O(n3)

I After n Monte Carlo simulations :

the rate is O(1/
√
n)

the same rate as the (perturbed) Proximal-Gradient with an averaging
strategy.
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Perturbed Proximal-Gradient algorithms and EM-based algorithms

Latent variable models, curved exponential family

One motivation was ”penalized inference in latent variable models”

argminθ − log

∫
X

h(x, θ)ν(dx) + g(θ)

When curved exponential family

h(x, θ) = exp(φ(θ) + 〈S(x), ψ(θ)〉)

In that case, Proximal-Gradient algo gets into

θn+1 = Proxγn+1g

(
θn − γn+1{∇φ(θn) + Ψ(θn)S̄(θn)}

)
where

S̄(θn) =

∫
S(z) πθn(dz).
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Perturbed Proximal-Gradient algorithms and EM-based algorithms

EM and Gdt-Prox

Expectation-Maximization: a famous algorithm to solve this optimization
issue in these models

It can be shown Ollier, F., Samson (2018) that the proximal-gradient algorithm is a
(Generalized) EM algorithm under regularity conditions on φ, ψ, S̄.
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Perturbed Proximal-Gradient algorithms and EM-based algorithms

Stochastic EM and Stochastic Gdt-Prox

I Stochastic proximal-gradient algorithm

θn+1 = Proxγn+1g (θn − γn+1{∇φ(θn) + Ψ(θn)Sn+1})

where
Sn+1 ≈ S̄(θn)

I Strategy 1

Sn+1 =
1

mn+1

mn+1∑
j=1

S(Xj,n)

I Strategy 2

Sn+1 = (1− δn)Sn +
δn

mn+1

mn+1∑
j=1

S(Xj,n)

I These two strategies correspond resp. to a (generalized) MCEM and a
(generalized) SAEM.
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