
Reciprocal processes: a stochastic analysis
approach

Sylvie Rœlly

Abstract Reciprocal processes, whose concept can be traced back to E. Schrödinger,

form a class of stochastic processes constructed as mixture of bridges. They are

Markov fields indexed by a time interval. We discuss here a new unifying approach

to characterize several types of reciprocal processes via duality formulae on path

spaces: The case of reciprocal processes with continuous paths associated to Brow-

nian diffusions and the case of pure jump reciprocal processes associated to count-

ing processes are treated. This chapter is based on joint works with M. Thieullen,

R. Murr and C. Léonard.

1 Introduction and historical remarks

The theory of reciprocal processes evolved from an idea by Schrödinger. In [26],

he described the motion of a Brownian particle under constraints at initial and final

times, as a stochastic variational problem and proposed that its solutions are stochas-

tic processes that have the same bridges as the Brownian motion. Bernstein called

them “réciproques” and pointed out that they are Markov fields indexed by time,

which allows to state probabilistic models based on a symmetric notion of past and

future: “ces grandeurs deviennent stochastiquement parfaites !”, see [1].

Various aspects of reciprocal processes have been examined by several authors.

Many fundamental reciprocal properties were given by Jamison in a series of arti-

cles [12], [13], [14], first in the context of Gaussian processes. Contributions to a

physical interpretation and to the development of a stochastic calculus adjusted to

reciprocal diffusions have been made by Zambrini and various co-authors in their

interest of creating a Euclidean version of quantum mechanics (see [8], [28] and the

monograph [6]). Krener in [17] and then Clark in [7] exhibited reciprocal invariants
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associated with classes of reciprocal diffusions.

This chapter reviews and unifies for the first time current results on characteriz-

ing various types of reciprocal processes by duality formulae.

A first duality formula appeared under the Wiener measure as an analytical tool

in Malliavin calculus, see [2]. It is an integration by parts on the set of continu-

ous paths, which reflects the duality between a stochastic derivative operator and a

stochastic integral operator. In [25], the authors indeed characterize the Brownian

motion as the unique continuous process for which the Malliavin derivative and the

Skorohod integral are dual operators.

In the framework of jump processes, a characterization of the Poisson process as the

unique process for which a difference operator and a compensated stochastic inte-

gral are in duality was first given by Slivnjak [27], and extended to Poisson measures

by Mecke [20].

We present here duality formulae as unifying tool to characterize classes of re-

ciprocal processes in following contexts:

• in the framework of Brownian diffusions, reviewing results of [23] and [24];

• in the framework of pure jump processes, namely counting processes, following

the recent studies of R. Murr [21] extended in [18].

2 Reciprocal processes and reciprocal classes

We mainly work on the canonical càdlàg path space Ω = D([0,1],R) or some sub-

set of it. It is endowed with the canonical σ -algebra A , induced by the canonical

process X = (Xt)t∈[0,1].
For a time interval [s,u]⊂ [0,1] one defines

• X[s,u] := (Xt)t∈[s,u]
• A[s,u] := σ(X[s,u]), internal story of the process between time s and time u

P(Ω) denotes the space of probability measures on Ω .

For a probability measure P ∈ P(Ω),

P01 := P◦ (X0,X1)
−1 ∈ P(R2)

denotes its endpoint marginal law.

2.1 Definition and first properties

Definition 1. The probability measure P∈P(Ω) is reciprocal, or the law of a recip-

rocal process, if for any s ≤ u in [0,1] and any event A ∈A[0,s],B ∈A[s,u],C ∈A[u,1],
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P(A∩B∩C | Xs,Xu) = P(A∩C | Xs,Xu)P(B | Xs,Xu)P-a.e. (1)

| |

s u 10

| |
A B C

This property - which is time symmetric - makes explicit the conditional indepen-

dence under P of the future of u and the past of s with the events happened between

s and u, given the σ -algebras at boundary times s and u.

The reciprocality can be expressed in several equivalent ways.

Theorem 1. Let P ∈ P(Ω). Following assertions are equivalent:

(1) The probability measure P is reciprocal.

(1*) The reversed probability measure P∗ := P◦ (X1−·)−1 is reciprocal.

(2) For any 0 ≤ s ≤ u ≤ 1 and B ∈ A[s,u]

P(B | X[0,s],X[u,1]) = P(B | Xs,Xu). (2)

(3) For any 0 ≤ v ≤ r ≤ s ≤ u ≤ 1, and A ∈ A[v,r], B ∈ A[s,u],

P(A∩B | X[0,v],X[r,s],X[u,1]) = P(A | Xv,Xr)P(B | Xs,Xu).

| | | |

sr uv 10
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Proof. See e.g. Theorem 2.3 in [19] ⊓⊔

The identity (2) points out that any reciprocal process is a Markov field parametrised

by the time interval [0,1]: to condition events between s and u knowing future of u

and past of s is equivalent to condition them knowing only the σ -algebras at both

times s and u. This property is sometimes called two-side Markov property. There-

fore

Proposition 1. Any Markov process is reciprocal but the inverse is false.

Proof. The first assertion was first done in [12] in a Gaussian framework.

Take P the law of a Markov process, 0 ≤ s ≤ u ≤ 1 and A ∈ A[0,s],B ∈ A[s,u] and

C ∈ A[u,1]. The following holds:
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P(A∩B∩C) = E[P(A∩B∩C | X[s,u])]
∗
= E[P(A | Xs)1BP(C | Xu)]

= E[P(A | Xs)P(B | Xs,Xu)P(C | Xu)]
∗
= E[P(A | Xs)P(B | Xs,Xu)P(C | X[0,u])]

= E[P(A | Xs)P(B | Xs,Xu)1C]
∗
= E[P(A | X[s,1])P(B | Xs,Xu)1C]

= E[1AP(B | Xs,Xu)1C],

where the Markov property was used to prove equalities with *. Therefore (2) holds

and P is reciprocal.

As a counter-example, take e.g. the periodic process constructed in section 3.1.4.

⊓⊔

Indeed a canonical method to construct reciprocal processes is to mix Markovian

bridges. Take P ∈P(Ω) the law of a Markov process whose bridges (Pxy)x,y∈R can

be constructed for all x,y ∈ R as a regular version of the family of conditional laws

P(· | X0 = x,X1 = y),x,y ∈ R. (It is a difficult challenge in a general non-Markov

setting, but it is already done if P is a Lévy process -see [15] and [22] Proposition

3.1-, or if P is a right process [11], or a Feller process -see the recent paper [4]). One

can now associate with P a class of reciprocal processes as follows.

Definition 2. The set of probability measures on Ω obtained as mixture of bridges

of P ∈ P(Ω),

Rc(P) := {Q ∈ P(Ω) : Q(·) =
∫

R×R

Pxy(·)Q01(dxdy)}, (3)

is the so-called reciprocal class associated with P.

This concept was introduced by Jamison in [13] in the case of a Markov reference

process P whose transition kernels admit densities.

Note that, in spite of its name, a reciprocal class is not an equivalence class

because the relation is often not symmetric: the periodic process Pper constructed in

section 3.1.4 belongs to Rc(P) but P 6∈Rc(P
per) if P is not periodic.

Proposition 2. Any process in the reciprocal class Rc(P) is reciprocal and its

bridges coincide a.s. with those of P.

Proof. Let Q ∈Rc(P) as in (3). Let us show that Q satsfies (2). Let 0 ≤ s ≤ t ≤ 1,
A ∈ A[0,s],B ∈ A[s,u] and C ∈ A[u,1]. Then
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EQ[1AQ(B | X[0,s],X[u,1])1C] = Q(A∩B∩C) =

∫

R×R

Pxy(A∩B∩C)π(dxdy)

X
=

∫

R×R

EPxy [1AP(B | Xs,Xt)1C]π(dxdy)

= EQ[1AP(B | Xs,Xt)1C]

where the reciprocality of P was used at the marked equality. Thus Q(B | X[0,s],X[t,1])
only depends on (Xs,Xt) and Q(B | X[0,s],X[t,1]) = P(B | Xs,Xt), Q-a.e. which com-

pletes the proof. ⊓⊔

2.2 Reciprocal characteristics

Let us now introduce, in two important frameworks, functionals of the reference

process which are invariant on its reciprocal class. They indeed characterise the

reciprocal class, as we will see in Theorem 2 and Theorem 3.

2.2.1 Case of Brownian diffusions

In this paragraph the path space is restricted to the set of continuous paths Ωc := C([0,1];R).
Consider as reference probability measure Pb ∈ P(Ωc) a Brownian diffusion with

regular drift b, that is the law of the SDE

dXt = dBt + b(t,Xt)dt

where B is a Brownian motion and b(t,x) ∈ C1,2([0;1]×R;R).
The family of its bridges (Pxy

b )x,y∈R can be constructed for all x,y ∈R as mentioned

in the preceding section. Since we are only interested in its reciprocal class, the

marginal at time 0 of Pb does not play any role, and, therefore, we do not mention

it.

Clark proved a conjecture of Krener, stating that the reciprocal class of Pb is, in

some sense, characterised by the time-space function

Fb(t,x) := ∂tb(t,x)+
1

2
∂x(b

2 + ∂xb)(t,x),

thus called reciprocal characteristics associated with Pb.

Theorem 2. Let Pb and Pb̃ be two Brownian diffusions with smooth drifts b and b̃.

Rc(Pb) =Rc(Pb̃)⇔ Fb ≡ Fb̃

Proof. See [7] Theorem 1. ⊓⊔

Example 1.
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1. The reciprocal characteristics of a Wiener measure P0, law of a Brownian mo-

tion with any initial condition, vanishes since b ≡ 0 ⇒ Fb ≡ 0.

2. The reciprocal characteristics of the Ornstein-Uhlenbeck process with linear

time-independent drift b(x) =−λ x is the linear function x 7→ λ 2x.

3. It is known, that if the Brownian diffusion Pb admits a smooth transition den-

sity pb, then its bridge P
xy
b between x and y can be constructed as a Brownian

diffusion with drift bxy given by

bxy(t,z) = b(t,z)+ ∂z log pb(t,z;1,y), t < 1.

Let us compute Fbxy:

Fbxy(t,z)−Fb(t,z)

= ∂t∂z log pb(t,z;1,y)+ ∂zb(t,z)∂z log pb(t,z;1,y)+ b(t,z)∂ 2
z log pb(t,z;1,y)

+
(

∂z log pb ∂ 2
z log pb

)

(t,z;1,y)+
1

2
∂ 3

z log pb(t,z;1,y)

= 0,

where we used the identity

∂t pb(t,z;1,y)+ ∂ 2
z pb(t,z;1,y)+ b(t,z)∂z pb(t,z;1,y) = 0.

It confirms the fact that Pb ∈Rc(P
xy
b ) .

Remark 1. In the multidimensional case, when the path space is C([0,1];Rd), d >
1, one needs one more function to characterize the reciprocal class Rc(Pb). It is

denoted by Gb and defined as an R
d⊗d-valued function Gb(t,x) = (G

i, j
b (t,x))i, j as

follows G
i, j
b := ∂ jb

i − ∂ib
j, see [7].

2.2.2 Case of counting processes

In this paragraph, let us now restrict the path space to the set of càdlàg step functions

with unit jumps on ]0,1[. It can be described as follows:

Ω j := {ω = xδ0 +
n

∑
i=1

δti ,0 < t1 < · · ·< tn < 1,x ∈ R,n ∈ N},

Consider, as reference Markov probability measure Pℓ ∈P(Ω j), the law of a count-

ing process with a regular uniformly bounded Markovian jump intensity ℓ, satisfying

for all x ∈ R, ℓ(·,x) ∈ C1([0;1];R) and 0 < inft,x ℓ(t,x)≤ supt,x ℓ(t,x)<+∞.

Note that the definition of Rc(Pℓ) makes sense: on one side the family of bridges

P
xy
ℓ can be constructed for all x,y such that y− x ∈ N; On the other side, for any

Q ∈ P(Ω j), its endpoint marginal law Q01 is concentrated on such configurations.

Murr identified a time-space functional Ξℓ of the intensity ℓ as characteristics of the

reciprocal class associated with Pℓ.
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Theorem 3. Let Pℓ and Pℓ̃ be two counting processes with intensities ℓ and ℓ̃ as

below.

Rc(Pℓ) =Rc(Pℓ̃)⇔ Ξℓ ≡ Ξℓ̃ (4)

where Ξℓ(t,x) := ∂t logℓ(t,x)+
(

ℓ(t,x+ 1)− ℓ(t,x)
)

.

Proof. See [21] Theorem 6.58 and [18]. ⊓⊔

Example 2.

1. The standard Poisson process P := P1 has constant jump rate - or intensity -

equal to 1 and initial deterministic condition equal to 0. Its reciprocal charac-

teristics vanishes since ℓ≡ 1 ⇒ Ξℓ ≡ 0.

2. All Poisson processes are in the same reciprocal class since, for any constant

jump rate λ > 0, ℓ≡ λ ⇒ Ξℓ = Ξ1 ≡ 0.

3. For x,y ∈ R with y− x ∈ N, the bridge Pxy of P is the Markov counting process

starting at x with time-space dependent intensity given by ℓxy(t,z) = max(y−z,0)
1−t

,

for any t < 1.

One verifies, as in Example 1 (3), that Ξℓxy = Ξ1 = 0.

3 Characterization via duality formulae

Our aim is now to show that each reciprocal class coincides - in the frameworks we

introduced below - with the set of random processes for which a perturbed duality

relation holds between the stochastic integration and some derivative operator on

the adequate path space.

3.1 Case of Brownian diffusions

3.1.1 The test functions and the operators

On Ωc, we define a set of smooth cylindrical functionals by:

S = {Φ : Φ = ϕ(Xt1 , . . . ,Xtn),ϕ ∈ C∞
b (R

n;R),n ∈ N
∗,0 ≤ t1 < · · ·< tn ≤ 1}.

The derivation operator Dg in the direction g ∈ L2([0,1];R) is defined on S by

DgΦ(ω) := lim
ε

1

ε

(

Φ(ω + ε

∫ .

0
g(t)dt)−Φ(ω)

)

=
n

∑
j=1

∫ t j

0
g(t)

∂ϕ

∂x j

(ωt1 , . . . ,ωtn)dt.

DgΦ is the Malliavin-derivative of Φ in the direction
∫ .

0 g(t)dt, element of the

Cameron-Martin space. Furthermore,
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DgΦ = 〈g,D.Φ〉L2([0,1];R) where DtΦ =
n

∑
j=1

∂ϕ

∂x j

(Xt1 , . . . ,Xtn)1[0,t j ](t).

The integration operator under the canonical process, denoted by δg, is defined as

δ (g) :=

∫ 1

0
g(t)dXt .

It is always well defined if the test function g is simple, i.e. a linear combination of

indicator functions of time intervals.

A loop on [0,1] is a function g with vanishing integral:
∫ 1

0 g(t)dt = 0, that is g∈{1}⊥
in L2([0,1];R).

3.1.2 Duality formula under the Wiener measure and its reciprocal class

We are now able to present the duality between the operators D and δ under all

probability measures belonging to the reciprocal class of a Wiener measure. We

denote by P the standard Wiener measure, which charges only paths with initial

condition at 0.

Theorem 4. Let Q be a Probability measure on Ωc such that EQ(|Xt |)<+∞ for all

t ∈ [0,1].

Q is a Wiener measure ⇔∀Φ ∈ S ,EQ(DgΦ) = EQ

(

Φ δ (g)
)

,∀g simple. (5)

Q ∈Rc(P)⇔∀Φ ∈ S ,EQ(DgΦ) = EQ

(

Φ δ (g)
)

,∀g simple loop. (6)

Proof. • Sketch of
(5)⇒: Using Girsanov formula,

EP0
(DgΦ) = EP0

(

lim
ε→0

Φ(·+ ε
∫ .

0 g(t)dt)−Φ

ε

)

= EP0
(Φ ∂ε Zε |ε=0)

with Zε := exp(ε
∫ 1

0 g(t)dXt − ε2

2

∫ 1
0 g(t)2dt ).

• (5)⇐: With adequate choice of Φ and g, one can prove that the canonical process

Xt −X0 is a Q-martingale, as well as (Xt −X0)
2 − t. This enables to conclude that

Q is any Wiener measure. For details, see [25].

• First note that Q ∈Rc(P)⇔ Q =
∫

P
xy Q01(dx,dy).

(6)⇒: Take Φ(ω) = φ0(ω(0))φ1(ω(1))Φ̃(ω) in (5). Then

EP

(

φ0 φ1 Φ̃ δ (g)
)

= EP(Dg(φ0 φ1 Φ̃))

which implies that, for all smooth φ0, φ1,
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EP

(

φ0(X0)φ1(X1)P(Φ̃δ (g)|X0,X1)
)

=

EP

(

φ0(X0)φ1(X1)P(DgΦ̃ |X0,X1)
)

+EP

(

φ0(X0)φ
′
1(X1)Φ̃

)

∫ 1

0
g(t)dt

⇒ E
P

X0X1

(

Φ̃δ (g)
)

= E
P

X0X1

(

DgΦ̃
)

if

∫ 1

0
g(t)dt = 0.

This identity holds for any mixture of Brownian bridges too.

• (6)⇐: Qxy satisfies (6) too, which leads to identify it as the unique Gaussian process

with mean x+ t(y− x) and covariance s(1− t), that is Pxy. For details, see [23].

⊓⊔

Remark 2.

1. Equation (5) is an infinite-dimensional generalisation of the one-dimensional

integration by parts formula, also called Stein’s formula, satisfied by the stan-

dard Gaussian law:

∫

R

ϕ ′(x)
e−x2/2

√
2π

dx =

∫

R

ϕ(x)x
e−x2/2

√
2π

dx.

Take g ≡ 1 and Φ = ϕ(X1) in (5).

2. (5) remains true under the Wiener measure P, for random processes g ∈
L2(Ωc × [0,1];R) Skorohod-integrable and for any general Φ ∈ D1,2, closure

of S under the norm ‖Φ‖2
1,2 :=

∫

(Φ2 +
∫ 1

0 |DtΦ|2dt)dP. In such a generality,

(5) shows the well known duality between the Malliavin derivative D and the

Skorohod integral δ under P, see e.g. [2].

3. Since, for computing Dg, paths are not perturbed at time 0, it is clear that (5)

characterizes only the Brownian dynamics (Wiener measure) but not the initial

law of X0 under Q.

4. Since, for computing Dg for a loop g, paths are neither perturbed at time 0 nor

at time 1, the identity (6) characterizes only the dynamics of the bridges QX0X1 .

3.1.3 Duality formula under the reciprocal class of Brownian diffusions

We now investigate how the duality formula (6) is perturbed when the underlying

reference process admits a drift b (satisfying the same smoothness assumptions as

in section 2.2.1). The transformed duality equation (7) we present below, contains

an additional term of order 0 in Φ , in which appears the reciprocal invariant Fb

associated with Pb.

Theorem 5. Let Q be a Probability measure on Ωc such that, for all t ∈ [0,1],

EQ

(

|Xt |2 +
∫ 1

0 F2
b (t,Xt)dt

)

<+∞. Then,
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Q ∈Rc(Pb) ⇔ ∀Φ ∈ S , ∀g simple loop,

EQ(DgΦ) = EQ

(

Φ δ (g)
)

+EQ

(

Φ

∫ 1

0
g(r)

∫ 1

r
Fb(t,Xt)dt dr

)

(7)

⊓⊔

Proof. • Sketch of ⇒: First, the bridges of Q coincide with those of Pb. Since P
xy
b

is absolutely continuous with respect to Pb on any time interval [0,1− ε],ε > 0,

one can use the Girsanov density to prove that P
xy
b satisfies (7), and thus, by

linearity, Q satisfies (7) too.

• ⇐: First, Qxy satisfies (7) for a.a. x,y. This allows to prove that the canonical

process is a Qxy-quasi-martingale. Therefore, by Rao’s theorem (see [9]), it is a

Qxy-semi-martingale. Its characteristics can be computed: The quadratic varia-

tion is t and the bounded variation part is of the form t 7→ ∫ t
0 bx,y(s,Xs)ds. One

compute that Fbx,y = Fb. Thus Qxy = P
xy
b and Q ∈ ℜc(Pb). For more details, see

[23], Theorem 4.3. ⊓⊔

3.1.4 Some applications

We first illustrate the use of the identity (7) to identify a process as element of

some precise reciprocal class. Consider, as Markov reference process, the Ornstein-

Uhlenbeck process denoted by POU , introduced in Example 1 (2), whose associated

reciprocal characteristics is FOU(x) = λ 2x. Consider now the periodic Ornstein-

Uhlenbeck process denoted by P
per
OU , and solution of the following stochastic dif-

ferential equation with periodic boundary conditions on the time interval [0,1]:

dXt = dBt −λ Xt dt , X0 = X1. (8)

This process is Gaussian as the following representation shows:

Xt =

∫ t

0

e−λ (t−s)

1− e−λ
dBs +

∫ 1

t

e−λ (1+t−s)

1− e−λ
dBs =: Ψ(B)t . (9)

But it is not Markov as the following representation shows:

Xt = X0 +Bt −
∫ t

0

(

λ Xs −λ
X0 − e−λ (1−s)Xs

sinh(λ (1− s))

)

ds, X0 ∼ N
(

0,
coth(λ/2)

2λ

)

.

A natural question is then to investigate if it is reciprocal. In [3] the authors analysed

the form of its covariance kernel to deduce the reciprocality of P
per
OU . We proposed

in [23] an alternative proof based on (7), which allows to conclude directly that

P
per
OU ∈Rc(POU): Thanks to the representation (9), one notes that the shifted process

X + ε
∫ .

0 g(t)dt can also be represented as the transform by Ψ of a shifted Brownian

motion, if g is a loop. It remains to use Girsanov theorem by computing
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EP
per
OU

(DgΦ) = EP
per
OU

(

lim
ε→0

Φ(·+ ε
∫ .

0 g(t)dt)−Φ

ε

)

to obtain that P
per
OU satisfies, for all Φ ∈ S and g simple loops,

EP
per
OU

(DgΦ) = EP
per
OU

(

Φ δ (g)
)

+EP
per
OU

(

Φ

∫ 1

0
g(r)

∫ 1

r
λ 2Xt dt dr

)

.

Let us now present a generalization of the famous result stated by Kolmogorov

in [16]: a Brownian diffusion with values in R
d and time-homogeneous drift b is

reversible (that is, there exists an initial distribution such that Pb = P
∗
b) if and only

if the function b is a gradient.

In the next Theorem, whose proof is detailed in [24] Theorem 5.4, we obtain the

same result under much weaker assumptions: we only require that there exists one

reversible law in Rc(Pb) and we do not suppose that the drift is time-homogeneous.

Its proof is based on the d-dimensional duality formula characterising the reciprocal

class Rc(Pb).

Theorem 6. Let b be a d-dimensional smooth drift such that for any i, j ∈ {1, · · · ,d}
the function

(

∂ jb
i − ∂ib

j
)

(t,x) is time-independent. Furthermore suppose there ex-

ists Q ∈ ℜc(Pb) with finite entropy which is time-reversible. Then the drift b is of

gradient type i.e.

∃ϕ : [0,1]×R
d 7→ R such that, for all t, b(t, ·) =−∇ϕ(t, ·).

Moreover, if Q is itself a Brownian diffusion with drift b, then b is time-independent

and

Q(·) = 1

c

∫

Rd
Pb(·|X0 = x) e−2ϕ(x) dx,

for some positive constant c.

3.2 Case of counting processes

3.2.1 The test functions and the operators

Any path ω in Ω j is characterised by its initial value x, the number of its jumps till

time 1, say n, and the times of its jumps, t1, · · · , tn. We then define the i-th jump-time

of a path by the functional:

Ti(ω) = Ti(xδ0 +
n

∑
j=1

δt j
) := ti1i≤n + 1i>n.

We now define a set of smooth test functionals on Ω j by:
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S = {Φ : Φ = ϕ
(

X0,T1, · · · ,Tn

)

,ϕ ∈ C∞
b (R

n+1;R),n ∈ N
∗}.

The derivation operator Dg in the direction g ∈ L2([0,1];R) is based on the pertur-

bation of the jump-times and defined on S by:

DgΦ := lim
ε

1

ε

(

ϕ
(

X0,T1 + ε

∫ T1

0
g(t)dt, · · · ,Tn + ε

∫ Tn

0
g(t)dt

)

−Φ

)

.

It was introduced by Elliott and Tsoi in [10].

3.2.2 Duality formula under the Poisson process and its reciprocal class

We are now able to present the duality between D and an integration operator un-

der all probability measures in the reciprocal class of the standard Poisson process.

Recall the notations introduced in Example 2: P denotes the standard Poisson Pro-

cess on [0,1] and Pλ denotes a Poisson Process on [0,1] with intensity λ and any

marginal law at time 0.

Theorem 7. Let Q be a Probability measure on Ω j such that EQ(|X1 −X0|)<+∞.

Q = Pλ ⇔∀Φ ∈ S ,EQ(DgΦ) = EQ

(

Φ

∫ 1

0
g(s)(dXs −λ ds)

)

,∀g simple (10)

Q ∈ ℜc(P)⇔∀Φ ∈ S ,EQ(DgΦ) = EQ

(

Φ

∫ 1

0
g(s)(dXs − ds)

)

∀g simple loop

(11)

Proof. • Sketch of
(10)⇔ . The main tool is Watanabe’s characterization: Q is a Pois-

son process with intensity λ on Ω j if and only if (Xt −X0−λ t)t is a Q-martingale.

• Sketch of
(11)⇔ . One fix an initial value x and try to identify the compensator of

Qx. Using (11) one shows that its compensator is absolutely continuous with

respect to Lebesgue measure, with Markov intensity of the form ℓx(t,Xt−), and

that Ξℓx ≡ 0. Thanks Theorem 3 one can conclude.

For details, see [21] Theorem 6.39 or [18]. ⊓⊔

Remark 3.

1. Equation (10) is an infinite-dimensional generalisation of the formula charac-

terising the Poisson distribution Pα on N, known as Chen’s lemma, see [5]:

Let Z a real-valued random variable.

Z ∼ Pα ⇔∀ϕ smooth, E(ϕ(Z)Z) = α E(ϕ(Z + 1)).

2. For loops g, the right side of (11) indeed reduces to EQ

(

Φ
∫ 1

0 g(s)dXs

)

. There-

fore one immediately recovers that all Poisson processes with any intensity are

in a unique reciprocal class, the reciprocal class of the standard Poisson Pro-
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cess P. In particular, the law of bridges of Poisson processes depend uniquely

on their boundary conditions but do not depend of their original intensities.

3.2.3 Duality formula under the reciprocal class of a counting process

We now investigate how the duality formula (11) is perturbed when the underlying

reference process Pℓ admits a jump intensity ℓ which is no more constant - but

smooth enough, as in Theorem 3. Similar to Section 3.1.3, the transformed duality

equation (12) presented below contains an additional term of order 0 in Φ , in which

appears the reciprocal invariant Ξℓ associated with Pℓ.

Theorem 8. Let Q be a Probability measure on Ω j such that

EQ(|X1 −X0|)<+∞.

Q ∈Rc(Pℓ)⇔∀Φ ∈ S , ∀g simple loop,

EQ(DgΦ) = EQ

(

Φ

∫ 1

0
g(s)(dXs − ds)

)

+EQ

(

Φ

∫ 1

0
g(s)

∫ 1

s
Ξl(r,Xr−)dXrds

)

.

(12)

Such a duality formula, can be used to several aims. One application is e.g.

the investigation of the time reversal of reciprocal processes belonging to the class

Rc(Pℓ), see [21] for details.

The extension of these results to pure jump processes with general jumps is in

preparation.

Acknowledgements The author gratefully acknowledges the Organizing Committee of the Inter-

national Conference Modern Stochastics: Theory and Applications III for the very pleasant and

interesting meeting. The author is also grateful to an anonymous Referee for the constructive crit-

ics.

References

1. Bernstein, S.: Sur les liaisons entre les grandeurs aléatoires. Vehr. des intern. Mathematik-
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