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Résumé

On présente d’abord un critère de convergence vers le processus de
Wiener à paramètre ν-dimensionnel, pour ν ≥ 1. Puis on l’applique pour
montrer qu’un champ aléatoire différence de martingales sur ZZν satisfait
un principe d’invariance.

Abstract

A convergence criterium to the multi-parameter Wiener process is
proved. Then, it is used to establish that a martingale-difference ran-
dom field on the lattice satisfies an invariance principle.
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1 Introduction

In this paper we are interested in functional central limit theorem, in a other
words invariance principle, for martingale-difference random fields on the lattice
ZZν . In [4], various examples of martingale-difference random fields have been
described. A particularly important class of such fields consists in Gibbsian
fields with supereven potential.

A central limit theorem for martingale-difference random fields was first
shown in [3], and then generalised to a 1-dimensional functional theorem in
[5]. We present here a complete multi-dimensional invariance principle, which is
proved owing to a convergence criterium for random fields to multi-parameter
Wiener process presented in the next Section.

2 A convergence criterium to the multiparame-
ter Wiener process

NOTATIONS

Let Tν be the ν-fold Cartesian product of the closed unit interval [0, 1], for
ν ≥ 1. We consider on Tν the usual order: for s, t ∈ Tν , s = (s(1), . . . , s(ν)),
t = (t(1), . . . , t(ν)), we write s < t (or s ≤ t) if s(i) < t(i) (or s(i) ≤ t(i)), i =
1, . . . , ν. For t1, t2 ∈ Tν , t1 < t2, we will denote by (t1, t2] the ν-dimensional
interval {s ∈ Tν : t1 < s ≤ t2} which is often called a block. In other words

(t1, t2] =
ν∏

i=1

(t(i)1 , t
(i)
2 ].

We also denote for t ∈ Tν , |t| = max1≤i≤ν |t(i)|.
Cν is the set of all continuous functions on Tν endowed with the uniform

metric.
Following the terminology of [1], we call a function x:Tν → IR a step func-

tion, if x is a linear combination of functions of the form:

t 7→ IE1×···×Eν (t) ,

where each Ek is either a left-closed, right-open subinterval of [0, 1], or the
singleton {1} and IE denotes the indicator of the set E. Let Dν be the uniform
closure, in the space of all bounded functions from Tν to IR, of the vector
subspace of step functions. Then the functions of Dν are a multi-dimensional
version of “cad-lag” functions.

One introduces on Dν a metric topology (which coincides with Skorohod
topology if ν = 1) for which the space Dν is a complete separable metric space
and the Borel σ-algebra coincides with the σ-algebra generated by the coordinate
mappings (see [6], [2]).

We define the modulus of continuity of an element x ∈ Dν by

wx(δ) = w(x, δ) = sup{|x(t)− x(s)|: t, s ∈ Tν , |s− t| < δ} , δ > 0.

If {X(t), t ∈ Tν} is a stochastic process then the increment X(B) of X
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around a block B = (s, t] ⊂ Tν is defined by

X(B) =
∑

αi=0,1
i=1,...,ν

(−1)ν−
∑ν

i=1
αiX

(
s(1)+α1

(
t(1)−s(1)

)
, . . . , s(ν)+αν

(
t(ν)−s(ν)

))
.

Let B̂ = (ŝ, t̂], ŝ, t̂ ∈ Tν−1 be a fixed block in Tν−1. If (s, t] ⊂ [0, 1], then
evidently (s, t]× B̂ is a block in Tν .
For h > 0 we will denote by ∆t,t+h the block (t, t+ h]× B̂.

-
T

6
Tν−1
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Figure 1: The weak past σ-algebra

We recall that a stochastic process {W (t), t ∈ Tν} is called a ν-parameter
Wiener process if

1) P (W ∈ Cν) = 1, P (W (t) = 0) = 1 for each t ∈ Tν
o , where Tν

o = {t ∈
Tν :∃1 ≤ j ≤ ν such that t(j) = 0} is the “lower boundary” of Tν .

2) If B1, . . . , Bk are pairwise disjoint blocks in Tν , then the increments
W (B1), . . . ,W (Bk) are independent normal random variables with means zero
and variances |B1|, . . . , |Bk|, where |B| denotes the ν-dimensional volume of a
block B from Tν .

For t ∈ Tν we define the “weak past” of t by

Tν
−(t) = {s ∈ Tν :∃1 ≤ j ≤ ν such that s(j) ≤ t(j)}

and put
F(t) = σ

{
X(u),u ∈ Tν

−(t)}.

Now we can formulate conditions, which will characterize a random element
X of Dν as a ν-parameter Wiener process.

Condition 1. For t ∈ [0, 1), B̂ = (ŝ, t̂] ⊂ Tν−1

a) limh↓0
1
hE

{∣∣E(X(∆t,t+h)/F(t, ŝ))
∣∣} = 0,
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b) limh↓0
1
hE

{∣∣E(X2(∆t,t+h)/F(t, ŝ))− h|B̂|
∣∣} = 0.

Condition 2.
sup
t∈Tν

E{X2(t)} < +∞ .

Condition 3. For 0 ≤ t < 1

lim
α→∞

lim sup
h↓0

1
h

∫
X2(∆t,t+h)≥αh

X2(∆t,t+h)dP = 0

The following Theorems 1 and 2 are multidimensional extensions of Theo-
rems 19.3 and 19.4 of [2] respectively.

Theorem 1 Let X be a random element of Dν with P (X ∈ Cν) = 1 and
P (X(t) = 0) = 1for each t ∈ Tν

o . If X satisfies conditions 1-3 then X is a
ν-parameter Wiener process.

Proof : Let B,B1, . . . , Bk, be the following family of disjoint blocks in Tν

: B = (s, t] × B̂, Bj = (sj , tj ] × B̂j , where B̂ = (ŝ, t̂], B̂j = (ŝj , t̂j ] ⊂ Tν−1, j =
1, . . . , k. Without loss of generality (by reordering the blocks) we can assume
that B̂j ⊂ Tν

−((s, ŝ)), j = 1, . . . , k. We suppose that t < 1.
Let λ1, . . . , λk be real numbers and let

Z = λ1X(B1) + · · ·+ λkX(Bk)

Consider the characteristic functional defined for λ ∈ IR, s ≤ t < 1 by

ψ(t, λ) = E{exp
[
iZ + iλX((s, t]× B̂)

]
}.(1)

We want to show that ψ satisfies the following differential equation :

∂

∂t
ψ(t, λ) = −1

2
λ2|B̂|ψ(t, λ).(2)

It is clear that for h > 0, t+ h ≤ 1,

X
(
(s, t+ h]× B̂

)
= X

(
(s, t]× B̂

)
+X

(
(t, t+ h]× B̂

)
.

We have that
1
h

[
ψ(t+ h, λ)− ψ(t, λ)

]
=

1
h
E

{
exp

[
iZ + iλX(B)

] [
exp(iλX(∆t,t+h))− 1

]}
=

1
h
E

{
exp

[
iZ + iλX(B)

]
·
[
iλX(∆t,t+h)− λ2

2
X2(∆t,t+h) + r(λX(∆t,t+h))

]
}

where r is the remaining term in the expansion of the exponential function.
This implies that

1
h

[
ψ(t+ h, λ)− ψ(t, λ)

]
+

1
2
λ2|B̂|ψ(t, λ)

= E

{
exp(iZ + iλX(B))

[ iλ
h
X(∆t,t+h) +

λ2

2
(
|B̂| − 1

h
X2(∆t,t+h)

)
+

+
1
h
r(λX(∆t,t+h))

]}
= Ψ1 + Ψ2 + Ψ3
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where

Ψ1 =
iλ

h
E {exp[iZ + iλX(B)]X(∆t,t+h)} ,

Ψ2 =
λ2

2h
E

{
exp[iZ + iλX(B)] · [h|B̂| −X2(∆t,t+h)]

}
,

Ψ3 =
1
h
E {exp[iZ + iλX(B)] · r(λX(∆t,t+h))} ,

Let us estimate Ψ1. We have

|Ψ1| ≤ |λ|
h

∣∣E {exp(iZ + iλX(B))E(X(∆t,t+h)/F(t, ŝ)}
∣∣

≤ |λ|
h
E

{∣∣E[X(∆t,t+h)/F(t, ŝ)]
∣∣}

Hence by Condition 1 a) Ψ1 tends to 0 as h ↓ 0.
Concerning Ψ2 we can write

|Ψ2| ≤ λ2

2h
E

{∣∣E[h|B̂| −X2(∆t,t+h)/F(t, ŝ)]
∣∣}

=
λ2

2h
E

{∣∣h|B̂| − E[X2(∆t,t+h)/F(t, ŝ)]
∣∣}

which tends to 0 as h ↓ 0, by Condition 1 b).
To estimate Ψ3 we note that

|r(v)| ≤ v3 and |r(v)| ≤ v2.

Therefore

|Ψ3| ≤ 1
h
E {|r(λX(∆t,t+h))|}

≤ 1
h

∫
X2(∆t,t+h)<αh

|λ|3|X(∆t,t+h)|3dP +
λ2

h

∫
X2(∆t,t+h)≥αh

X2(∆t,t+h)dP

≤ |λ|3α3/2h1/2 +
λ2

h

∫
X2(∆t,t+h)≥αh

X2(∆t,t+h)dP.

By Condition 3 we conclude that Ψ3 tends to 0 as h ↓ 0.
Thus we have proved that ψ satisfies the differential equation (2) in the

domain : λ ∈ IR, s ≤ t < 1. This implies that, in this domain,

ψ(t, λ) = exp
[
−1

2
λ2|B̂|(t− s)

]
ψ(s, λ) .

Since
ψ(s, λ) = E{exp(iZ)}

it follows that
ψ(t, λ) = exp

(
−1

2
λ2|B|

)
E{exp(iZ)}.

or equivalently,

E
{

exp[iλ1X(B1) + · · ·+ iλkX(Bk) + iλX((s, t)× B̂)]
}

= E {exp[iλ1X(B1) + · · ·+ iλkX(Bk)]} exp[−1
2
λ2|B̂|(t− s)](3)
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It follows from Condition 2 and P (X ∈ Cν) = 1 that (3) remains true also
for t = 1.

Now by taking k = 1 and B1 = ∅ we find that for any block B ⊂ Tν , X(B)
is a normal random variable with mean zero and variance |B|.
Taking k = 1 and B1, B arbitrary but disjoint, we find that

E {exp[iλ1X(B1) + iλX(B)]} = exp(−1
2
λ1|B1|) · exp(−1

2
λ|B|),

which means that X(B1), X(B) are independent normal random variables with
means zero and variances |B1| and |B| respectively.

In the same way we can get that X(B1), . . . , X(Bk), X(B) are pairwise inde-
pendent normal random variables with zero means and variances |B1|, . . . , |Bk|
and |B| respectively. But this implies the independence of X(B1) . . . , X(Bk)
and X(B) in the usual sense.

This completes the proof of Theorem 1.

To formulate an asymptotic generalisation of Theorem 1 we need three new
conditions which are weaker versions of Conditions 1-3.

Let {Xn, n ≥ 1} be a sequence of random processes of Dν .

Condition 1’ For t ∈ [0, 1), B̂ = (ŝ, t̂] ⊂ Tν−1,
a)

lim
h↓0

lim sup
n→∞

1
h
E {|E(Xn(∆t,t+h)/Fn(t, ŝ))|} = 0

b)

lim
h↓0

lim sup
n→∞

1
h
E

{
|E(X2

n(∆t,t+h)/Fn(t, ŝ))− h|B̂||
}

= 0

Here Fn(t, ŝ) = σ{Xn(u),u ∈ Tν
−((t, ŝ))}.

Condition 2’
sup
t∈Tν

lim sup
n→∞

E{X2
n(t)} < +∞ .

Condition 3’ For 0 ≤ t < 1

lim
α→∞

lim sup
h↓0

lim sup
n→∞

1
h

∫
X2

n(∆t,t+h)≥αh

X2
n(∆t,t+h)dP = 0

Theorem 2 Let {Xn(t), t ∈ Tν} be a sequence of random processes in Dν ,
uniformly integrable for each t ∈ Tν . Suppose that, for each t ∈ Tν

o , the
sequence Xn(t) tends in probability to 0 as n→∞ and that, for any positive ε
and η, there exists δ > 0 such that for all sufficiently large n

P (w(Xn, δ) ≥ ε) ≤ η.(4)

If {Xn} satisfies Conditions 1’-3’ then Xn converges in law to W , where W is
the ν-parameter Wiener process on Tν .

Proof : The tightness of the sequence {Xn} is proven in [8], Theorem 2
or [6], Theorem 5.6. (as generalisation of Billingsley’s criteria for 1-parameter
processes).
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Let us denote by X a weak limit of a convergent subsequence of {Xn}; then
P (X ∈ Cν) = 1 and P (X(t) = 0) = 1 for each t ∈ Tν

o . Since {Xn} satisfy
Conditions 1’-3’ it implies that X satisfies Conditions 1-3 and also satisfies the
hypotheses of Theorem 1, which completes the proof.

3 An invariance principle for martingale-difference
fields

Before we present the limit theorem, let us recall some notions on the class of
fields we consider.

On the ν-dimensional integer lattice ZZν , we consider a real-valued random
field {ξ(t), t ∈ ZZν}. The corresponding probability space is (Ω,F , P ), where
Ω = IRZZν

, F is the σ-algebra generated by cylinder sets and P is the distribu-
tion of ξ(t).

Let I be the σ-algebra of invariant subsets of Ω :

I = {A ∈ F : τu(A) = A for each u ∈ ZZν}

where {τu,u ∈ ZZν} is the group of translations, acting on Ω by

(τuX)(t) = X(t− u), t ∈ ZZν .

Definition 1 A random field {ξ(t), t ∈ ZZν} is called translation invariant (ho-
mogeneous) if P (τu(A)) = P (A) for each A ∈ F and u ∈ ZZν .

Definition 2 A translation invariant random field {ξ(t), t ∈ ZZν} is called er-
godic if P is trivial on the σ-algebra of invariant subsets, i.e. P (A) = 0 or
P (A) = 1 for each A ∈ I.

For u = (u(1), . . . , u(ν)) ∈ ZZν let

ZZν
−(u) = {t ∈ ZZν :∃j, 1 ≤ j ≤ ν such that t(j) ≤ u(j)}

and let ZZν
+(u) = ZZν \ ZZν

−(u).
For a random field {ξ(t), t ∈ ZZν} we put

P(u) = σ{ξ(t), t ∈ ZZν
−(u)}(5)

Definition 3 We call a random field {ξ(t), t ∈ ZZν} a martingale-difference if
for each t ∈ ZZν

E(ξ(t)/P(t− 1)) = 0 a.s.(6)

where t− 1 = (t(1) − 1, . . . , t(ν) − 1).

Note that our definition of martingale-difference random field is weaker than
the definition given in [3], where the filtration P(t−1) (past of t−1) is replaced
by the filtration generated by all sites of ZZν different of t.

The following Theorem 3 is the main result of the present paper. It is a
multidimensional extension of Theorem 23.1 of [2].
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Theorem 3 Let {ξ(t), t ∈ ZZν} be a translation invariant, ergodic, martingale-
difference random field with finite second moment 0 < σ2 = E{ξ2(0)} <∞. Let

Xn(t) =
1

σnν/2

∑
u∈ZZν

0<u≤[nt]

ξ(u), t ∈ Tν ,(7)

where [nt] = ([nt(1)], . . . , [nt(ν)]) and [·] denotes the integer part of a number.
Then

Xn
D→W ,

where W is the ν-parameter Wiener process on Tν .

Proof : To prove the theorem it is enough to show that the sequence
{Xn(t)} of Dν-valued random elements defined by (7) satisfies the hypotheses
of Theorem 2.

From (6) we get that

E(ξ(s)/P(t)) = 0 a.s.(8)

for any s ∈ ZZν
+(t).

If B = (s, t] × B̂ is a block in Tν , B̂ = (ŝ, t̂] ⊂ Tν−1, then by [nB̂] we
denote the block ([nŝ], [nt̂]] and by [nB] the block ([ns], [nt]]× [nB̂]. Note that
[nB] ⊂ ZZν .

It is easy to see that

Xn(B) =
1

σnν/2

∑
u∈[nB]

ξ(u)

Therefore by (8)
E(Xn(∆t,t+h)/Fn(t, ŝ)) = 0 a.s. ,

where Fn(t, ŝ) = σ{ξ(u),u ∈ ZZν
−(t, ŝ), 0 < u ≤ n} ⊂ P(([nt], [nŝ])) (see (5)).

Using again (8) we find that

E
(
X2

n(∆t,t+h)/Fn(t, ŝ)
)

=
∑

u∈[n∆t,t+h]

E
(
ξ2(u)/Fn(t, ŝ)

)
.

Hence
1
h
E

{∣∣E(
X2

n(∆t,t+h

)
/Fn(t, ŝ))− h|B̂|

∣∣}
=
|B̂|
σ2

E

∣∣∣E[ 1
nνh|B̂|

∑
u∈[n∆t,t+h]

ξ2(u)− σ2/Fn(t, ŝ)
]∣∣∣


The last term tends to zero as n→∞ by ergodicity. (Indeed since |[n∆t,t+h]| is
equivalent to nνh|B̂|, we have, by the mean ergodic theorem, that 1

nνh|B̂|

∑
u∈[n∆t,t+h] ξ

2(u) →
σ2 when n tends to +∞).

Thus Condition 1’ is fulfilled.
Condition 2’ follows from the fact that

E{X2
n(t)} =

1
σ2nν

∑
0<u≤[nt]

E{ξ2(u)}
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tends to 1, as n→∞.
Now we will show that to complete the proof of Theorem 3 it is sufficient to

prove that

lim
α→∞

sup
n
Eα

( 1
nν

max
|k|≤n

S2(k)
)

= 0 ,(9)

where

S(k) =
∑
t≤k

ξ(t),k ∈ ZZν
+(0) ,

Eα(Y ) =
∫
{Y≥α}

Y dP .

Suppose that (9) holds.
According to a simple multidimensional extension of Theorem 8.4 from [2],

in order to verify the tightness condition (4) of Theorem 2, it is sufficient to
show that for any ε > 0, there exist λ > 1 and no such that

P
(
max
|k|≤n

|S(k)| ≥ λnν/2
)
≤ ε

λ2
, n ≥ no.(10)

But
P

( 1
nν

max
|k|≤n

|S2(k)| ≥ λ2
)
≤ 1
λ2
Eλ2

( 1
nν

max
|k|≤n

|S2(k)|
)

which together with (9) implies (10).
To get the uniform integrability of {X2

n(t)} for each t ∈ Tν , we note that

Eα{X2
n(t)} ≤ Eα

( 1
σnν

max
|k|≤n

S2(k)
)
.

Using the translation invariance of {ξ(t), t ∈ ZZν}, we can rewrite Condition
3’ into the form :

lim
α→∞

lim sup
h↓0

lim sup
n→∞

∫
X2

n((h,t̂−ŝ))≥αh

X2
n((h, t̂− ŝ))dP = 0 ,

where (h, t̂− ŝ) ∈ Tν . This is now a consequence of the uniform integrability of
{X2

n(t)} for each t ∈ Tν .
Thus it remains to prove formula (9).

If B is a block (parallelepiped) in ZZν , then by (8),

E

{
(
∑
u∈B

ξ(u))2
}

=
∑
u∈B

E{ξ2(u)} ,(11)

and if ξ0 has a fourth moment then

E

{(∑
u∈B

ξ(u)
)4

}
=

∑
u∈B

E{ξ4(u)}+ 4
∑

u1,u2∈B
u1<u2

E
{
ξ(u1)ξ3(u2)

}
+6

∑
u1,u2,u3∈B
u1,u2<u3

E
{
ξ(u1)ξ(u2)ξ2(u3)

}

9



Suppose first that |ξ(0)| is bounded by q with probability 1. Then

E

{
(
∑
u∈B

ξ(u))4
}

≤ q4|B|+ 4q4
|B|2

2ν
+ 6q4

|B|2

2ν

≤ Kνq
4 · |B|2 ,(12)

where Kν = 1 + 10
2ν .

By Cairoli’s maximal inequality ([7], Theorem 2.2)

E

{
max
|k|≤n

∣∣S(k)
∣∣γ}

≤
( γ

γ − 1
)γν max

|k|≤n
E

{∣∣S(k)
∣∣γ}

, γ > 1 .

Hence by (11)

E

{
max
|k|≤n

S2(k)
}
≤ 22νnνE{ξ2(0)}(13)

In the same way it follows from (8) that

E

{
max
|k|≤n

S4(k)
}
≤

(4
3
)4ν

Kνn
2νq4.

For c > 0, we define

ξc(t) =
{

ξ(t) if |ξ(t)| ≤ c,
0 if |ξ(t)| > c

Let
ηc(t) = ξc(t)− E(ξc(t)/P(t− 1)),

δc(t) = ξ(t)− ηc(t) = ξ(t)− ξc(t)− E(ξ(t)− ξc(t)/P(t− 1)).

Evidently ξ(t) = ηc(t) + δc(t).
If we denote by

Sc(k) =
∑
t≤k

ηc(t), Rc(k) =
∑
t≤k

δc(t),k ∈ ZZν
+(0) ,

we obtain that
S(k) = Sc(k) +Rc(k) .

Therefore
1
nν

max
|k|≤n

S2(k) ≤ 2
nν

max
|k|≤n

S2
c (k) +

2
nν

max
|k|≤n

R2
c(k) .

This, together with the inequality

Eα(X + Y ) ≤ 2Eα/2(X) + 2Eα/2(Y ),

implies that

Eα

{
1
nν

max
|k|≤n

S2(k)
}

≤ 2Eα/2

{
2
nν

max
|k|≤n

S2
c (k)

}
+ 2Eα/2

{
2
nν

max
|k|≤n

R2
c(k)

}
.(14)
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Applying the formula

Eα{ξ} ≤
1
α
E{ξ2}, ξ ≥ 0 ,

we find that

2Eα/2

{
2
nν

max
|k|≤n

S2
c (k)

}
≤ 4

α
E

{
4
n2ν

max
|k|≤n

S4
c (k)

}
≤ 1

α
16Kν

(4
3
)4ν(2c)4 =

1
α
Kνc

4 ,(15)

where Kν = 162Kν

(
4
3

)4ν .
Now by (13)

2Eα/2

{
2
nν

max
|k|≤n

R2
c(k)

}
≤ 2E

{
2
nν

max
|k|≤n

R2
c(k)

}
≤ 4 · 22νE{δ2c (o)} .(16)

By lemma 1 p. 184 from [2] , for any two σ-algebras A1 ⊂ A2 and a random
variable X with E{X2} <∞ the following inequality holds :

E{[X − E(X/A2)]2} ≤ E{[X − E(X/A1)]2}.

Hence taking A1 trivial we get that

E{δ2c (0)} ≤ E{(ξ(0)− ξc(0))2} = Ec2{ξ2(0)}(17)

Combining (14)-(17) we find that

Eα

{
1
nν

max
|k|≤n

S2(k)
}
≤ 1
α
Kνc

4 + 4 · 22νEc2{ξ2(0)} .

Since Eξ2(0) <∞ we get the desired formula (9).
Theorem 3 is proved.
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