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Abstract

In this paper, we consider families of time Markov fields (or reciprocal classes) which have

the same bridges as a Brownian diffusion. We characterize each class as the set of solutions of

an integration by parts formula on the space of continuous paths Cð½0; 1�;Rd Þ. Our techniques

provide a characterization of gradient diffusions by a duality formula and, in case of

reversibility, a generalization of a result of Kolmogorov.
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1. Introduction

In this paper, we characterize the bridges of a Brownian diffusion as solutions of a
simple integration by parts formula (IBPF for short) on the space of continuous
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paths Cð½0; 1�;RdÞ; d41. More precisely, our object of study is the class of all
probabilities on the path space which have the same bridges as a reference d-
dimensional Brownian diffusion; this class is called the reciprocal class of the
reference diffusion.

Let us briefly describe our framework. The terminology of reciprocal class comes
from reciprocal processes; these are Markovian fields with respect to the time
parameter and therefore a generalization of Markov processes. The interest in these
processes was motivated at first by a Conference of Schrödinger [24] about the most
probable dynamics for a Brownian particle whose laws at initial and final times are
given. Actually, Schrödinger was only concerned with Markovian reciprocal
processes which have been called since then Schrödinger processes. His interpreta-
tion in terms of (large) deviations from an expected behavior was further developed
by Föllmer, Cattiaux and Léonard, Gantert among others (cf. Refs. [3,9,10]).
Schrödinger processes were also analyzed by Zambrini [28] and Nagasawa [18] for
their possible connections with quantum mechanics. One year after Schrödinger,
Bernstein noticed the importance of non-Markovian processes with given condi-
tional dynamics, where the conditioning is made at two fixed times. This was the
beginning of the study of general reciprocal processes. Jamison [11] proved that the
set of reciprocal processes is partitioned into classes called reciprocal classes. All the
elements of a same class share the same Markovian bridges (or two times conditional
probability distributions). Each class is characterized by two functions ðF ;GÞ

(defined explicitly in Theorem 2.5 below) which take values, respectively, in Rd and
Rd�d called its Reciprocal Characteristics [5,13] and can be defined starting from a
reference Markovian Brownian diffusion. Krener (cf. [13]) raised the question of
characterizing a reciprocal class by an equation involving ðF ;GÞ. For Gaussian
reciprocal processes an answer was given in [15]: the equation was a p.d.e. for the
covariance function. The non-Gaussian case was addressed in [25] by one of us:
using the tools of Stochastic Mechanics, it was proved that the elements of a
reciprocal class satisfy a stochastic Newton equation. In this equation, by analogy
with the Lorentz law of electromagnetism G can be interpreted as a magnetic force
and F as an electric force (see also [17]). In [20] Malliavin calculus was introduced as
a useful tool for this problem. We exhibited an IBPF which characterizes the
elements of a given reciprocal class when d ¼ 1. Here we turn to vectorial case d41,
which requires new techniques and provides broader applications (see Theorems 5.1
and 5.4).

Our main result in the present paper states that the set of probability measures
which belong to the reciprocal class of a Brownian diffusion and have finite entropy,
coincides with the set of solutions of a functional equation with coefficients F and G.
Our equation is a perturbation of the duality equation satisfied by Brownian bridges,
duality between the Malliavin derivation operator and the stochastic integral. The
perturbation term in the equation is to be compared with the vector of Malliavin
derivatives of the Hamiltonian function associated to Gibbs measures [22]. This term
splits into two parts one of them vanishing if and only if the drift of the reference
Brownian diffusion is a gradient. Therefore, the tools developed to reach the above
result enable us on the one hand to characterize the laws of Brownian diffusions
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which are of gradient type among the reciprocal processes satisfying some IBPF and
on the other hand, to prove a generalization of Kolmogorov’s theorem: the existence
of a reversible law in the reciprocal class of a Brownian diffusion with drift b can
only occur if b is a gradient.

The paper is divided into the following sections.
1.
 Introduction

2.
 Brownian bridges. Reciprocal classes

3.
 Integration by parts formula for a Brownian diffusion and its bridges

4.
 Characterization of a reciprocal class by an IBPF

5.
 Application to gradient diffusions
2. Brownian bridges: Reciprocal classes

2.1. Derivation operator

Let O ¼ Cð½0; 1�;RdÞ be the canonical-polish-path space of continuous Rd-valued
functions on ½0; 1�, endowed with F, the canonical s-field. Let ðX tÞt2½0;1� denote the
family of canonical projections from O into Rd . PðOÞ is the set of probability
measures on O. We use the notation

Qðf Þ ¼

Z
O

f ðoÞQðdoÞ.

Let P 2 PðOÞ denote a fixed Wiener measure on O with initial measure any
probability measure on Rd . We denote by Px the Wiener measure on O with initial
condition x 2 Rd . More generally, for any Q in PðOÞ, Qx is the conditional measure
Qð:=X 0 ¼ xÞ, and Qx;y is the conditional measure Qð:=X 0 ¼ x;X 1 ¼ yÞ (bridge
between x and y). We will denote by j 	 j the euclidian norm in Rd and x:y will denote
the scalar product between x and y, two vectors in Rd .

We now define the space of smooth cylindrical functionals on O

S ¼ fF;FðoÞ ¼ jðoi
tj
; 1pipd; 1pjpnÞ,

j 2 C1
b ðRnd ;RÞ; 0pt1p 	 	 	ptnp1g,

where C1
b ðRnd ;RÞ denotes the set of C1-functions which are bounded as well

as all their derivatives. Clearly S  L2ðO;PÞ. For 0ptp1, we denote by St the
subset of Ft-measurable elements of S. On S we denote by Dg the derivation

operator in the direction g ¼ ðgiÞ1pipd 2 L2ð½0; 1�;Rd Þ defined as follows: DgF ¼

ðDgiFÞ1pipd where

DgiFðoÞ ¼
Z 1

0

giðtÞDi
tFðoÞdt with Di

tFðoÞ ¼
Xn

j¼1

qj
qxi

j

ðo1
t1
; . . . ;od

tn
Þ1tptj

.

It is clear that DgF is also equal to the Gâteaux-derivative of F in the directionR :
0

gðtÞdt, which is a typical element of the Cameron–Martin space. One also defines
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the space D1;2 as the closure of S under the norm

kFk21;2 ¼ PðF2Þ þ P

Z 1

0

jDtFj2 dt

� �
.

For g ¼ ðgiÞ1pipd 2 L2ð½0; 1�;RdÞ, the vector-valued stochastic integral of g under
X is denoted by

dðgÞ ¼ ðdðgiÞÞ1pipd :¼

Z 1

0

giðtÞdX i
t

� �
1pipd

.

For a process ðui;jÞi;j2f1;...;dg with values in Rd�d we define, whenever it exists,Z t

0

ui
s dX s :¼

Xd

j¼1

Z t

0

ui;j
s dX j

s.

It is well known (see for example [2]) that the operator D (also called Malliavin
derivative) is the dual operator on D1;2 of the Skorokhod integral. When we restrict
ourself to test functions g which are deterministic, the Skorokhod integral of g

reduces to the Wiener integral dðgÞ and the following vectorial IBPF is satisfied on
O : 8g 2 L2ð½0; 1�;RdÞ, 8F 2 S,

PðDgFÞ ¼ PðFdðgÞÞ. (1)

Furthermore, this IBPF characterizes the Wiener measure P on O (cf. [22]).

2.2. IBPF for Brownian bridges

In the same way as Brownian motion is the reference process in the study of
Markov diffusions, it seems natural to consider Brownian bridges as reference
processes in the study of Markovian bridges. For this reason, we review IBPF
satisfied by Brownian bridges. The subset of the Cameron–Martin space, which will
contain the test functions, is the following set:

E ¼ g;Rd-valued step function on ½0; 1� such that

Z 1

0

gðtÞdt ¼ 0

� �
.

The condition on the integral is of loop type: indeed if we denote by h the function
h :¼

R 	
0

gðtÞdt, we are requiring that hð0Þ ¼ hð1Þ ¼ 0. For t 2 ½0; 1�, Et denotes the set
of step functions in E whose support is included in ½0; t�. For step functions the
stochastic integral dðgÞ is trivially defined for all o 2 O, independently of the
underlying probability.

Proposition 2.1. Let ðx; yÞ 2 Rd � Rd and Px;y 2 PðOÞ be the law of the d-dimensional

Brownian bridge on ½0; 1� from x to y. Then, for all g 2 E, for any F 2 S,

Px;yðDgFÞ ¼ Px;yðFdðgÞÞ. (2)

Proof. The duality formula (2) has been proved by Driver [7] for the Brownian
bridge on a Riemannian manifold. His proof relies on the absolute continuity of Px;y
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with respect to Px on Ft, with 0oto1. However, for the sake of completeness, let
us sketch an alternative proof of this duality. Let us take FðoÞ ¼ f0ðo0Þf1ðo1Þ ~FðoÞ
for f0; f1 2 C1ðRd Þ, and ~F 2 S in the IBPF satisfied under P:

Pðf0f1
~FdðgÞÞ ¼ PðDgðf0f1

~FÞÞ (3)

which holds for any g 2 L2ð½0; 1�;RdÞ and any F 2 S. One obtains from (3)

Pðf0ðX 0Þf1ðX 1ÞPð ~FdðgiÞ=X 0;X 1ÞÞ

¼ Pðf0ðX 0Þf1ðX 1ÞPðDgi
~F=X 0;X 1ÞÞ þ Pðf0ðX 0Þqif1ðX 1Þ ~FÞ

Z 1

0

giðrÞdr.

Therefore for g 2 E and for each i, identity (2) holds for m-a.e. ðx; yÞ where m is the
law of ðX 0;X 1Þ under P. By continuity of the map ðx; yÞ7!Px;y the duality formula
(2) holds for all ðx; yÞ 2 Rd � Rd . &

2.3. Reciprocal class and reciprocal characteristics of a Brownian diffusion

We now introduce the main object we deal with in this paper: the reciprocal class
of some fixed reference diffusion Pb. The data is a d-dimensional Markovian
diffusion solution of the stochastic differential equation

dX t ¼ dBt þ bðt;X tÞdt; X 0 ¼ x, (4)

where B is a d-dimensional Brownian motion, b is the drift function, assumed to be
in C1;2ð½0; 1� � Rd ;Rd Þ and x 2 Rd . The law of this Brownian diffusion is denoted by
Pb. It is not a restriction to fix a deterministic value for X 0 since in the present paper
one only deals with the bridges of Pb.

We assume there exists a constant k40 and an integer N 2 N� such that for all
t;x 2 ½0; 1� � Rd , for all i; j 2 f1; . . . ; dg,

x:bðt; xÞpkð1þ jxj2Þ, ð5Þ

jbi
ðt; xÞj þ jqtb

i
ðt;xÞjpkð1þ jxjNÞ ð6Þ

and

jqjb
i
ðt;xÞj þ jqiqjb

i
ðt; xÞjpkð1þ jxjN�1Þ. (7)

Since b is locally lipschitz continuous uniformly on time, condition (5) ensures
existence and uniqueness of a strong solution to Eq. (4) with no explosion on ½0; 1�
(see for example [4, p. 234]).

Example. The gradient of a potential with polynomial growth provides a typical
example of drift b satisfying (5)–(7): for any i 2 f1; . . . ; dg; bi

ðx1; . . . ; xdÞ ¼

�P0
iðx

iÞ þ
Pd

j¼1 aijx
j where the Pi are polynomial functions of the form: Piðx

iÞ ¼PNþ1
k¼0 ai;kðx

iÞ
k with ai;Nþ140. The corresponding solution of (4) is called a gradient

diffusion.
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Lemma 2.2. Under assumptions (5), the Brownian diffusion solution of (4) admits finite

moments of any order. In particular,

Pb sup
t2½0;1�

jX tj
2N

 !
oþ1. (8)

A proof of this lemma can be found for example in [4]. Let us note that Lemma 2.2
and assumption (6) imply that the classical entropy h of Pb w.r.t. the Wiener measure
Px is finite since

hðPb;PxÞ ¼ Pb log
dPb

dPx

� �� �
¼

1

2
Pb

Z 1

0

jbðt;X tÞj
2 dt

� �
oþ1. (9)

In this paper, we adopt the following definition of entropy on PðOÞ (cf. [6]) and
denote it by H

HðQ;PÞ ¼ QðhðQX0 ;PX0ÞÞ.

Let us note that here HðPb;PÞ ¼ hðPb;PxÞoþ1. Finiteness of entropy will be a
leading assumption through the entire paper, so that we now define the following set
of probability measures:

PHðOÞ ¼ fQ 2 PðOÞ : HðQ;PÞoþ1g.

This set is natural in our framework: the most probable path that Schrödinger was
looking for (cf. [24]) turns out to be the unique minimizer of entropy w.r.t. Wiener
measure among a set of reciprocal processes. Finiteness of entropy has been crucial
in subsequent papers ([3,9,27] for instance). In the present paper, two consequences
of the finiteness of entropy assumption will play an important role. We state these
two results in the following proposition and refer the reader to [8].

Proposition 2.3. Let Q be a probability measure in PHðOÞ. Then
(i)
 There exists an adapted process ðbtÞt2½0;1� such that the process ðX t � X 0 �R t

0
bs dsÞt2½0;1� is a Q-Brownian motion and Qð

R 1
0
jbtj

2 dtÞoþ1
(ii)
 Let m0 (resp., m) denote the law of X 0 (resp., ðX 0;X 1Þ) under Q. Then, for m0
(resp., m) a.e. x (resp., ðx; yÞ), the entropy HðQx;PxÞ (resp., HðQx;y;Px;yÞ) is finite.
Furthermore, let us assume that the probability transition density of Pb, denoted
by pðs; x; t; yÞ, satisfies the following regularity property:

ðs; xÞ7!pðs;x; t; yÞ 2 C1;3ð½0; 1½�Rd ;RÞ. (10)

It is clear that for each 0psotp1 and x; y 2 Rd , pðs;x; t; yÞ40 and also that the law
of X t is absolutely continuous w.r.t. Lebesgue measure on Rd with strictly positive
density. We will also assume that for each 0psotp1; the map

ðx; yÞ 7!Pbð:=X s ¼ x;X t ¼ yÞ

is continuous on Rd � Rd .
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Definition 2.4. The reciprocal class of Pb is the subset RðPbÞ of PðOÞ defined by

RðPbÞ ¼ fQ 2 PðOÞ 80psotp1;Qð:=Fs _ F̂tÞ ¼ Pbð:=X s;X tÞg, (11)

where the forward (resp., backward) filtration ðFtÞt2½0;1� (resp., ðF̂tÞt2½0;1�) is given by
Ft ¼ sðX s; 0psptÞ, (resp., F̂t ¼ sðX s; tpsp1Þ).

Let us also mention the alternative definition of RðPbÞ (see [11])

RðPbÞ ¼ Q 2 PðOÞ : 9m 2 PðRd � Rd Þ;

�

Q ¼

Z
Rd�Rd

Pbð=X 0 ¼ x;X 1 ¼ yÞmðdx;dyÞ

�
ð12Þ

which stresses the fact that any Q in RðPbÞ is a mixture of the bridges of Pb or
equivalently, that the bridges of Q coincide with the ones of Pb.

As a consequence of (11), for any Q 2 RðPbÞ and any 0psptp1, the filtrations
Fs

W
F̂t and sðX r; sprptÞ are independent under Q conditionally to sðX s;X tÞ.

Therefore, the coordinate process under any element of RðPbÞ is a Markovian field

w.r.t. the time index; it is also called a reciprocal process.
It is easy to see that any Markov process is reciprocal. Nevertheless, a reciprocal

process is not necessarily a Markov process; the Markov property may fail to hold
unless the law of ðX 0;X 1Þ enjoys some product decomposition. More precisely,
Jamison gave in [11] the following description of the subset RMðPbÞ containing all
the Markovian processes of RðPbÞ (see [23] for related results):

RMðPbÞ ¼ fQ 2 RðPbÞ : 9n0; n1 s-finite measures on Rd ,

Q � ðX 0;X 1Þ
�1
ðdx; dyÞ ¼ pð0;x; 1; yÞn0ðdxÞn1ðdyÞg. ð13Þ

Due to historical reasons recalled in the introduction, the elements of RMðPbÞ are
called in the literature Schrödinger processes. The following theorem gives a
necessary and sufficient condition for a Brownian diffusion to be in the reciprocal
class of Pb. It was first proved by Clark following a conjecture of Krener.

Theorem 2.5. For any ~b 2 C1;2ð½0; 1� � Rd ;Rd Þ, let us define the Rd-valued (respec-

tively, Rd�d-valued) function F ~bðt; xÞ ¼ ðF i
~b
ðt;xÞÞi (resp., G ~bðt;xÞ ¼ ðG

i;j
~b
ðt;xÞÞi;j), as

follows:

Fi
~b
ðt;xÞ ¼ ðqt

~b
i
þ 1

2qiðj
~bj2 þ div ~bÞÞðt; xÞ, ð14Þ

G
i;j
~b
ðt;xÞ ¼ ðqj

~b
i
� qi

~b
j
Þðt; xÞ. ð15Þ

A Brownian diffusion with drift ~b is in the reciprocal class of Pb if and only if

ðFb;GbÞ � ðF ~b;G ~bÞ.

Proof of Theorem 2.5. We refer the reader to [5]. Let us simply mention that the
identity ðFb;GbÞ � ðF ~b;G ~bÞ is equivalent to the existence of a function h40 such that
qth þ

Pd
i¼1 biqih þ 1

2
Dh ¼ 0 and ~b

i
� bi

¼ qi log h; for all 1pipd. &
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Definition 2.6. The pair of functions ðF b;GbÞ is called the Reciprocal Characteristics

of Pb.

In the sequel since b is a fixed data we drop the index b for simplicity: ðF ;GÞ denote
the reciprocal characteristics of Pb.

Proposition 2.7. Under the growth conditions (6) and (7) on the drift function b, the

reciprocal characteristics F and G satisfy the following inequality:

9K40; 8ðt;xÞ 2 ½0; 1� � Rd ; 8i; j 2 f1; . . . ; dg,

jFiðt;xÞjpKð1þ jxj2N�1Þ,

jGi;jðt;xÞj þ jdivGiðt; xÞjpKð1þ jxjNÞ.

Remark 2.8. The reciprocal characteristics associated to the Brownian motion, i.e.
corresponding to the drift b ¼ 0, are obviously F0 � 0 and G0 � 0. A subclass of
RðP0Þ has been explicitely computed in [1].

3. Integration by parts formula for a Brownian diffusion and its bridges

In the first part of this section, we establish two integration by parts formulae (IBPF)
satisfied by the d-dimensional Brownian diffusion Pb. The coefficients of the first one
(identity (16)) are the reciprocal characteristics associated to this diffusion except for a
term involving the value at the terminal time. The form of his IBPF differs from the
one-dimensional case by the presence of additional terms, especially a stochastic
integral which admits for integrand the reciprocal characteristic G. It is easy to see from
Theorem 2.5 that G ¼ 0 if and only if b is a gradient, which is always the case in
dimension 1. The second IBPF (identity (18)) is a consequence of Girsanov theorem.
The second part of this section contains an IBPF satisfied by the reciprocal class of Pb.

3.1. IBPF satisfied by a Brownian diffusion

The following statement will be a key tool both for Theorem 3.4, where we exhibit
an IBPF satisfied by the reciprocal class RðPbÞ, and in the proof of Theorem 4.1.

Theorem 3.1. Let Pb be the d-dimensional Brownian diffusion solution of (4), where b

satisfies assumptions (5)–(7). Then the following integration by parts formula is

satisfied under Pb: for any t 2 ½0; 1�, for any Rd-valued step function g on ½0; t�, for any

F 2 S and i 2 f1; . . . ; dg,

PbðDgiFÞ ¼ PbðFdðgiÞÞ �

Z t

0

giðrÞdrPbðFbi
ðt;X tÞÞ

þ Pb F
Z t

0

giðrÞ

Z t

r

F i þ
1

2
divGi

� �
ðt;X tÞdt

��

þ

Z t

r

Giðt;X tÞdX t

�
dr

�
. ð16Þ
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Proof of Theorem 3.1. The fact that each term of the RHS of (16) is finite is due to
Proposition 2.7 and Lemma 2.2. The procedure that we follow for the proof of this
theorem is close to Lemma 4.2 of Roelly and Thieullen [20] for the one-dimensional
case. This is why we refer the reader to [20] for the details of the proof. We prefer to
stress the point where multidimensional and one-dimensional cases differ. Since we
want to deduce the IBPF for Pb from the IBPF for P we have to handle the term
Dgi ðlogMbÞ. By definition of the Malliavin derivative,

Dgi ðlogMbÞ ¼

Z t

0

giðrÞ bi
ðr;X rÞ þ

Xd

j¼1

Z t

r

qib
j
ðt;X tÞdX

j
t

 

�
Xd

j¼1

Z t

r

bj
ðt;X tÞqib

j
ðt;X tÞdt

!
dr. ð17Þ

Let us writeZ t

r

qib
j
ðt;X tÞdX

j
t ¼

Z t

r

ðqib
j
� qjb

i
Þðt;X tÞdX

j
t þ

Z t

r

qjb
i
ðt;X tÞdX

j
t.

This last stochastic integral appears in the development of bi
ðt;X tÞ � bi

ðr;X rÞ by Ito
formula. Using this development and the definition of ðF ;GÞ in Theorem 2.5 it is easy
to check that

Dgi ðlogMbÞ ¼

Z t

0

giðrÞdrbi
ðt;X tÞ �

Z t

0

giðrÞ
Xd

j¼1

Z t

r

Gi;jðt;X tÞdX
j
t

 !
dr

�

Z t

0

giðrÞ

Z t

r

F i þ
1

2
divGi

� �
ðt;X tÞdtdr.

In dimension 1 the matrix G vanishes and we only have to deal with integrals w.r.t.
Lebesgue measure. When d41 G will not vanish in general so we must also take into
account a stochastic integral. &

In the sequel, we would like to use the IBPF (16) for Brownian diffusion with
a drift not necessarily of polynomial growth. For example, in the next subsection we
will be interested in the bridges of Pb. If one takes for instance bðt; zÞ ¼ �lz, which
satisfies conditions (6) and (7) with N ¼ 1, Pb is then the Ornstein–Uhlenbeck
process. The drift ~b of its bridge between x and y can be explicitely computed

~bðt; zÞ ¼ �lz þ
l

sinhðlð1� tÞÞ
ðy � e�lð1�tÞzÞ.

It is clear that ~b does not satisfy condition (6). However the conclusion of
Theorem 3.1 still holds true under the set of assumptions (A1)–(A3) (which are
weaker than (6)) listed in the following proposition. We leave the proof of this
proposition to the reader.

Proposition 3.2. Let ~b 2 C1;2ð½0; 1� � Rd ;RdÞ and t 2 ½0; 1� such that HðP ~bjFt ;PjFt Þo
þ1. Let F ~b and G ~b be the reciprocal characteristics associated to the Brownian
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diffusion P ~b. If the following conditions are satisfied:
(A1)
 ~bðt;X tÞ 2 L1ðP ~bÞ,R t
(A2)

0 jF ~b þ

1
2
divG ~bjðt;X tÞdt 2 L1ðP ~bÞ,R t
(A3)
 0 jG
i;j
~b
ðt;X tÞj

2 dt 2 L1ðP ~bÞ 8i; j 2 f1; . . . ; dg
then the integration by parts formula (16) still holds true under P ~b .

Let us now establish another integration by parts formula satisfied under P ~b where
the drift ~b appears instead of the reciprocal characteristics ðF ~b;G ~bÞ.
Theorem 3.3. Let P ~b 2 PHðOÞ be, as before, the Brownian diffusion whose drift ~b is

assumed to belong to C0;1ð½0; 1� � Rd ;RdÞ. Let t 2 ½0; 1�. If for i 2 f1; . . . ; dg,R t
0 jqi

~bðt;X tÞj
2 dt belong to L1ðP ~bÞ, then for any Rd-valued step function g on ½0; t�,

for all F 2 S,

P ~bðDgiFÞ ¼ P ~bðFdðg
iÞÞ � P ~b F

Z t

0

giðsÞ ~b
i
ðs;X sÞds

� �

� P ~b F
Z t

0

giðsÞ

Z t

s

X
j

qi
~b
j
ðp;X pÞðdX j

p �
~b
j
ðp;X pÞdpÞds

 !
. ð18Þ

Proof. We denote by M ~b the Girsanov density of P ~b w.r.t. P where P ¼ P0 is the
Wiener measure whose initial law is the law of X ð0Þ under P ~b

M ~b ¼ exp
Xd

i¼1

Z t

0

~b
i
ðt;X tÞdX i

t �
1

2

Z t

0

j ~bðt;X tÞj
2 dt

 !
.

Given a smooth truncation function wn with bounded derivatives on R satisfying

wn1½�n�1;nþ1�c ¼ �ðn þ 1Þ1��1;�n�1½ þ ðn þ 1Þ1�nþ1;þ1½,

wn1½�n;n� ¼ Id :1½�n;n�. ð19Þ

We set Mn
~b
¼ expðwnðlogM ~bÞÞ. Then 0pMn

~b
pM ~b þ 1 and if Pn

~b
denotes the positive

measure on Cð½0;T � � RdÞ with Radon Nikodym density Mn
~b
w.r.t. P, the integration

by parts formula (1) for P yields

PðMn
~b
DgiFÞ ¼ PðFMn

~b
dðgiÞÞ � PðFDgi Mn

~b
Þ

¼ PðFMn
~b
dðgiÞÞ � PðFMn

~b
Dgi ðlogMn

~b
ÞÞ. ð20Þ

It is sufficient to verify that each term of this identity converges by dominated
convergence theorem. &

A duality formula such as (18) has been proved under stronger integrability
assumptions on the drift ~b in [21], formula (1.8).
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3.2. IBPF satisfied by the bridges of a Brownian diffusion

We now come to an IBPF satisfied by all the elements of RðPbÞ, the reciprocal
class of Pb. Let us recall that ðF ;GÞ denotes the reciprocal characteristics of RðPbÞ.

Theorem 3.4. Let Q be a probability measure in PHðOÞ. Let us moreover assume that

assumption (A0) holds: supt2½0;1�jX tj 2 L2NðQÞ.
If Q is in the reciprocal class of Pb, then for any function g 2 E, 8F 2 S, for all

i 2 f1; . . . ; dg, the following integration by parts formula is satisfied:

QðDgiFÞ ¼ QðFdðgiÞÞ þ Q F
Z 1

0

giðrÞ

Z 1

r

F i þ
1

2
divGi

� �
ðt;X tÞdtdr

� �

þ Q F
Z 1

0

giðrÞ

Z 1

r

Giðt;X tÞdX t dr

� �
. ð21Þ

Remark 3.5. (1) As mentioned in Proposition 2.3, HðQ;PÞoþ1 ensures that X is a
Q-semi-martingale; it is therefore meaningful to consider the stochastic integralR 1

r
Giðt;X tÞdX t under Q.
(2) Formula (21) reads like a perturbation of formula (2) for Brownian bridges.

The perturbation term can also be written as

Q F
Z 1

0

giðrÞ

Z 1

r

F iðt;X tÞdtdr

� �
þ Q F

Z 1

0

giðrÞ

Z 1

r

Giðt;X tÞ � dX t dr

� �
,

where in the second term, the stochastic integration is of Stratonovich type; this
expression reflects the symmetry of the reciprocal property under time reversal.

Proof of Theorem 3.4. Let us denote by m the law of ðX 0;X 1Þ under Q. We first prove
the IBPF for m-a.e.ðx; yÞ and the probability Qx;y :¼ Qð	=X 0 ¼ x;X 1 ¼ yÞ. In order
to do so we first prove that we can apply Proposition 3.2.

For m-a.e. ðx; yÞ the integrability condition (A0) still holds true under Qx;y and
HðQx;y;Px;yÞoþ1 (cf. Proposition 2.3); therefore HðQx;yjFt ;Px;yjFt Þoþ1 for
any tp1. Let us fix such an ðx; yÞ. Since Q belongs to the reciprocal class of Pb, for
any t 2 ½0; 1½ the restriction of Qx;y to Cð½0; t�;RdÞ is the law of the Brownian
diffusion ~P starting from x with drift

~bðt; zÞ ¼ bðt; zÞ þ qz log pðt; z; 1; yÞ

and in particular F ~b ¼ F , G ~b ¼ G on ½0; t� � Rd . By assumption (10), ~b 2 C1;2

ð½0; 1½�Rd ;RÞ. We also have to check assumptions (A1)–(A3) of Proposition 3.2
on ~b, F and G: assumption (A1) has not to be considered here since we test on
functions g 2 Et. Assumptions (A2) and (A3) are satisfied since (A0) is assumed and
F and G satisfy Proposition 2.7. Therefore IBPF (21) holds on [0,t] under Qx;y for
m-a.e. ðx; yÞ.

The second part of the proof consists in passing to t ¼ 1. Let us simply sketch the
argument. Let F 2 S be F1-measurable, and g 2 E. Since F 2 S, there exists a
function j and a real number to1 such that

FðX Þ ¼ jðx;X t1 ; . . . ;X t; yÞ; Qx;y-a:s.
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Let n be large enough so that to1� 1
n
and g is constant on ½1� 2

n
; 1½. Let us set

gn ¼ g1
½0;1�2

n
½
þ n

Z 1

1�
2
n

gðrÞdr

 !
1

1�
2
n
;1�1

n

� .
By construction gn is a step function on ½0; 1� 1

n
� and its integral is equal to zero.

We apply the IBPF (21) for Qx;y to the pair ðF; gnÞ on ½0; 1� 1
n
�. It is now

straightforward to verify that each term converges when n tends to infinity. By
integrating in ðx; yÞ over m, we conclude that the desired IBPF also holds true
for Q. &
4. Characterization of a reciprocal class by an IBPF

Our aim is now to establish the converse statement to Theorem 3.4. More
precisely, we want to show that the integration by parts formula (21) characterizes
the regular reciprocal processes belonging to RðPbÞ. Actually, since we previously
had to introduce the regularity condition (10) to obtain enough smoothness for the
semi-martingale characteristics of bridges, we also have now to consider probabilities
which a priori satisfy some regularity conditions to be able to write down the IBPF.
These conditions are listed below:
(H1)
 Conditional density: regularity, domination.
(H1.1) 80ptouo1;8ðx; yÞ 2 Rd � Rd , there exists a function q s.t.

QðX u 2 dwjX t ¼ x;X 1 ¼ yÞ ¼ qðt;x; u;w; 1; yÞdw.

(H1.2) 80ouo1;8ðx; yÞ 2 Rd � Rd , qð0; x; u;w; 1; yÞ40.
(H1.3) 80ouo1;8ðw; yÞ 2 Rd � Rd , the map ðt; zÞ 7! qðt; z; u;w; 1; yÞ is in

C1;2ð½0; 1½�Rd ;RÞ.
(H1.4) for all 0oto1; 8ðt; zÞ 2 ½0; t� � Rd , there exists a neighborhood V of

ðt; zÞ and a function fVðu;w; 1; yÞ such that whenever qa denotes qs; qxk

or qxkxl for k; l 2 f1; . . . ; dg it holds:
supðs;xÞ2Vjqaqðs; x; u;w; 1; yÞjpfVðu;w; 1; yÞ,

and
R t
0

R
Rd ð1þ jwj2N ÞfVðu;w; 1; yÞð1þ fVðu;w;1;yÞ

qð0;x;u;w;1;yÞÞdwduoþ1:
(H2)
 Integrability condition on the derivatives of the conditional density.
Let 0pspto1.

(H2.1)
R t

s

R
Rd jqaqðs;X s; u;w; 1;X 1Þjð1þ jwj2NÞdwdu 2 L1ðQÞ, where qa de-

notes qs or qxkxl for k; l 2 f1; . . . ; dg.
(H2.2)

R t
s

R
Rd jqxk qðs;X s; u;w; 1;X 1Þjð1þ jwj2NÞdwdu 2 L2ðQÞ.

(H2.3)
R t

s

R
Rd ð1þ jwj2N Þ

qaqðs;Xs ;u;w;1;X1Þ
2

qð0;x;u;w;1;X1Þ
dwdu 2 L1ðQÞ, where qa denotesqs; qxk

or q k l .
x x
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Theorem 4.1. Let Q be a probability measure in PHðOÞ. Let us assume that Q satisfies

assumptions (H1), (H2) and (A0). If the IBPF (21) is satisfied under Q then Q is in the
reciprocal class of Pb.

The proof of this theorem is decomposed into the following four different steps.
Step 1: Each bridge Qx;y of Q is a Brownian diffusion with drift bxy given by an

expression of the form (22).
Step 2: Each drift bxy is regular enough to compute the reciprocal characteristics

Fx;y and Gx;y of Qx;y.
Step 3: Qx;y satisfies an IBPF of the type (16) with its own reciprocal characteristics

Fx;y and Gx;y as parameters.
Step 4: Qx;y also satisfies an IBPF of the type (21) but with reciprocal

characteristics F and G as parameters. Therefore F x;y � F and Gx;y � G, which
implies that all the bridges of Q and Pb are equal.

Proof of Theorem 4.1. Step 1: Let m be the law of ðX 0;X 1Þ under Q. By Proposition
2.3, X under Q is a Brownian semi-martingale. Moreover, the semi-martingale
property is stable by conditioning and therefore for m a.e. ðx; yÞ, X under Qx;y (resp.,
under both probabilities Qx;yð	=FsÞ and Qx;yð	=X sÞ) is a Brownian semi-martingale,
whose drift, denoted by bxy, will be now computed.

First, let us prove that Qx;y is Markovian. Notice that, for s fixed in ½0; 1½, applying

IBPF (21) to the following functions : F Fs-measurable, g ¼ ~g � 1
1�s

R 1
s
~gðrÞdr1½s;1�,

one obtains easily that the drift of X at time r 2 ½s; 1½ is under Qx;yð	=FsÞ (resp.,

Qx;yð	=X sÞ) given by Q
x;y
Fs

ðUr=FrÞ (resp., Q
x;y
X s
ðUr=FrÞ) where Q

x;y
Fs

(resp., Q
x;y
X s
)

denotes Qx;yð	=FsÞ (resp., Qx;yð	=X sÞ) and

Ui
r ¼

X i
1 � X i

r

1� r
�

Z 1

r

ui
p dp þ

Z 1

r

vi
p dX p

� �
þ

1

1� r

Z 1

r

Z 1

p

ui
q dq þ

Z 1

p

vi
q dX q

� �
dp

with ui
p :¼ ðFi þ 1

2
divGiÞðp;X pÞ and vi;j

p ¼ Gi;jðp;X pÞ.

But it is straightforward to check that for any rXs;Qx;y
Fs

ð	=FrÞ ¼ Q
x;y
Xs
ð	=FrÞ. Thus

ðX r; r 2 ½s; 1�Þ has the same drift under Q
x;y
Fs

and Q
x;y
Xs
. It is therefore a Markovian

Brownian diffusion under Qx;y, whose drift at time t is equal to

bxy;i
ðt;X tÞ ¼

yi � X i
t

1� t
� Qx;y

Z 1

t

uiðp;X pÞdp þ

Z 1

t

viðp;X pÞdX p=X t

� �

þ
1

1� t
Qx;y

Z 1

t

Z 1

p

uiðq;X qÞdq þ

Z 1

p

viðq;X qÞdX q

� �
dp=X t

� �
ð22Þ

with uiðp;X pÞ ¼ ðFi þ 1
2
divGiÞðp;X pÞ and vi;jðp;X pÞ ¼ Gi;jðp;X pÞ.

The other steps amount to show that each bridge Qx;y is equal to ðPbÞ
x;y so that,

once we mix them up under m to get Q ¼
R
Rd�Rd Qx;ymðdxdyÞ the probability that we

obtain is indeed the law of a reciprocal process.
Step 2: We now come to an important point: to establish the regularity of bxy, in

such a way that we can compute Fxy and Gxy, the reciprocal characteristics of Qx;y.
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More precisely, we will show that under the assumptions (H1), for m a.e. ðx; yÞ, the
map ðt; zÞ 7! bxy

ðt; zÞ 2 C1;2ð½0; 1½�Rd ;RÞ. For this purpose the relevant expression
for bxy is the following (it can be proved by the same argument as in Step 1: for any
ðt; zÞ 2 ½0; 1½�Rd and t 2�t; 1½,

bxy;i
ðt; zÞ ¼

Qx;yðX i
t � zi=X t ¼ zÞ

t� t
� Qx;y

Z t

t

uiðp;X pÞdp þ

Z t

t

viðp;X pÞdX p=X t

� �

þ
1

t� t
Qx;y

Z t

t

Z t

p

uiðq;X qÞdq þ

Z t

p

viðq;X qÞdX q

� �
dp=X t

� �
.

ð23Þ

Let us first notice that this implies the equality between bxy;i
ðt; zÞ and

1

t� t

Z
Rd

wiqðt; z; t;w; 1; yÞdw � zi

� �
�

Z t

t

Z
Rd

Giðu;wÞqðt; z; u;w; 1; yÞdwdu

þ
1

t� t

Z t

t

Z t

s

Z
Rd

Giðu;wÞqðt; z; u;w; 1; yÞdwduds, ð24Þ

where Giðu;wÞ :¼ ðF i þ 1
2
divGi þ Gi:bxy

Þðu;wÞ. Indeed, by the same argument as in
Step 1, X is also Markovian under Q:;y :¼ Qð	=X 1 ¼ yÞ. Therefore, for any
0otouo1 and any regular function h,

Qx;yðhðu;X uÞ=X t ¼ zÞ ¼ Q:;yðhðu;X uÞ=X t ¼ zÞ ¼

Z
Rd

hðu;wÞqðt; z; u;w; 1; yÞdw.

We want to differentiate under the integral signs of (24). Using assumptions (H1.3)
and (H1.4), it is sufficient to check thatZ t

0

Z
Rd

jGiðu;wÞjfVðu;w; 1; yÞdwduoþ1

which under (H1.4) reduces to the conditionZ t

0

Z
Rd

jGi;jðu;wÞjjbxy;j
ðu;wÞjfVðu;w; 1; yÞdwduoþ1.

Let us divide and multiply the above integrand by qð0; x; u;w; 1; yÞ; by Cauchy–
Schwarz inequality w.r.t. the finite measure qð0; x; u;w; 1; yÞdwdu we obtain the
following upper bound:

Xd

j¼1

Z t

0

Z
Rd

jGi;jðu;wÞj2
fVðu;w; 1; yÞ2

qð0; x; u;w; 1; yÞ
dwdu

� �1
2

IðjÞ,

where IðjÞ2¼
R t
0

R
Rd jb

xy;j
ðu;wÞj2qð0;x; u;w; 1; yÞdwdu¼Qx;y

R t
0 jb

xy;j
ðu;X uÞj

2 du which
is finite since HðQx;yjFt ;Px;yjFt Þoþ1. For any j the coefficient of IðjÞ is also finite
by assumption (H1.4) and Proposition 2.7.

Step 3: We now assume that Q satisfies the set of assumptions (H1)–(H2) and (A0).
Then 8to1, for m a.e. ðx; yÞ, Qx;y restricted to the interval ½0; t� satisfies the
assumptions of Proposition 3.2. The proof of this assertion makes no difficulty using
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the same arguments as in Step 2. Details are left to the reader. Therefore the
following IBPF holds true with ðFxy;GxyÞ denoting the reciprocal characteristics of
Qx;y: for all g 2 Et, 8F 2 St, 81pipd,

Qx;yðDgiFÞ ¼ Qx;yðFdðgiÞÞ þ Qx;y F
Z t

0

giðrÞ

Z t

r

Fxy;i þ
1

2
divGxy;i

� �
ðt;X tÞdtdr

� �

þ Qx;y F
Z t

0

giðrÞ
Xd

j¼1

Z t

r

Gxy;iðt;X tÞdX t dr

 !
. ð25Þ

Step 4: At this stage we have proved that Qx;y satisfies two IBPF. The first one has
been obtained in Step 3; the other one is the conditioned version of the IBPF (21) for Q:

Qx;yðDgiFÞ ¼ Qx;yðFdðgiÞÞ þ Qx;y F
Z 1

0

giðrÞ

Z 1

r

F i þ
1

2
divGi

� �
ðt;X tÞdtdr

� �

þ Qx;y F
Z 1

0

giðrÞ

Z 1

r

Giðt;X tÞdX t dr

� �
. ð26Þ

Both IBPF hold true for m-a.e. ðx; yÞ, any to1, g 2 Et, 8F 2 St, 81pipd. In this last
step of the proof we will conclude that Q belongs to the reciprocal class of Pb. In order
to do so it is sufficient to prove that for m-a.e.ðx; yÞ the pair of functions ðF xy;GxyÞ

coincides with ðF ;GÞ. This will be a consequence of the following Proposition.

Proposition 4.2. Let ~Q be a probability measure on Cð½0; t�;RdÞ and B be a d-

dimensional ~Q-Brownian motion. Let u ¼ ðuiÞi (resp., v ¼ ðvijÞij) be a continuous

process on ½0; t� with values in Rd (resp., Rd�d). Let us assume that for all

i 2 f1; . . . ; dg,
R t
0
jui

sjds þ supt2½0;t�j
R t

0
vi

s dBsj
2 2 L1ð ~QÞ and 8g 2 Et, 8F 2 St, for all

i 2 f1; . . . ; dg,

~Q F
Z t

0

giðrÞ

Z t

r

ui
s ds þ

Z t

r

Xd

j¼1

vij
s dBj

s

 !
ds

 !
¼ 0.

Then the two processes u and v are equal ~Q-a.s. to the constant 0 on ½0; t� .

Proof of Proposition 4.2. Let us denote by D the set of step functions on ½0; t� with
values in the set of rational numbers whose jump points are all rationals. D is a
countable set. Let g 2 D and tpt be a rational. Let us define ~gðrÞ ¼
ðgðrÞ � 1

t

R t

0 gðsÞdsÞ1½0;t�ðrÞ. By construction ~g is a step function on ½0; t� and satisfiesR t

0
~gs ds ¼ 0. Therefore

~Q � a:s:

Z t

0

~giðrÞ

Z t

r

ui
s ds þ

Z t

r

Xd

j¼1

vij
s dBj

s

 !
dr ¼ 0.

By Fubini’s theorem this implies

~Q � a:s:

Z t

0

ui
s

Z s

0

~giðrÞdr

� �
ds þ

Z t

0

Xd

j¼1

vij
s

Z s

0

~giðrÞdr

� �
dBj

s ¼ 0.
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Ito formula implies that ~Q a.s. for any g 2 D and any t rational,
R t

0
1
s
ðgðsÞ �

1
s

R s

0 gðrÞdrÞ
R s

0 rui
r drds is equal to

R t

0
1
s
ðgðsÞ � 1

s

R s

0 gðrÞdrÞ
R s

0 rvi
r dBr ds. These are two

processes continuous w.r.t. t. Thus the identity holds for any t 2�0; t½. Differentiating
w.r.t. t we obtain for any g 2 D and t 2�0; t½;

gt �
1

t

Z t

0

gr dr

� � Z t

0

rui
r dr �

Xd

j¼1

Z t

0

rvi;j
r dBj

r

 !
¼ 0. (27)

Let us now take for 0oaotot, g :¼ 1½0;a½ þ 21½a;t½. For such a choice ðgðtÞ�
1
t

R t

0 gðrÞdrÞ ¼ a
t
40. Therefore the process ð

R t

0 rui
r dr �

R t

0 rvi;j
r dBj

rÞt2½0;t� is a.s. equal

to 0 which proves that u � 0 and v � 0 a.s. &

We must therefore check that Qx;y satisfies the assumptions of this theorem. Let
us set

uð1Þ;i
s � Fxy;i þ

1

2
divGxy;i þ Gxy;i:bxy

� �
ðs;X sÞ; vð1Þ;i;js � Gxy;i;jðs;X sÞ,

uð2Þ;i
s � Fi þ

1

2
divGi þ Gi;jbxy;j

� �
ðs;X sÞ; vð2Þ;i;js � Gi;jðs;X sÞ.

In accordance with the notations of Proposition 4.2 we also define

ui
s � uð1Þ;i

s � uð2Þ;i
s and vi;j

s � vð1Þ;i;js � vð2Þ;i;js .

As a result of the work already done in Steps 2 and 3, it is easy to see that Theorem
4.2 applies to ðu; vÞ which are therefore Qx;y-a.s. equal to the constant 0. This is
equivalent to the identity

Qxy a:s: 8s 2 ½0; 1½ ðFxy;GxyÞðs;X sÞ � ðF ;GÞðs;X sÞ. (28)

Since any X t has a strictly positive density w.r.t Lebesgue measure on Rd , the
functions F xyðs;xÞ (resp., Gxyðs; xÞ) and F ðs;xÞ (resp., Gðs;xÞ) which are continuous
in ðs;xÞ coincide on ½0; 1½�Rd . This ends the proof of Theorem 4.1. &
5. Application to gradient diffusions

In the previous sections our data has been a reference drift function bðt;xÞ. In the
present section, we characterize the fact that b is a gradient w.r.t. the space variable
using the tools of IBPF satisfied by reciprocal processes which we have developed in
the preceding sections.

As before the reference drift b belongs to C1;2ð½0; 1� � Rd ;Rd Þ and satisfies
assumptions (5)–(7) and we consider probability measures on the path space
satisfying some a priori regularity to make sense to the IBPF. For Q a probability
measure on the path space, we denote by m0 its projection at time 0.
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(H1)
 Conditional density; regularity, domination:
ðH 1:1Þ for m0 a.e .x, 80otoup1; 8ðx; zÞ 2 Rd � Rd there exists a strictly

positive function qx such that

QðX u 2 dwjX 0 ¼ x;X t ¼ zÞ ¼ qxðt; z; u;wÞdw

and the map ðt; zÞ 7! qxðt; z; u;wÞ is in C1;2ð½0; u� � Rd ;RÞ
ðH1:2Þ 80oto1;8ðt; zÞ 2 ½0; t� � Rd , there exists a neighborhood V of ðt; zÞ

and a function fVðu;wÞ such that whenever qa denotes qt; qzk or qzkzl

for k; l 2 f1; . . . ; dg it holds

sup
ðs;xÞ2V

jqaqxðs; x; u;wÞjpfVðu;wÞ,

Z 1

0

Z
Rd

fVðu;wÞð1þ jwj2N Þdwduoþ1.
(H2)
 Integrability conditions on the derivatives of the conditional density

ðH2:1Þ
R 1
0

R
Rd jqaqxðt;X t; u;wÞjð1þ jwj2NÞdwdu 2 L1ðQxÞ, where qa denotes

qt; qzkzl for k; l 2 f1; . . . ; dg.

ðH2:2Þ
R 1 R

d jq k qxðt;X t; u;wÞjð1þ jwj2N Þdwdu 2 L2ðQxÞ.
0 R z
Theorem 5.1. Let Q be a probability measure in PHðOÞ which satisfies the conditions

ðH1Þ and ðH2Þ and (A0). If the following IBPF holds under Q: for all g step function

on ½0; 1�, 8F 2 S, for all i 2 f1; . . . ; dg,

QðDgiFÞ ¼ QðFdðgiÞÞ � QðFbð1;X 1ÞÞ

Z 1

0

giðrÞdr þ Q F
Z 1

0

giðrÞ

Z 1

r

F iðt;X tÞdtdr

� �
(29)

then b is a gradient and Q is in fact equal to the law of a gradient Brownian diffusion

with drift b.

Remark 5.2. (1) The conclusion of the above theorem is, in other words, that the
canonical process under Q satisfies Eq. (4) (i.e. dX t ¼ dBt þ bðt;X tÞdt) but its initial
condition is not necessarily deterministic.

(2) It will be proved below that, due to the ‘‘terminal term’’ or second term in the
RHS of (29), the coordinate process under Q is not only reciprocal but Markovian.
Moreover, the fact that there is no term containing the stochastic integral of
some function G as in the general formula (21) will imply the gradient property of
the drift.
Proof of Theorem 5.1. The proof is divided in two steps.
In Step 1, we prove that, for m0-a.e. x, Qx is a Brownian diffusion, whose drift is

denoted by bx. We also prove that its reciprocal characteristics ðFx;GxÞ coincide with
ðF ; 0Þ.
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In Step 2 we prove that b is a gradient and conclude that X under Q is a Markov
Brownian diffusion solution of dX t ¼ bðt;X tÞdt þ dW t, where W is a Brownian
motion.

Step 1: We can adapt Step 1 in the proof of Theorem 4.1 in this simpler situation
ðG ¼ 0Þ and obtain that for m0-a.e. x, Qx is a Brownian diffusion, whose drift
bx;i

ðr;X rÞ is given, for any ro1, by

1

1� r
QxðX i

1 � X i
r=X rÞ þ

Z 1

r

Qx

Z 1

p

F iðq;X qÞdq=X r

� �
dp

� �

� Qx

Z 1

r

F iðp;X pÞdp=X r

� �
. ð30Þ

Now, the key tool in order to identify ðFx;GxÞ with ðF ; 0Þ will be to apply
Proposition 4.2 to Qx. In order to do so, we must first prove that Qx satisfies at the
same time two IBPF. The first formula is an immediate consequence of identity (29)
for Q. Indeed, if in (29) we take F ¼ jðX 0Þ ~F and g step function on ½0; 1�, we obtain
for m0-a.e. x, QxðDgiFÞ is equal to

QxðFdðgiÞÞ � QxðFbð1;X 1ÞÞ

Z 1

0

giðrÞdr þ Qx F
Z 1

0

giðrÞ

Z 1

r

F iðt;X tÞdtdr

� �
.

(31)

The second formula will be obtained when we have shown that Qx satisfies the
assumptions of Proposition 3.2 on each interval ½0; t�, to1. Let to1 be fixed and
1pipd. Let us recall that bx;i

ðt;X tÞ is equal to

QxðX i
1 � X i

t=X tÞ

1� t
� Qx

Z 1

t
F iðp;X pÞdp=X t

� �

þ
1

1� t

Z 1

t
Qx

Z 1

p

F iðq;X qÞdq=X t

� �
dp.

From assumption (A0), which is still true under Qx, we deduce that for m0 � a.e.x,
Qxðjbx;i

ðt;X tÞjÞoþ1: From now on we restrict ourselves to the set of x such that
this holds. In order to satisfy the assumptions of Proposition 3.2 it is sufficient that
for all i; j 2 f1; . . . ; dg
(i)
 bx
2 C1;2ð½0; t� � Rd ;RdÞ,R R
(ii)
 the two integrals
t
0 jF

x;i þ 1
2 divGx;ijðt;X tÞdt and

t
0 jG

x;ijðt;X tÞj
2 dt belong to

L1ðQxÞ.
All the necessary arguments have already been developed in detail in the
proof of Theorem 4.1, Steps 2–4. Here the situation is even simpler since
there are no terms in G in the expression of bx. For this reason, we do not
write down the details but refer the reader to the proof of Theorem 4.1. We
conclude that for m0-a.e. x, any Ft-measurable F in S, and any step function g
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on ½0; t�,

QxðDgiFÞ ¼ QxðFdðgiÞÞ � QxðFbx;i
ðt;X tÞÞ

Z t

0

giðrÞdr

þ Qx F
Z t

0

giðrÞ

Z t

r

Fx;i 1

2
divGx;i

� �
ðt;X tÞdt

  

þ
Xd

j¼1

Z t

r

Gx;ijðt;X tÞdX
j
t

!
dr

!
. ð32Þ

Let us now restrict to step functions g 2 Et. Then comparing expressions (31) and
(32) one obtains:

Qx F
Z t

0

giðrÞ

Z t

r

F iðt;X tÞ dtdr

� �
¼ Qx F

Z t

0

giðrÞ

Z t

r

ðF x;i þ
1

2
divGx;iÞðt;X tÞdtdr

� �

þ Qx F
Z t

0

giðrÞ
Xd

j¼1

Z t

r

Gx;ijðt;X tÞdX
j
t dr

 !
.

Since the processes ui
tðX Þ ¼ ðF x;i þ 1

2 divGx;i þ Gx;i:bx
� F iÞðt;X tÞ and v

ij
t ðX Þ ¼

Gx;ijðt;X tÞ satisfy the assumptions of Proposition 4.2, we conclude that they are
equal to zero dtdQx-a.s. These assumptions are indeed satisfied as a consequence of
conditions (i) and (ii) above and Proposition 2.7 for F. This yields for m0-a.e. x:

Qx a:s:; 8t 2�0; 1½; ðF xðt;X tÞ;G
xðt;X tÞÞ ¼ ðF ðt;X tÞ; 0Þ. (33)

We conclude as in the proof of Theorem 4.1 Step 4 that Gx � 0 and Fx � F . This
implies that Qx is a gradient diffusion, but this is not sufficient to conclude the same
for Q, since we do not yet know that Q is a diffusion.

Step 2: In the present step we prove that b is a gradient, that is there exists a
function j defined on ½0; 1� � Rd , differentiable in the space variable, such that for all
i 2 f1; . . . ; dg; ðt; yÞ 2�0; 1½�Rd ; bi

ðt; yÞ ¼ qijðt; yÞ. The key tool will again be the
identification of two IBPF for Qx. Let us fix t 2 ½0; 1½. The assumption of finite
entropy for Q and assumption ðH2:2Þ imply that Proposition 3.3 applies to QxjFt

and provides the first of the two IBPF we will consider: for any F 2 St and any step
function g on ½0; t�;QxðDgiFÞ is equal to

QxðFdðgiÞÞ � Qx F
Z t

0

giðsÞ bx;i
ðs;X sÞ þ

Xd

j¼1

Z t

s

qib
x;j
ðp;X pÞdBj

p

 !
ds

 !
, (34)

where B is the Qx-Brownian motion equal to the martingale part of X under Qx.
The second IBPF for Qx is (31). Ito formula for bi under Qx and Theorem 2.5
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yield for any sot

bi
ð1;X 1Þ ¼ bi

ðs;X sÞ þ
Xd

j¼1

Z 1

s

qjb
i
ðp;X pÞdBj

p

þ

Z 1

s

F i þ
1

2
divGi þ Gi:bx

þ
Xd

j¼1

qib
j
ðbx;j

� bj
Þ

 !
ðp;X pÞdp. ð35Þ

We now plug (35) into (31) and look at the difference of the obtained IBPF with (34):
for any F 2 St and g with support in ½0; t�,

Qx F
Z t

0

giðsÞ ðbi
� bx;i

Þðs;X sÞ þ

Z 1

s

ui
p dp þ

Xd

j¼1

Z t

s

ðqjb
i
� qib

x;j
ÞdBj

p

 !
ds

 !
¼ 0,

(36)

where ui
pðX Þ ¼ ð1

2
divGi þ Gi:bx

þ
Pd

j¼1 qib
j
ðbx;j

� bj
ÞÞðp;X pÞ. This implies

ðbi
� bx;i

Þðs;X sÞ þ

Z 1

s

Qxðui
pjFtÞdp þ

Xd

j¼1

Z t

s

ðqjb
i
� qib

x;j
ÞdBj

p ¼ 0 (37)

for any s 2�0; 1½, Qx-a.s. Taking the expectation w.r.t. Qx and the filtration Fs, yields

8i 2 f1; . . . ; dg; ðbi
� bx;i

Þðs;X sÞ ¼ �

Z 1

s

Qxðui
p=FsÞdp.

We thus conclude that ðbi
� bx;i

Þ is a bounded variation process. Its martingale part
is therefore equal to zero which is equivalent, using Ito formula, to

8i; j 2 f1; . . . ; dg qjb
i
ðs;X sÞ ¼ qjb

x;i
ðs;X sÞ. (38)

Let us fix ði; jÞ. Since bx is a gradient qjb
x;i

¼ qib
x;j and therefore, for all s 2�0; 1½,

qjb
i
ðs;X sÞ ¼ qib

j
ðs;X sÞ which implies that b is also a gradient. Moreover, identity

(38) also implies that the function ðbi
� bx;i

Þðt; yÞ is independent of y. Let us denote it

by aiðt;xÞ. Since b is a gradient, G � 0 and ui
pðX Þ �

Pd
j¼1 qib

j
ðbx;j

� bj
Þðp;X pÞ. From

(37) we then conclude that aiðt; xÞ solves the following integral equation:

8s 2�0; 1½;Qxa:s:; aiðs; xÞ ¼ �

Z 1

s

Qx
Xd

j¼1

qib
j
ðp;X pÞjFs

 !
ajðp; xÞdp. (39)

Equivalently we have obtained that for m0- a.e. x and Qx-a.e.o, the vector-valued
function aðt;xÞ solves the linear system

d

dt
aðt; xÞ ¼ Mðt;oÞaðt;xÞ; ðt; xÞ 2�0; 1½�Rd ,

where we have denoted by Mðt;oÞ the matrix with entries ðq bj
ðt;X ðoÞÞÞ.
i t
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This set of conditions is obviously satisfied when each function ai is constant equal
to zero. We now prove that this is the only possible case. This will be a consequence
of the following lemma.

Lemma 5.3. With the above notations, for any to1 and all i 2 f1; . . . ; dg,

Qx bi
ð1;X 1Þ �

Z 1

t
F iðt;X tÞdt=Ft

� �
¼ bx;i

ðt;X tÞ.

Proof of Lemma 5.3. Let g be a step function on ½0; t�. We do not assume thatR t
0 gðrÞdr ¼ 0. Let F 2 St. Taking into account that ðFx;GxÞ ¼ ðF ; 0Þ and
comparing (31) and (32), for ðF; gÞ, we obtain the following identity:

Qx F bx;i
ðt;X tÞ � ðbi

ð1;X 1Þ �

Z 1

t
Fiðt;X tÞdtÞ

� �� �Z t

0

giðrÞdr ¼ 0.

We immediately conclude since this identity holds for any F; g. &

Lemma 5.3 implies that limt%1 bx;i
ðt;X tÞ ¼ bi

ð1;X 1Þ in L1ðQxÞ. Since aiðt;xÞ ¼
ðbi

� bx;i
Þðt;X tÞ and t 7! bðt;X tÞ is continuous at t ¼ 1, we conclude that

limt%1 aðt; xÞ ¼ 0 and the only solution is aðt;xÞ � 0. We have now proved that
for m0-a.e. x, for all t 2�0; 1½; y 2 Rd ; bðt; yÞ ¼ bx

ðt; yÞ: This enables us to conclude that
X under Q is a Markov Brownian diffusion solution of dX t ¼ bðt;X tÞdt þ dW t

where W is a Q-Brownian motion. &

Our second application deals with a generalization of a result of Kolmogorov
[12]; this famous result states that a Brownian diffusion with drift b, supposed
time-homogeneous, is reversible if and only if b is a gradient. Here, we only
require that there exists one reversible law in the reciprocal class of Pb. Furthermore,
the drift b is not supposed to be time-homogeneous and may depend on time.
Let us recall that a reversible law Q on the path space O is a probability
measure which is invariant under the time reversal map R defined on O by RðX Þt ¼

X 1�t; t 2 ½0; 1�:

Theorem 5.4. Let us assume that the reciprocal characteristic G of Pb is time-

independent. Furthermore, suppose that there exists a probability measure Q in PHðOÞ
in the reciprocal class of Pb which is reversible and satisfies the integrability condition

(A0). Then there exists a function j such that

8x 2 Rd ; i 2 f1; . . . ; dg; bi
ðt;xÞ ¼ �qijðt;xÞ.

Furthermore, if Q is a Brownian diffusion with drift b, then b is time homogeneous and

Q is equal to
R
Rd Pbð:=X 0 ¼ xÞ expð�2jðxÞÞdx up to a renormalizing factor.

Let us notice that the reciprocal characteristic G is time independent whenever the
drift b is time homogeneous but these two properties are not equivalent: choose for
instance, in dimension 2, ðb1; b2Þðt; xÞ ¼ ðx2 þ f 1ðt;x1Þ;�x1 þ f 2ðt; x2ÞÞ.

Example. Let us consider the particular drift function blðxÞ ¼ �lx (the gradient of
the potential jðxÞ ¼ �1

2
ljxj2). In [20], Section 5 (cf. also [16,19]), we considered the
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law Q 2 PðOÞ of the solution of the following s.d.e.

dX t ¼ dBt � lX t dt; X 0 ¼ X 1.

The process Q, called periodic Ornstein–Uhlenbeck process, is reciprocal and we
proved in [20] that it belongs to the reciprocal class of the (Markov)
Ornstein–Uhlenbeck process Pbl . Q is a particular Gaussian mixture of periodical
bridges of Pbl . The probability Q is reversible since it is a zero mean Gaussian
process with stationary covariance function. So it provides an example of a non-
Markovian reversible law in the class of the diffusion Pbl . The above example proves
therefore that if b is a gradient there can exist more than one reversible process in the
reciprocal class Pb, one being a Markovian diffusion with drift b and others which
are reciprocal but not Markovian.

Furthermore, the (Markovian) stationary Ornstein–Uhlenbeck process Pbl , which
satisfies the same s.d.e. as above but with initial law on Rd the centered Gaussian one
with variance 1

4l, is the unique reversible process inside among all Markovian
processes in the reciprocal class of Pbl . Indeed, by the definition of RMðPblÞ given in
(13), a Markovian reciprocal process in this set is determined by two measures n0 and
n1. If it is reversible, n0 ¼ n1, therefore its distribution at time 0 determines it
uniquely. Since we have already exhibited one reversible element ofRMðPblÞ, i.e. Pbl ;
it is the unique one in RMðPbl Þ.

Proof of Theorem 5.4. By assumption, Q 2 RðPbÞ and Theorem 3.4 applies. So
IBPF (21) is satisfied under Q. Since Q has a finite entropy, it is a Brownian
semi-martingale and, as indicated in Remark 3.5, IBPF (21) can be rewritten
as follows

QðDgiFÞ ¼ QðFdðgiÞÞ þ Q F
Z 1

0

giðrÞ

Z 1

r

F iðt;X tÞdt þ

Z 1

r

GiðX tÞ � dX t

� �
dr

� �
(40)

for all F 2 S, i 2 f1; . . . ; dg and g 2 E. Let Q̂ denote the image of Q by the time
reversal mapping R : Q̂ ¼ Q � R�1: Since for all F 2 S and g 2 E, ðDgFÞ � R �

�DĝðF � RÞ where ĝ ¼ g � R, one obtains from (40)

Q̂ðDgiFÞ ¼ � QðDĝi ðF � RÞÞ

¼ � QððF � RÞdðĝi
ÞÞ � Q ðF � RÞ

Z 1

0

ĝi
ðrÞ

Z 1

r

F iðt;X tÞdtdr

� �

� Q ðF � RÞ

Z 1

0

ĝi
ðrÞ

Z 1

r

GiðX tÞ � dX t dr

� �

¼ Q̂ FdðgiÞ
� �

þ Q̂ F
Z 1

0

giðrÞ

Z 1

r

F ið1� t;X tÞdt �

Z 1

r

GiðX tÞ � dX t

� �
dr

� �
.

ð41Þ

Now recall that Q is supposed to be reversible, that is Q̂ ¼ Q, which implies
that Q also satisfies Eq. (41). So, under Q, both equalities (40) and (41) hold,
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which implies: 8F 2 S, for all i 2 f1; . . . ; dg and g 2 E,

Q F
Z 1

0

giðrÞ

Z 1

r

F iðt;X tÞdt þ

Z 1

r

GiðX tÞ � dX t

� �
dr

� �

¼ Q F
Z 1

0

giðrÞ

Z 1

r

F ið1� t;X tÞdt �

Z 1

r

GiðX tÞ � dX t

� �
dr

� �
.

By Proposition 4.2 necessarily G � �G which means that the characteristics G is
equal to 0. This last sentence is equivalent to the fact that the function b is a gradient:
bðt; xÞ ¼ �rjðt; xÞ.

Moreover, if Q is a Brownian diffusion with drift b (with finite entropy), its time
reversal is a Brownian diffusion with drift b̂ (cf. [8]). The reversibility assumption
thus implies that b ¼ b̂ and does not depend on time. Now, it is well known that the
measure with density expð�2jðxÞÞ with respect to Lebesgue measure, taken as initial
law, makes the Brownian diffusion with drift b ¼ �rj reversible. It is furthermore
the unique one, up to a multiplicative constant. The conclusion follows. &

Remark 5.5. (1) The identities

8t 2�0; 1½; F̂ ðt; :Þ ¼ F ð1� t; :Þ and Ĝðt; :Þ ¼ �Gð1� t; :Þ (42)

were proved by one of us in [25], Proposition 4.5, using the explicit expression of F̂

and Ĝ as functionals of the reversed drift. They reflect the symmetry of the reciprocal
characteristics under time reversal. In the Markovian case the drift does not feature
such symmetry (cf. [9]).

(2) In the general case, if Q is a probability measure in RðPbÞ \PHðOÞ, not
necessarily reversible, whose time reversal Q̂ is regular enough to define the ‘‘reversed
reciprocal characteristics’’ F̂ and Ĝ, we could also derive identities (42). As in the
proof of Theorem 5.4, the argument would rely on the identification of two IBPF
satisfied by Q̂.
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[10] H. Föllmer, N. Gantert, Entropy minimization and Schrödinger processes in infinite dimensions,

Ann. Probab. 25 (2) (1997) 901–926.

[11] B. Jamison, Reciprocal processes, Z. Warsch. Verw. Geb. 30 (1974) 65–86.

[12] A.N. Kolmogorov, Zur Umkehrbarkeit der statistischen Naturgesetze, Math. Ann. 113 (1937)

766–772.

[13] A.J. Krener, Reciprocal diffusions and stochastic differential equations of second order, Stochastics

24 (1988) 393–422.

[15] A.J. Krener, R. Frezza, C.B. Levy, Gaussian reciprocal processes and self-adjoint stochastic

differential equations of second order, Stochast. Stochast. Rep. 34 (1991) 29–56.

[16] H. Kwakernaak, Periodic linear differential stochastic processes, SIAM J. Control Optim. 13 (1975)

400–413.

[17] B.C. Levy, A.J. Krener, Dynamics and kinematics of reciprocal diffusions, J. Math. Phys. 34 (5)

(1993) 1846–1875.

[18] M. Nagasawa, Stochastic Processes in Quantum Physics, Monographs in Mathematics, vol. 94,

Birkhauser, Basel, 2000

[19] D. Ocone, E. Pardoux, Linear stochastic differential equations with boundary conditions, Probab.

Theory Rel. Fields 82 (1989) 489–526.

[20] S. Roelly, M. Thieullen, A characterization of reciprocal processes via an integration by parts formula

on the path space, Probab. Theory Rel. Fields 123 (2002) 97–120.
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