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Introduction



Notation

Let :

• X1, . . . , Xn i.i.d. with unknown law P on a measurable space
pX ,Aq ;

• ApNq “ tApNq
1 , . . . ,ApNq

mN u a partition of X s.t. we know PpApNq

i q ;

• Pnpfq “ 1
n

řn
i“1 fpXiq the empirical measure indexed by F ;

• αnpfq “
?
npPnpfq ´ Ppfqq the empirical process indexed by F .

If F is a Donsker class, αn L
ÝÑ
nÑ`8

G in l8pFq where G is the
P-brownian bridge, i.e the Gaussian process with covariance

CovpGpfq,Gpgqq “ Ppfgq ´ PpfqPpgq.
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Raking-ratio method



Raking-Ratio method

Literature: Deming/Stephan, Sinkhorn, Ireland/Kullback.

Description:

Ap2q
1 Ap2q

2 Ap2q

3 PnrAp1qs PrAp1qs

Ap1q
1 0.2 0.25 0.1 0.55 0.52
Ap1q
2 0.1 0.2 0.15 0.45 0.48

PnrAp2qs 0.3 0.45 0.25 1
PrAp1qs 0.31 0.4 0.29

We have a table of frequencies whose margins do not correspond to
known margins. The algorithm proposes to correct this
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Raking-Ratio method

Ap2q
1 Ap2q

2 Ap2q
3 Pp1q

n rAp1qs PrAp1qs

Ap1q
1 0.189 0.236 0.095 0.52 0.52
Ap1q
2 0.11 0.21 0.16 0.48 0.48

Pp1q
n rAp2qs 0.299 0.446 0.255 1
PrAp2qs 0.31 0.4 0.29

The totals for each line are first corrected by applying a rule of three.
Each cell is multiplied by the ratio of the expected total of each line
on the total of each line.
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Raking-Ratio method

Ap2q
1 Ap2q

2 Ap2q
3 Pp2q

n rAp1qs PrAp1qs

Ap1q
1 0.196 0.212 0.108 0.516 0.52
Ap1q
2 0.114 0.188 0.182 0.484 0.48

Pp2q
n rAp2qs 0.31 0.4 0.29 1
PrAp2qs 0.31 0.4 0.29

The same reasoning is applied to correct the totals for each column.
These last two operations are repeated in a loop.
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Raking-Ratio method

Ap2q
1 Ap2q

2 Ap2q
3 Pp8q

n rAp1qs PrAp1qs

Ap1q
1 0.199 0.212 0.109 0.52 0.52
Ap1q
2 0.111 0.188 0.181 0.48 0.48

Pp8q
n rAp2qs 0.31 0.4 0.29 1
PrAp2qs 0.31 0.4 0.29

Very quickly the algorithm stabilizes. Totals are the expected totals.
For this example it took only 7 iterations.

Remark: we can rake on more than two partitions!
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Notation of Raking-Ratio method

In turn N the algorithm does:

ppN`1qpAq “

mN`1
ÿ

j“1
ppNqpAX ApN`1q

j q
PpApN`1q

j q

ppNqpApN`1q
j q

.

We define the raked empirical measure PpNq
n to be Pp0q

n “ Pn and

PpN`1q
n pfq “

mN`1
ÿ

j“1
PpNq
n pf1ApN`1q

j
q
PpApN`1q

j q

PpNq
n pApN`1q

j q
.

In particular, PpN`1q
n pApN`1q

j q “ PpApN`1q
j q,@j “ 1, . . . ,mN`1.
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Notation of Raking-Ratio method

Let αpNq
n pfq “

?
npPpNq

n pfq ´ Ppfqq the raked empirical process.

α
pN`1q
n pfq “

ÿ

jďmN`1

PpApN`1q
j q

PpNq
n pApN`1q

j q

ˆ

α
pNq
n pf1ApN`1q

j
q ´ Erf|ApN`1q

j sα
pNq
n pApN`1q

j q

˙

with Erf|As “
Ppf1Aq

PpAq
.

In particular, αpN`1q
n pApN`1q

j q “ 0, @j “ 1, . . . ,mN`1.

   Remark: α
pNq
n is no more centered.
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Raking-Ratio method

Goals

• Properties of αpNq
n pFq ;

• Weak convergence in ℓ8pFq of αpNq
n pFq when n Ñ `8 towards a

centered Gaussian process GpNqpFq ;

• Variance of GpNqpfq: is it lower than that of G? If a loop is
performed with the Raking-Ratio method, does the variance
decrease with each loop turn?

• If we rake only two partitions, what’s the limit of αpNq
n pFq as

n,N Ñ `8?
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Theoretical results

Law of iterated logarithm
If F satisfies some entropy conditions then for all N0 P N,

lim sup
nÑ`8

c

n
LLn max

0ďNďN0
||PpNq

n ´ P||F ď
?
2σF

N0
ź

N“1

ˆ

1`
M
δN

˙

a.s.,

where

• δN “ minjďmN PpApNq

j q ;
• σ2F “ supF Varpfq ;
• M “ ||f||F .

Recall that

lim sup
nÑ`8

c

n
LLn

||Pn ´ P||F ď
?
2σF .
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Theoritical results

Talagrand inequality
If F satisfies some entropy conditions then for all N0 P N and t ą t0,

P
ˆ

max
0ďNďN0

||α
pNq
n ||F ą t

˙

ď D1 expp´D2t2q,

or
P

ˆ

max
0ďNďN0

||α
pNq
n ||F ą t

˙

ď D1tν expp´D2t2q,

for some D1,D2, ν ą 0.
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Theoritical results

Weak convergence of αpNq
n

Under some entropy conditions on F ,

pα
p0q
n , . . . , α

pN0q
n q

L
ÝÑ
nÑ`8

pGp0q, . . . ,GpN0qq in ℓ8pFN0 Ñ RN0q

with GpNq the Gaussian process defined by

Gp0q “ G and GpN`1qpfq “ GpNqpfq ´

mN`1
ÿ

j“1
Erf|ApN`1q

j sGpNqpApN`1q
j q

Recall that

α
pN`1q
n pfq “

ÿ

jďmN`1

PpApN`1q
j q

PpNq
n pApN`1q

j q

ˆ

α
pNq
n pf1

ApN`1q
j

q ´ Erf|ApN`1q
j sα

pNq
n pApN`1q

j q

˙
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Main tool

Spirit of strong approximation

Xn X

Yn Y

L

p.s.

L
“

L
“

Results: KMT, Berthet-Mason.
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Main tool

Strong approximation of αpNq
n pFq

Under some entropy conditions on F we can construct on the same
probability space X1, . . . , Xn and a version GpNq

n of GpNq such that for
large n,

P
ˆ

max
0ďNďN0

||α
pNq
n ´ GpNq

n ||F ą Cvn
˙

ď
1
n2 ,

with vn Ñ 0.

By Borell-Cantelli,

max
0ďNďN0

||α
pNq
n ´ GpNq||F “ Op.s.pvnq.
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Consequence of strong approximation

Berry-Esseen bound
Under some entropy conditions on F ,

max
0ďNďN0

sup
fPF

sup
xPR

ˇ

ˇ

ˇ
Ppα

pNq
n pfq ď xq ´ PpGpNqpfq ď xq

ˇ

ˇ

ˇ
ď Cvn.

Bias and variance estimation
Under some entropy conditions on F , there exists C ą 0 such that

lim sup
nÑ`8

?
n
vn

max
0ďNďN0

sup
fPF

ˇ

ˇ

ˇ
ErPpNq

n pfqs ´ Ppfq
ˇ

ˇ

ˇ
ď C,

lim sup
nÑ`8

n
vn

sup
fPF

ˇ

ˇ

ˇ

ˇ

VarpPpNq
n pfqq ´

1
nVarpGpNqpfqq

ˇ

ˇ

ˇ

ˇ

ď C.
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Raking-Ratio results

We denote

• Erf|Apkqs “ pErf|Apkq
1 s, . . . ,Erf|Apkq

mk sqt ;
• GrApkqs “ pGpApkq

1 q, . . . ,GpApkq
mk qqt ;

• pPApkq|Aplq qi,j “ PpApkq

j |Aplq
i q.

Expression of GpNq

For all N P N˚ and f P F it holds

GpNqpfq “ Gpfq ´

N
ÿ

k“1
Φ

pNq

k pfqt ¨ GrApkqs

where

ΦpNq

k pfq “ Erf|Apkq
s`

ÿ

1ďLďN´k
kăl1ă¨¨¨ălLďN

p´1qLPApl1q|ApkqPApl2q|Apl1q . . .PAplLq|AplL´1q ¨Erf|AplLq
s.
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Raking-Ratio results

We denote pVarppX1, . . . , Xnqtqqi,j “ CovpXi, Xjq

Variance and covariance of GpNq

For all N P N˚ and f,g P F it holds

VarpGpNqpfqq “ VarpGpfqq ´

N
ÿ

k“1
Φ

pNq

k pfqt ¨ VarpGrApkqsq ¨ Φ
pNq

k pfq

CovpGpNqpfq,GpNqpgqq “ CovpGpfq,Gpgqq

´

N
ÿ

k“1
Cov

´

Φ
pNq

k pfqt ¨ GrApkqs,Φ
pNq

k pgqt ¨ GrApkqs

¯
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Raking-Ratio results

Corollary 1
For any N P N and f P F ,VarpGpNqpfqq ď VarpGpfqq.

For any tf1, . . . , fmu P F ,Σm ´ Σ
pNq
m is positive definite with

Σ
pNq
n “ VarppGpNqpf1q, . . . ,GpNqpfmqqtq,

Σn “ VarppGpf1q, . . . ,Gpfmqqtq.

Corollary 2
Let N0,N1 P N s.t. N1 ě 2N0 and

ApN0´iq “ ApN1´iq, @0 ď i ă N0.

Then for all f P F ,
VarpGpN1qpfqq ď VarpGpN0qpfqq.
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Results for 2 margins

We note A “ Ap2q “ tA1, . . . , Am1u and B “ Ap1q “ tB1, . . . ,Bm2u.

Expression of GpNq

Let N P N and f P F . Then for m P N,

Gp2mq
pfq “ Gpfq ´

´

Spm´1q
1,even pfq

¯t
GrAs ´

´

Spm´2q
2,even pfq

¯t
GrBs

Gp2m`1q
pfq “ Gpfq ´

´

Spm´1q
1,odd pfq

¯t
GrAs ´

´

Spm´1q
2,odd pfq

¯t
GrBs

with SpNq
1,evenpfq “

řN
k“0pPB|APA|BqkpErf|As ´ PB|AErf|Bsq

SpNq

2,oddpfq “
řN

k“0pPA|BPB|AqkpErf|Bs ´ PA|BErf|Asq

SpNq
2,evenpfq “ SpNq

2,oddpfq ` pPA|BPB|Aq
N`1Erf|Bs

SpNq

1,oddpfq “ SpNq
1,evenpfq ` pPB|APA|Bq

N`1Erf|As

Recall that
GpNqpfq “ Gpfq ´

řN
k“1 Φ

pNq

k pfqt ¨ GrApkqs
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Results for 2 margins

Hypothesis
Matrices PA|BPB|A and PB|APA|B are ergodic.

Convergence of SpNq

i,evenpfq, SpNq

i,oddpfq

SpNq

i,evenpfq, SpNq

i,oddpfq for i “ 1, 2 converge respectively towards
Si,evenpfq, Si,oddpfq. They verify the relations:

S1,oddpfq “ S1,evenpfq `

˜ Erfs
...

Erfs

¸

, S2,evenpfq “ S2,oddpfq `

˜ Erfs
...

Erfs

¸

.

20



Results for 2 margins

Hypothesis
Matrices PA|BPB|A and PB|APA|B are ergodic.

Convergence of SpNq

i,evenpfq, SpNq

i,oddpfq

SpNq

i,evenpfq, SpNq

i,oddpfq for i “ 1, 2 converge respectively towards
Si,evenpfq, Si,oddpfq. They verify the relations:

S1,oddpfq “ S1,evenpfq `

˜ Erfs
...

Erfs

¸

, S2,evenpfq “ S2,oddpfq `

˜ Erfs
...

Erfs

¸

.

20



Results for 2 margins

Convergence of GpNq

The sequence of process pGpNqqN converges in distribution when
N Ñ `8 to the centered Gaussian process Gp8q indexed by F and
defined by

Gp8qpfq “ Gpfq ´ S1,evenpfqt ¨ GrAs ´ S2,oddpfqt ¨ GrBs.

21



Extension 1: auxiliary information
learning



Introduction

Motivation
We suppose that the auxiliary information is given by an estimate of
the probability of belonging to a set of several partitions.

The auxiliary information is given by

P1
NrApNqs “ pPnpApNq

1 q, . . . ,P1
NpApNq

mN qq,

a multinomial distribution with nN ą 0 trials and event probabilities

PrApNqs “ pPpApNq
1 q, . . . ,PpApNq

mN qq.

Goal
We study the raking-ratio empirical process which uses P1

NrApNqs

instead of PrApNqs.
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Introduction

Definition of rPpNq
n pFq

We define the N-th raking-ratio empirical measure with auxiliary
information learning rPpNq

n pFq as the same way as PpNq
n pFq:

rPp0q
n pfq “ Pnpfq and for N ě 1,

rPpNq
n pfq “

mN
ÿ

j“1

P1
NpApNq

j q

rPpN´1q
n pApNq

j q

rPpN´1q
n pf1ApNq

j
q.

Notice that

rPnrApNqs “

´

rPpNq
n pApNq

1 q, . . . , rPpNq
n pApNq

mN q

¯

“ P1
NrApNqs.

Recall that

PpNq
n pfq “

mN
ÿ

j“1

PnpApNq

j q

PpN´1q
n pApNq

j q
PpN´1q
n pf1

ApNq
j

q.
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Introduction

Definition of rα
pNq
n pFq

We define the N-th raking-ratio empirical process with estimated
auxiliary information by

rα
pNq
n pfq “

?
nprPpNq

n pfq ´ Ppfqq.

Notice that αpNq
n pApNq

j q ‰ 0.

24



Main result

Strong approximation of αpNq
n pFq

Under some entropy conditions on F we can construct on the same
probability space X1, . . . , Xn and a version GpNq

n of GpNq such that for
large n,

P

˜

max
0ďNďN0

||rα
pNq
n ´ GpNq

n ||F ą C
˜

vn `

d

n logpnq

npN0q

¸¸

ď
1
n2 ,

with vn Ñ 0 and npN0q “ minNďN0 nN.
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Extension 2: re-sampling method
with auxiliary information



Introduction

Notation
Bootstrap is a statistical method for re-sampling. It replaces P by Pn.

A general way to define the bootstrap is to multiply fpXiq by a random
variable Zi such that ErZi|Xis “ 1 and VarpZiq “ 1.

We define the bootstrapped empirical measure and process:

P˚
n pfq “

1
řn
i“1 Zi

n
ÿ

i“1
ZifpXiq, α˚

n pfq “
?
npP˚

n pfq ´ Pnpfqq.

Goal

• Make the strong approximation of α˚
n to G˚, a P-Brownian bridge

independent of G ;
• Bootstrap the Raking-Ratio empirical process to simulate its
distribution.
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Strong approximation of the bootstrapped empirical process

Strong approximation of α˚
n

Under some entropy conditions on F we can construct on the same
probability space pXn, Znq and pGn,,G˚

n q of P-Brownian bridge such
that for large n,

P
´

t||αn ´ Gn||F ą Cvnu
ď

t||α˚
n ´ G˚

n ||F ą Cvnu

¯

ď
1
n2 ,

with vn Ñ 0 depends on the entropy of pF ,Pq.
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Bootstrap and Raking-Ratio

Goal
How can we adapt the bootstrap method to simulate the distribution
of the Raking-Ratio empirical process?

P˚p0q
n “ P˚

n and

P˚pN`1q
n pfq “

mN`1
ÿ

j“1
P˚pNq
n pf1ApN`1q

j
q

PnpApN`1q
j q

P˚pNq
n pApN`1q

j q
,

α
˚pNq
n pfq “

?
npP˚pNq

n pfq ´ Pnpfqq.

Result

α
˚pNq
n Ñ G˚pNq in ℓ8pFq and G˚pNq has the same distribution as GpNq.
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Thank you for your attention!

Questions?
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